
Causality in Databases: Answer-Set Programs and
Integrity Constraints

Leopoldo Bertossi?
Carleton University, School of Computer Science, Ottawa, Canada.

Causality in databases (DBs) was introduced in [15]; and, building on work on
causality as found in artificial intelligence, appeals to the notions of counterfactuals,
interventions and structural models [14]. More specifically, [15] introduces the notions
of: (a) a DB tuple as an actual cause for a query result, (b) a contingency set for a
cause, as a set of tuples that must accompany the cause for it to be such, and (c) the
responsibility of a cause as a numerical measure of its strength [11].

In our research on causality in DBs we have attempted to understand causality from
different angles of data and knowledge management. In [5], precise reductions between
causality in DBs, DB repairs, and consistency-based diagnosis were established; and
the relationships were investigated and exploited. In [6], causality in DBs was related
to view-based DB updates and abductive diagnosis, establishing fruitful connections.

This work summarizes some directions and results of our recent and ongoing re-
search in DB causality.
Causality in databases. A notion of cause as an explanation for a query result was
introduced in [15], as follows. For a relational instance D, a tuple τ ∈ Dn is called
a counterfactual cause for a Boolean conjunctive query (BCQ) Q, if D |= Q and
D r {τ} 6|= Q. Now, τ ∈ D is an actual cause for Q if there exists Γ ⊆ D, called a
contingency set for τ , such that τ is a counterfactual cause for Q in D r Γ .

The notion of responsibility reflects the relative degree of causality of a tuple for
a query result [15] (based on [11]). The responsibility of an actual cause τ for Q, is
ρ(τ) := 1

|Γ |+1 , where |Γ | is the size of a smallest contingency set for τ . If τ is not an
actual cause, ρ(τ) := 0. Tuples with higher responsibility are stronger explanations.

The notion of cause can be applied to any monotonic query with free variables, e.g.
conjunctive queries (CQs) with built-ins, unions of CQs (UCQs) [5], Datalog queries
[6], etc. Here we consider only conjunctive queries.

Example 1. Consider the relational DB D = {R(a4, a3), R(a2, a1), R(a3, a3), S(a4),
S(a2), S(a3)}, and the query Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y)). It holds, D |= Q.

S(a3) is a counterfactual cause for Q: if S(a3) is removed from D, Q is no longer
true. Its responsibility is 1. So, it is an actual cause with empty contingency set.R(a4, a3)
is an actual cause forQwith contingency set {R(a3, a3)}: ifR(a3, a3) is removed from
D, Q is still true, but further removing R(a4, a3) makes Q false. The responsibility of
R(a4, a3) is 1

2 . R(a3, a3) and S(a4) are actual causes, with responsibility 1
2 . �

Database repairs and causes. We introduce the main ideas around DB repairs [2] by
means of an example. The ICs that we consider here can be enforced only by tuple-
deletions from the DB (as opposed to tuple-insertions).

Example 2. The DB D = {P (a), P (e), Q(a, b), R(a, c)} is inconsistent with respect
to the (set of) denial constraints (DCs) κ1 : ¬∃x∃y(P (x) ∧ Q(x, y)), and κ2 :
¬∃x∃y(P (x) ∧R(x, y)). It holds D 6|= {κ1, κ2}.
? Member of the “Millenium Institute for Foundational Research on Data”, Chile.

bertossi@scs.carleton.ca. Supported by NSERC Discovery Grant #06148.

A subset-repair, in short an S-repair, ofD wrt. the set of DCs is a⊆-maximal subset
ofD that is consistent, i.e. no proper superset is consistent. The following are S-repairs:
D1 = {P (e), Q(a, b), R(a, b)} andD2 = {P (e), P (a)}. A cardinality-repair, in short
a C-repair, of D wrt. the set of DCs is a maximum-cardinality, consistent subset of D,
i.e. no subset of D with larger cardinality is consistent. D1 is the only C-repair. �

For an instanceD and a setΣ of DCs, the sets of S-repairs and C-repairs are denoted
with Srep(D,Σ) and Crep(D,Σ), resp.

Now, consider a BCQ Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) with D |= Q. Notice that
¬Q is logically equivalent to the DC: κ(Q) : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)). So, if Q
is true in D, D is inconsistent wrt. κ(Q), giving rise to repairs of D wrt. κ(Q). In [5]
it was shown that S-repairs can be used to obtain actual causes with their contingency
sets; and C-repairs for causes’ responsibilities, which we show with an example. First
we need to build differences, containing a tuple τ , between D and S- or C-repairs:

(a) Diff s(D,κ(Q), τ) = {D rD′ | D′ ∈ Srep(D,κ(Q)), τ ∈ (D rD′)}, (1)
(b) Diff c(D,κ(Q), τ) = {D rD′ | D′ ∈ Crep(D,κ(Q)), τ ∈ (D rD′)}. (2)

Example 3. (ex. 1 cont.) With the same instance D and query Q, we consider the
DC κ(Q): ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)), which is not satisfied by D. Here,
Srep(D,κ(Q)) = {D1, D2, D3} and Crep(D,κ(Q)) = {D1}, withD1 = {R(a4, a3),
R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2), S(a3)}, D3 =
{R(a4, a3), R(a2, a1), S(a2), S(a3)}.

For tuple R(a4, a3), Diff s(D,κ(Q), R(a4, a3)) = {D rD2} = {{R(a4, a3),
R(a3, a3)}}. So,R(a4, a3) is an actual cause, with responsibility 1

2 . Similarly,R(a3, a3)
is an actual cause, with responsibility 1

2 . For tuple S(a3), Diff c(D,κ(Q), S(a3)) =
{D rD1} = {S(a3)}. So, S(a3) is an actual cause, with responsibility 1. �

Specification of causes with ASP. A DB may have several repairs wrt. a class of ICs.
Since we are mainly interested in reasoning with whole class of them, e.g. for consistent
query answering [2], it is natural to try to specify this class in logical terms. This can
be achieved by means of answer-set programs (disjunctive logic programs with stable
model semantics) [1], the so-called repair-programs [9, 2]. The consistent answers to
a query are certainly and logically entailed by the program. As shown in [7, 8], the
reduction of DB causality to DB repairs illustrated above can be used to take advan-
tage of repair programs for providing specifications in answer-set programming (ASP)
to reason about causes and compute causes, their contingency sets, and responsibility
degrees. The resulting causality-programs have the necessary and sufficient expressive
power to capture and compute not only causes, which can be done with less expressive
programs [15], but also minimal contingency sets and responsibilities (which can not).
Actually, weak program constraints [1] are used to specify C-repairs.

Repairing the DB by changing attribute values is also possible [3, 4]. In [8, 5], a
particular notion of attribute-based repair was used to define attribute values (in tuples)
as causes for query answers. In [8] it is shown how to specify attribute-based causes
via ASP via the attribute-based repairs connection.
Causality under ICs. The interventions at the basis of [14], i.e. actions on the struc-
tural model that determine counterfactual scenarios, take in DBs the form of tuple dele-
tions. If a DB D is expected to satisfy a given set of ICs, they should also be considered

as a part of the model. Accordingly, the instances obtained from D by tuple deletions,
as used to determine causes, should also satisfy the ICs.
Example 4. For the DB instance D and the open, i.e. non-Boolean, CQ, Q in (3).

Dep DName TStaff
t1 Computing John
t2 Philosophy Patrick
t3 Math Kevin

Course CName TStaff DName
t4 COM08 John Computing
t5 Math01 Kevin Math
t6 HIST02 Patrick Philosophy
t7 Math08 Eli Math
t8 COM01 John Computing

AnsQ(TStaff)← Dep(DName,TStaff),Course(CName,TStaff ,DName). (3)
Q(D) = {John,Patrick,Kevin}, and 〈John〉 has the actual causes: t1, t4 and t8. t1 is a
counterfactual cause, t4 has a single minimal contingency set Γ1 = {t8}; and t8 has a
single minimal contingency set Γ2 = {t4}. Now, for the query

AnsQ′(TStaff)← Dep(DName,TStaff)), (4)
〈John〉 is still an answer from D, but it has a single cause, t1, which is also a counter-
factual cause. Now, if the following inclusion dependency is satisfied by D,

ψ : ∀x∀y (Dep(x, y)→ ∃u Course(u, y, x)), (5)
Q is equivalent to Q′. The question is whether t4 and t8 should still be considered as
causes for answer 〈John〉 in the presence of ψ. Finally, consider the query Q1:

AnsQ1
(TStaff)← Course(CName,TStaff ,DName), (6)

which, among others, has 〈John〉 as an answer, with t4 and t8 as the only actual causes,
with contingency sets Γ1 = {t8} and Γ2 = {t4}, resp. In the presence of ψ, one should
wonder if also t1 would be a cause (it contains the referring value John in table Dept),
or, if not, whether its presence would make the previous causes less responsible. �

A definition of query-answer cause was introduced and investigated in [6, sec. 7],
as follows. For an instance D that satisfies a set Σ of ICs, i.e. D |= Σ, and a monotone
query Q with D |= Q(ā), a tuple τ ∈ D is an actual cause for ā under Σ if there is
Γ ⊆ D, such that: (a) DrΓ |= Q(ā); (b) DrΓ |= Σ; (c) Dr (Γ ∪{t}) 6|= Q(ā);
and (d) D r (Γ ∪ {t}) |= Σ. The responsibility of τ as a cause for an answer ā to
query Q under a set Σ of ICs, denoted by ρD,Σ

Q(ā)
(τ), is defined exactly as above.

Example 5. (ex. 4 cont.) For query Q in (3) and its answer 〈John〉, without ψ in (5),
t4 was a cause with minimal contingency set Γ1 = {t8}. Now, it holds D r Γ1 |= ψ,
but D r (Γ1 ∪ {t4}) 6|= ψ. So, in presence of ψ, t4 is not an actual cause for 〈John〉.
Notice that Q and Q′ in (4) have the same actual cause t1 for 〈John〉 under ψ.

For Q1 in (6), and its answer 〈John〉, t4 and t8 are still (non-counterfactual) actual
causes under ψ. However, their previous contingency sets are not such anymore: D r
(Γ1 ∪ {t4}) 6|= ψ, D r (Γ2 ∪ {t8}) 6|= ψ. Actually, the smallest contingency set for
t4 is Γ3 = {t8, t1}; and for t8, Γ4 = {t4, t1}. Accordingly, the causal responsibilities
of t4, t8 decrease under ψ: ρD

Q(John)
(t4) = 1

2 , but ρD,ψ
Q(John)

(t4) = 1
3 . Under ψ, tuple t1 is

still not an actual cause for answer 〈John〉 to Q1. �

Since denial constraints are never violated by tuple deletions, they do not affect
on the causes for a query answer. However, inclusion dependencies may make a set of
causes grow, together with sizes of minimal contingency sets, and then, responsibilities
decrease. Intuitively, the responsibility is spread out through inclusion dependencies.

Also, causes are preserved under logically equivalent query rewriting under ICs. (Cf. [6,
prop. 20] for general properties.) For some classes of CQs, the complexity of deciding
responsibility of causes (under the usual notion of causality) may decrease from NP-
complete to tractability when the DB satisfies certain key constraints [12]. On the other
side, without ICs, deciding causality for CQs is tractable [15], but their presence may
make complexity grow: There are a CQ Q and an inclusion dependency ψ, for which
deciding causality is NP-complete [6, prop. 22].

In [6] also an abductive/deductive methodology for computing causes for answers
to Datalog queries under ICs was proposed. The involved logical rewritings are remi-
niscent of those used for semantic query optimization.

As part of our ongoing research, as an extension of [8], we are appealing to ASPs to
specify causes under ICs. This can be achieved by taking advantage of repair programs
for DBs that may be inconsistent wrt. soft ICs, but consistent wrt. hard ICs. (CQA for
this kind of DBs is investigated in [13].)

References
[1] Baral, C. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge Univ. Press, 2003.
[2] Bertossi, L. Database Repairing and Consistent Query Answering. Morgan & Claypool,

Synthesis Lectures on Data Management, 2011.
[3] Bertossi, L. and Li, L. Achieving Data Privacy through Secrecy Views and Null-Based

Virtual Updates. IEEE Trans. Knowledge and Data Engineering, 2013, 25(5):987-1000.
[4] Bertossi, L. and Bravo, L. Consistency and Trust in Peer Data Exchange Systems. Theory

and Practice of Logic Programming, 2017, 17(2):148-204.
[5] Bertossi, L. and Salimi, B. From Causes for Database Queries to Repairs and Model-Based

Diagnosis and Back. Theory of Computing Systems, 2017, 61(1):191232.
[6] Bertossi, L. and Salimi, B. Causes for Query Answers from Databases: Datalog Abduction,

View-Updates, and Integrity Constraints. Int. J. Approximate Reasoning, 2017, 90:226-252.
Corr Arxiv Paper cs.DB/1611.01711.

[7] Bertossi, L. The Causality/Repair Connection in Databases: Causality-Programs. Proc.
Scalable Uncertainty Management (SUM’17). Springer LNCS 10564, 2017

[8] Bertossi, L. Characterizing and Computing Causes for Query Answers in Databases from
Database Repairs and Repair Programs. Corr Arxiv Paper cs.DB/1712.01001, 2017. To
appear in Proc. FoIKS’18.

[9] Caniupan-Marileo, M. and Bertossi, L. The Consistency Extractor System: Answer Set
Programs for Consistent Query Answering in Databases”. Data & Know. Eng., 2010,
69(6):545-572.

[10] Chakravarthy, U. S., Grant, J. and Minker, J. Logic-Based Approach to Semantic Query
Optimization. ACM TODS, 1990, 15(2):162-207.

[11] Chockler, H. and Halpern, J. Y. Responsibility and Blame: A Structural-Model Approach.
J. Artif. Intell. Res., 2004, 22:93-115.

[12] Cibele, F., Gatterbauer, W., Immerman, N. and Meliou A. A Characterization of the Com-
plexity of Resilience and Responsibility for Conjunctive Queries. PVLDB, 2015, 9(3):180-
191.

[13] Greco, S., Pijcke, F. and Wijsen, J. Certain Query Answering in Partially Consistent
Databases. PVLDB, 2014, 7(5):353-364.

[14] Halpern, J. and Pearl, J. Causes and Explanations: A Structural-Model Approach: Part 1.
British J. Philosophy of Science, 2005, 56:843-887.

[15] Meliou, A., Gatterbauer, W., Moore, K. F. and Suciu, D. The Complexity of Causality and
Responsibility for Query Answers and Non-Answers. Proc. VLDB, 2010, pp. 34-41.

