
Extending Contexts with Ontologies for
Multidimensional Data Quality Assessment

Mostafa Milani, Leopoldo Bertossi, Sina Ariyan

Carleton University, School of Computer Science, Ottawa, Canada
{mmilani,bertossi,mariyan}@scs.carleton.ca

Abstract— Data quality and data cleaning are context depen-
dent activities. Starting from this observation, in previous work
a context model for the assessment of the quality of a database
instance was proposed. In that framework, the context takes the
form of a possibly virtual database or data integration system into
which a database instance under quality assessment is mapped,
for additional analysis and processing, enabling quality assess-
ment. In this work we extend contexts with dimensions, and by
doing so, we make possible a multidimensional assessment of data
quality assessment. Multidimensional contexts are represented
as ontologies written in Datalog±. We use this language for
representing dimensional constraints, and dimensional rules, and
also for doing query answering based on dimensional navigation,
which becomes an important auxiliary activity in the assessment
of data. We show ideas and mechanisms by means of examples.

I. INTRODUCTION

The quality of data cannot be assessed without contextual
knowledge about the production or the use of data. Actually,
the notion of data quality is based on the degree in which the
data fits or fulfills a form of usage [1], [13]. As a consequence,
the quality of data depends on their use context. It becomes
clear that context-based data quality assessment requires a
formal model of context, at least for the use of data.

In this work we follow and extend the approach proposed
in [2]. According to it, the assessment of a database D is
performed by mapping it into a context C that is represented
as another database, or as a database schema with partial
information, or, more generally, as a virtual data integration
system with possibly some materialized data and access to
external sources of data. The quality of data in D is determined
through additional processing of data within the context. This
process leads to a new (or possible several) quality version(s)
of D, whose quality is measured in terms of how much it
departs from its quality version(s).

In [2], dimensions are not considered as contextual elements
for data quality analysis. However, in practice dimensions are
naturally associated to contexts. For example, in [4], they
become the basis for building contexts, and in [15] they are
used for data access data at query answering time.

In order to capture general dimensional aspects of data
for inclusion in contexts, we take advantage of the Hurtado-
Mendelzon (HM) multidimensional data model [12], whose
inception was mainly motivated by data warehouse and OLAP
applications. We extend and formalize it in ontological terms.
Actually, in [14] an extension of the HM model was proposed,

with applications to data quality assessment in mind. That
work was limited to a representation of this extension in
description logic (actually, an extension of DL-Lite [9]), but
data quality assessment was not developed.

In this work we propose an ontological representation in
Datalog± [5] of the extended HM model, and also mechanisms
for data quality assessment based on query answering from the
ontology via dimensional navigation. Our extension of the HM
model includes categorical relations associated to categories
at different levels in the dimensional hierarchies, possibly
to more than one dimension. The extension also considers
dimensional constraints and dimensional rules, which could be
treated both as dimensional integrity constraints on categorical
relations that involve values from dimension categories.

However, dimensional constraints are intended to be used as
denial constraints that forbid certain combinations of values,
whereas the dimensional rules are intended to be used for
data completion, to generate data through their enforcement.
Dimensional constraints can be intra-dimensional, i.e. putting
restrictions on data values of categorical relations associated
to categories in a single dimension, or inter-dimensional, i.e.
putting restrictions on data values of categorical relations
associated to categories in different dimensions.

The next example illustrates the intuition behind categorical
relations, dimensional constraints and rules, and how the latter
can be used for data quality assessment. In it we assume,
according to the HM model, that a dimension consists of a
number of categories related to each other by a partial order.
Later on, we use the example to show how contextual data
can be captured as a Datalog± ontology.

Example 1: Consider a relational table Measurements with
body temperatures of patients in an institution (Table I). A
doctor in this institution needs the answer to the query: “The
body temperatures of Tom Waits for September 5 taken around
noon with a thermometer of brand B1” (as he expected). It
is possible that a nurse, unaware of this requirement, used a
thermometer of brand B2, storing the measurements in Mea-
surements. In this case, not all the measurements in the table
are up to the expected quality. However, table Measurements
alone does not discriminate between expected or intended
values (those taken with brand B2) and the others.

Now, for assessing the quality of the data in Measurements
according to the doctor’s quality requirement, extra contextual



TABLE I
Measurements

Time Patient Value
1 Sep/5-12:10 Tom Waits 38.2
2 Sep/6-11:50 Tom Waits 37.1
3 Sep/7-12:15 Tom Waits 37.7
4 Sep/9-12:00 Tom Waits 37.0
5 Sep/6-11:05 Lou Reed 37.5
6 Sep/5-12:05 Lou Reed 38.0

TABLE II
Measurementsq

Time Patient Value
1 Sep/5-12:10 Tom Waits 38.2
2 Sep/6-11:50 Tom Waits 37.1

Fig. 1. An extended multidimensional model
information about the thermometers used may be useful. For
instance, there is a table PatientWard, linked to the Ward
category, that stores patients of each ward of the institution
(Fig. 1). In addition, the institution has a guideline prescribing
that: “Temperature measurement for patients in standard care
unit have to be taken with thermometers of Brand B1”.

This guideline, which will become a dimensional rule in
the ontology, can be used for data quality assessment when
combined with an intermediate virtual relation, PatientUnit,
linked to the Unit category, that is generated from PatientWard
by upward-navigation through dimension Hospital (on left-
hand-side of Fig. 1), from category Ward to category Unit.

Now it is possible to conclude that on certain days, Tom
Waits was in the standard care unit, where his temperature
was taken, and with the right thermometer according to the
guideline (patients in wards W1 or W2 had their temperatures
taken with a thermometer of brand B1). These clean data
appear in relation Measurementsq (Table II), which can be
seen as a quality answer to the doctor’s request.

Elaborating on this example, it could be the case that there
is a constraint imposed on dimensions and relations linked to
their categories. For instance, one capturing that the intensive
care unit was closed since August/2005: “No patient was in
intensive care unit during the time after August /2005”. Again,
through upward-navigation to the next category, we should
conclude that the third tuple in table PatientWard should be
discarded. This inter-dimensional constraint involves dimen-
sions Hospital and Time (right-hand-side of Fig. 1), to which
the ward and the day values in PatientWard are linked. 2

The example shows a processing of data that involves
changing the level of data linked to a dimension. This form of
dimensional navigation may be required for query answering
both in the downward and upward directions (Example 1

shows the latter). Our ontological multidimensional contexts
support both.

Example 2 (ex. 1 cont.): Two additional categorical rela-
tions, WorkingSchedules and Shifts (Table III and Table IV),
store shifts of nurses in wards and schedules of nurses in units.
A query to Shifts asks for dates when Mark was working in
ward W2, which has no answer with the extensional data in
Table IV. Now, an institutional guideline states that if a nurse
works in a unit on a specific day, he/she has shifts in every
ward of that unit on the same day. Consequently, the last tuple
in Table III implies that Mark has shifts in both W1 and W2 on
Sep/9. This date would be an answer obtained via downward
navigation from the Standard unit to its wards (including W2).
2 TABLE III

WorkingSchedules

Unit Day Nurse Type
1 Intensive Sep/5 Cathy cert.
2 Standard Sep/5 Helen cert.
3 Standard Sep/6 Helen cert.
4 Terminal Sep/5 Susan non-c.
5 Standard Sep/9 Mark non-c.

TABLE IV
Shifts

Ward Day Nurse Shift
1 W4 Sep/5 Cathy night
2 W1 Sep/6 Helen morning
3 W4 Sep/5 Susan evening

Example 2 shows that downward navigation is necessary
for query answering, in this case, for propagating data in
WorkingSchedules at the Unit level down to Shifts at the lower
Ward level). In this process a unit may drill-down to more than
one ward, e.g. Standard unit is connected to wards W1 and
W2), generating more than one tuple in Shifts.

Contexts should be represented as formal theories into
which other objects, such as database instances, are mapped
into, for contextual analysis, assessment, interpretation, ad-
ditional processing, etc. [2]. Consequently, we show how to
represent multidimensional contexts as logic-based ontologies
(c.f. Section III). These ontologies represent and extend the
HM multidimensional model (cf. Section II). Our ontological
language of choice is Datalog± [8]. It allows us to give a clear
semantics to our ontologies, to support some forms of logical
reasoning, and to apply some query answering algorithms.
Furthermore, Datalog± allows us to generate explicit data
by completion where they are missing, which is particularly
useful for data generation though dimensional navigation.

Our ultimate goal is to use multidimensional ontological
contexts for data quality assessment [2], which is achieved by
introducing and defining in the context relational predicates
standing for the quality versions of relations in the original
instance. Their definitions use additional conditions on data, to
make them contain quality data. In this work, going beyond
[2], the context also contains an ontology in Datalog± that
represents all the multidimensional elements shown in the
examples above.

Our ontologies fall in the weakly-sticky (WS) class [8] of
the Datalog± family of languages [5] (cf. Section III) with
separable equality generating dependencies (when used as
dimensional constraints), which guarantees that conjunctive
query answering can be done in polynomial time in data. We
have developed and implemented a deterministic algorithm for
boolean conjunctive query answering, which is based on a non-



deterministic algorithm for WS Datalog± [8]. The algorithm
can be used with ontologies containing dimensional rules that
support both upward or downward navigation (cf. Section IV).
Section V shows how to use the ontology to populate the
quality versions of original relations.

This paper is an extended abstract. We show concepts, ideas,
ontologies, and mechanisms only by means of an extended
example. The general approach and its analysis in detail will
be presented in an extended version of this work.

II. PRELIMINARIES

We start from the HM multidimensional (MD) data model
[12]. In it, dimensions represent the hierarchical data; and
facts describe data as points in an MD space. A dimension is
composed of a schema and an instance. A dimension schema
includes a directed acyclic graph (DAG) of categories, which
defines levels of the category hierarchy. A dimension hierarchy
corresponds to a partial-order relation between the categories,
a so-called parent-child relation. A dimension instance con-
sists of set of members for each category. The instance hierar-
chy corresponds to a partial-order relation between members
of categories, that parallels the parent-child relation between
categories. Hospital and Time, at the right- and left-hand sides
of Fig. 1, resp., are dimensions.

We extend the HM model with, among other elements,
categorical relations, which can be seen as a generalization of
fact tables, but at different dimension levels and not necessarily
containing numerical data. Categorical relations represent the
entities associated to the factual data. A categorical relation
has a schema and an instance. A categorical relation schema
is composed of a relation name and a list of attributes. Each
attribute is either categorical or non-categorical. A categorical
attribute takes as values the members of a category in a
dimension. A non-categorical attribute takes values from an
arbitrary domain.

Example 3 (ex. 1 cont.): In Fig. 1, the categorical rela-
tion PatientWard(Ward ,Day ,Patient) has its categorical
attributes, Ward and Day, connected to the Hospital and Time
dimensions. Patient is a non-categorical attribute with patient
names as values (there could be a foreign key to another
categorical relation that stores data of patients). 2

Datalog± [5] is a family of languages that extends plain
Datalog with additional elements: (a) existential quantifiers in
heads of tuple-generating dependencies (TGDs); (b) equality-
generating dependencies (EGDs), that use equality in heads;
and (c) negative constraints, that use ⊥ in heads. With these
extensions, Datalog± captures ontological knowledge that
cannot be expressed in classical Datalog.

Although the chase with these rules does not necessarily
terminate, syntactic restrictions imposed on the set of rules
aim to ensure decidability of conjunctive query answering, and
is some cases, also tractability in data complexity. Datalog±
has sub-languages, such as linear, guarded, weakly-guarded,
sticky, and weakly-sticky, that depend on the kind of predicates
and syntactic interaction of TGD rules that appear in the
Datalog± program.

In this paper, our MD ontologies turn out to be written in
weakly-sticky (WS) Datalog±. This sublanguage extends sticky
Datalog± [6]. WS Datalog± allows joins in the body of TGDs,
but with a milder restriction on the repeated variables. Boolean
conjunctive query answering is tractable for WS Datalog± [6].

III. THE EXTENDED MD MODEL IN DATALOG±
We will represent our extended MD model as a Datalog±

ontology M that contains a schema SM, an instance DM,
and a set of dimensional rules and constraints ΣM. SM =
K∪O∪R is a finite set of predicates (relation names), where
K is a set of category predicates (unary predicates), O is a set
of parent-child predicates, i.e. partial-order relations between
elements of adjacent categories, and R is a set of categorical
predicates. In Example 1, K contains, e.g. Ward(·),Unit(·);
O contains, e.g. a predicate for connections from Ward to
Unit; and R contains, e.g. PatientWard. An instance, DM, is
a relational instance that gives (possibly infinite) extensions
to the predicates in SM, and satisfies a given set of TGDs,
EGDs, and negative constraints ΣM (cf. below). The constants
for DM come from an infinite underlying domain.

The dimensional rules and constraints in ΣM constitute the
intentional part of M. Rules (1)-(4) below show the general
form of elements of ΣM. In what follows, each Ri(ēi; āi) is a
categorical atom, with ēi a sequence of categorical attributes
(values) and āi a sequence of non-categorical attributes;
Di(ei, e

′
i) is a parent-child atom with ei, e

′
i parent/child ele-

ments, resp.; and Ki(ei) is a category atom, with ei a category
element. That is, Ki ∈ K, Di ∈ O, Ri ∈ R. As an instance in
(5) and (6), Unit(u) is a category atom and UnitWard(u,w)
is a parent-child atom.
(a) To capture the referential constraint between a categorical

attribute of a categorical relation and a category, we use
a negative constraint, with e ∈ ēi:1

⊥ ← Ri(ēi; āi),¬K(e). (1)
(b) A dimensional constraint is either an EGD of the form

(2) (where x, x′ also appear in the body) or a negative
constraint of the form (3):

x = x′ ← Ri(ēi; āi), ..., Rj(ēj ; āj), (2)
Dn(en, e

′
n), ..., Dm(em, e′m).

⊥ ← Ri(ēi; āi), ..., Rj(ēj ; āj), (3)
Dn(en, e

′
n), ..., Dm(em, e′m).

(c) A dimensional rule is a Datalog± TGD of the form:
∃āz Rk(ēk; āk) ← Ri(ēi; āi), ..., Rj(ēj ; āj), (4)

Dn(en, e
′
n), ..., Dm(em, e′m).

Here, āz ⊆ āk, ēk ⊆ ēi ∪ ... ∪ ēj ∪ {en, ..., em} ∪
{e′n, ..., e′m} and ākr āz ⊆ āi ∪ ... ∪ āj . Furthermore,
shared variables in bodies of TGDs correspond only to
categorical attributes of categorical relations.

With rule (4) (an example is (7) below), the possibility of
doing dimensional navigation is captured by joins between cat-
egorical predicates, e.g. Ri(ēi; āi), ..., Rj(ēj ; āj) in the body,

1Alternatively, we could have referential constraints between categorical
relations and categories that are captured by Datalog± TGDs, making it
possible to generate elements in categories or categorical relations.



and parent-child predicates, e.g. Dn(en, e
′
n), ..., Dm(em, e′m).

Rule (4) allows navigation in both upward and downward
directions. The direction of navigation is determined by the
level of categorical attributes that participate in the join in the
body. Assuming the join is between Ri(ēi; āi) and Dn(en, e

′
n),

upward navigation is enabled when e′n ∈ ēi (i.e. e′n appears
in Ri(ēi; āi)) and en ∈ ēk (i.e en appears in the head). On
the other hand, if en occurs in Ri and e′n occurs in Rk, then
downward navigation is enabled, from en to e′n.

The existential variables in (4) make up for missing non-
categorical attributes due to different schemas (i.e. the exis-
tential variables may appear in positions of non-categorical
attributes but not in categorical attributes). As a result, when
drilling down, for each tuple of a categorical relation linked
to a parent member, the rule generates tuples for all the
child members of the parent member (or children specifically
indicated in the body).

Example 4 (ex. 3 cont.): The categorical attribute Unit in
categorical relation PatientUnit takes values from the Unit cat-
egory. We use a constraint of the form (1). Similar constraints
are in the ontology that capture the connection between other
categorical relations and their corresponding categories.

⊥ ← PatientUnit(u,d; p),¬Unit(u). (5)
For the constraint in Example 1 requiring “No patient was in
intensive care unit during the time after August 2005”, we use
a dimensional constraint of the form (3):
⊥ ← PatientWard(w,d; p),UnitWard(Intensive, w),

MonthDay(August/2005, d).
Similarly, the following rule, of form (2), states that “All the
thermometers used in a unit are of the same type”:
t = t′ ← Thermometer(w, t;n),Thermometer(w′, t′;n ′),

UnitWard(u,w),UnitWard(u,w ′), (6)
with Thermometer(Ward ,Thermometertype;Nurse) a cat-
egorical relation with thermometers used by nurses in wards.

Finally, the following dimensional rules of the form (4) cap-
ture how data in PatientWard and WorkingSchedules generate
data for PatientUnit and Shifts, resp.:2

PatientUnit(u,d; p) ← PatientWard(w,d; p), (7)
UnitWard(u,w).

∃z Shifts(w,d;n, z ) ← WorkingSchedules(u,d;n, t),

UnitWard(u,w). (8)
In (7), dimension navigation is enabled by the join between

PatientWard and UnitWard. The rule generates data for Patien-
tUnit (at a the higher level of Unit) from PatientWard (at the
lower level of Ward) via upward navigation. Notice that (7)
is in the general form (4), but since in this case the schemas
of the two involved categorical relations match, no existential
quantifiers are necessary.

Rule (8) captures downward navigation while it generates
data for Shifts (at the level of Ward) from WorkingSchedules
(at the level of Unit). In this case, the schemas of the two

2A rule with a conjunction in the head can be transformed into a set of
rules with single atoms in heads.

categorical relations do not match. So, the existential variable
z represents missing data for the shift attribute. 2

It is possible to verify that the Datalog± MD ontologies
with rules of the forms (1)-(4) are weakly-sticky. This follows
from the fact that shared variables in the body of dimensional
rules, as defined in (4), may occur only in positions of
categorical attributes, where only limited values may appear,
which depends on the assumption that the MD ontology has a
fixed dimensional structure, in particular, with a fixed number
of category members. No new category member is generated
when applying the dimensional rules of the form (4).

The separability property [7], [8] in relation to the inter-
action of dimensional EGDs of the form (2) and TGDs of
the form (4) must be checked independently. However, when
the EGDs have only categorical variables in the heads, the
separability condition holds, which is the case with rule (6).

Example 5 (ex. 2 and 4 cont.): To illustrate query answer-
ing via downward navigation, reconsider the query about the
dates that Mark works in W1: Q′(d)← Shifts(W1, d, Mark, s).
Considering (8) and the last tuple in WorkingSchedules, the
chase will generate a new tuple in Shifts for Mark on Sep/9 in
W2, with a fresh null value for his shift, reflecting incomplete
knowledge about this attribute at the lower level. So, the
answer to the query via (8) is Sep/9. 2

The general TGD (4) only captures downward navigation
when there is incomplete data about the values of non-
categorical attributes, because existential variables are only
non-categorical. However, in some cases we may have incom-
plete data about the categorical attributes, i.e. about parents
and children involved in downward navigation.

TABLE V
DischargePatients

Inst. Day Patient
1 H1 Sep/9 Tom Waits
2 H1 Sep/6 Lou Reed
3 H2 Oct/5 Elvis Costello

Example 6 (ex. 1 cont.): There is an additional categorical
relation DischargePatients (Table V) with data about patients
leaving an institution. Since each of them was in exactly
one of the units, DischargePatient should generate data for
PatientUnit through downward navigation from the Institution
level to the Unit level. Since we do not have knowledge about
which unit at the lower level has to be specified, the following
rule could be used:
∃u InstitutionUnit(i , u),PatientUnit(u,d; p) ← (9)

DischargePatients(i,d; p),
which is not of the form (4), because it has an existentially
quantified categorical variable, u, for units. It allows down-
ward navigation while capturing incomplete data about units,
and represents disjunctive knowledge at level of units. 2

The general form of (9), for this type of downward naviga-
tion is as follows:
∃z̄ Rk(ēk; āk), Dn(en, e

′
n), ..., Dm(em, e′m) ← (10)
Ri(ēi; āi), ..., Rj(ēj ; āj),

where z̄ ⊆ ēk ∪ āk ∪ {en, ..., em} ∪ {e′n, ..., e′m} and ēk ∪



{en, ..., em} ∪ {e′n, ..., e′m}r z̄ ⊆ ēi ∪ ... ∪ ēj and ākr z̄ ⊆
āi∪...∪āj , and the categorical attributes of Ri, . . . , Rj refer to
categories that are at a higher or same level than the categorical
attributes of Rk. (In (9), categories Institution and Day for
DischargePatients are higher and same level, resp. than Unit
and Day for PatientUnit .)

If the MD ontology also includes rules of the form (10),
it still is weakly-sticky. This is because, despite the fact that
these rules may generate new members (nulls), they can only
generate a limited number of such members (because the rule
only navigates in downward direction), i.e. there is no cyclic
behavior. With these new rules, EGDs with only categorical
attributes in heads do not guarantee separability anymore. So,
checking this condition becomes application dependent.

IV. QUERY ANSWERING ON MD ONTOLOGIES

Weakly-stickyness guarantees that boolean conjunctive
query answering from our MD contextual ontologies becomes
tractable in data complexity [8]. Then, answering open con-
junctive queries from the MD ontology is also tractable [10].

We have developed and implemented a deterministic al-
gorithm, DeterministicWSQAns, for answering boolean
conjunctive queries from Datalog± MD contextual ontologies.
The algorithm is based on a non-deterministic algorithm,
WeaklyStickyQAns, for WS Datalog± that runs in poly-
nomial time in the size of extensional database [8].

Given a set of WS TGDs, a boolean conjunctive query,
and an extensional database, WeaklyStickyQAns builds
an “accepting resolution proof schema”, a tree-like structure
which shows how query atoms can be entailed from the
extensional instance. The algorithm rejects if there is no
resolution proof schema; otherwise it builds it and accepts.

Our deterministic algorithm, DeterministicWSQAns,
applies a top-down backtracking search for accepting reso-
lution proof schemas. Starting from the query, the algorithm
resolves the atoms of the query, from left to right. In each step,
an atom is resolved either by finding a substitution that maps
the atom to a ground atom in the extensional database (which
makes a leaf node) or by applying a TGD rule that entails
the atom (building a subtree). The decision at each step is
stored on a stack to be restored later if the algorithm fails to
entail the atoms of the query in the next steps. The algorithm
accepts if it resolves all the atoms in the query (the content
of the stack specifies the decisions that lead to the accepting
resolution proof schema), and rejects if it cannot resolve an
atom, no matter what decisions have been made before.

In this deterministic approach, possible substitutions of con-
stants for query variables are derived by the ground atoms in
the extensional database (as opposed to the non-deterministic
version of the algorithm that guesses applicable substitutions).
This enables us to extend DeterministicWSQAns for
finding answers to open conjunctive queries, by building
resolution proof schemas for all possible substitutions.
WeaklyStickyQAns runs in polynomial time in the

size of the extensional database [6]. It can be proved that
DeterministicWSQAns also runs in polynomial time.
None of these algorithms are first-order (FO) query rewriting

algorithms, which do exist for the Datalog± more restrictive
syntactic classes, e.g. linear and sticky [5], [6].

The MD ontologies to which the complexity results and
algorithms above apply support both upward and downward
navigation. However, for simpler MD ontologies that support
only upward navigation (which can be syntactically detected
from the form of the dimensional rules), we developed a
methodology for conjunctive query answering based on FO
query rewriting. The rewritten query can be posed directly to
the extensional database. Ontologies of this kind are common
and natural in real world applications (Example 1 shows
such a case). Interestingly, these “upward-navigating” MD
ontologies do not necessarily fall into any of the “good” cases
of Datalog± mentioned above.

The algorithms mentioned in this section are rather proofs
of concept than algorithms meant to be used with massive
data. It is ongoing work the development and implementation
of scalable polynomial time algorithms for answering open
conjunctive queries.

V. MD ONTOLOGIES AND DATA QUALITY
In this section, we show how a Datalog± MD ontology

can be a part of -and used in- a context for data quality
assessment or cleaning. Fig. 2 shows such a context and the
way it is used. The central idea in [2] is that the original
instance D (on the left-hand-side) is to be assessed or cleaned
through the context in the middle. This is done by mapping D
into the contextual schema/instance C. The context may have
additional data, predicates (Ci), data quality predicates (Pi)
specifying single quality requirements, and access to external
data sources (Ei) for data assessment or cleaning. The clean
version of D is on the right-hand-side, with schema Sq , which
is a copy of D’s schema [2].

The new element in the context is the MD ontology M,
which interacts with C, and represents the dimensional ele-
ments of the context. The categorical relations in M provide
dimensional data for the relations in C and for quality predi-
cates in P . C also gets extensional data from initial database,
D, and external sources. Here we concentrate on data cleaning,
which here amounts to obtaining clean answers to queries, in
particular, about clean extensions (Sq

i ) for the original database
relations (Si) (a particular case of clean query answering [2]).

The quality versions Sq
i are specified in terms of the

relations in C and quality predicates, Pi. The data for the
latter may be already in the context or come from D, the
ontology M, or external sources. The problems become: (a)
computing quality versions Sq

i of the original predicates, and
(b) computing quality answers to queries Q expressed in terms
of those original predicates. The second problem is solved by
rewriting the query as Qq , which is expressed (and answered)
in terms of predicates Sq

i . Answering it is the part of the query
answering process that may invoke dimensional navigation and
data generation as illustrated in previous sections. Problem (a)
is a particular case of (b).

Example 7: (ex. 4 cont.) A query Q about Tom Waits’ tem-
peratures is initially expressed in terms of the initial predicates
Measurements, but is rewritten into a query expressed and an-



Fig. 2. An MD context for data quality assessment

swered via its quality extension Measurementsq (see [2] for
more details).3 More specifically, the query is about “The
body temperatures of Tom Waits on September 5 taken around
noon by a certified nurse with a thermometer of brand B1”:
Q(t, p, v) ← Measurements(t , p, v), p = Tom Waits,

Sep/5-11:45 ≤ t ≤ Sep/5-12:15.
Measurements, as initially given, does not contain infor-

mation about nurses or thermometers. Hence the expected
conditions are not expressed in the query. According to the
general contextual approach in [2], predicate Measurement has
to be logically connected to the context, conceiving it as a
footprint of a “broader” contextual relation that is given or
built in the context, in this case one with information about
thermometer brands (b) and nurses’ certification status (y):
Measurement ′(t, p, v, y, b) ← Measurementc(t, p, v),

TakenByNurse(t, p, n, y),TakenWithTherm(t, p, b),

where Measurementc is a contextual copy of Measurement,
i.e. the latter is mapped into the context.4 If we want quality
measurements data, we impose the quality conditions:
Measurementq(t, p, v) ← Measurement ′(t, p, v, y, b),

y = Certified, b = B1,

with the auxiliary predicates defined by:
TakenByNurse(t, p, n, y) ←WorkingSchedules(u, d;n, y),

DayTime(d, t),PatientUnit(u, d; p).

TakenWithTherm(t, p, b) ← PatientUnit(u, d; p),

DayTime(d, t), b = B1, u = Standard.

Here, DayTime is parent/child relation in Time dimension),
and the last definition right above is capturing as a rule the
guideline from Example 1, at the level of relation PatientUnit.

Summarizing, TakenByNurse and TakenWithTherm are con-
textual predicates (shown in Fig. 2 as Pi). PatientWard and
WorkingSchedules are categorical relations.

To obtain quality answers to the original query, we pose to
the ontology the new query:

3This idea of cleaning data on-the-fly is reminiscent of consistent query
answering [3].

4It does not have to be a replica; it could also be mapped into a contextual
relation having additional attributes and data [2].

Qq(t, p, v) ← Measurements(t , p, v)q , p = Tom Waits,

Sep/5-11:45 ≤ t ≤ Sep/5-12:15.
Answering it, which requires evaluating TakenWithTherm,
triggers upward dimensional navigation from Ward to Unit,
when requesting data for categorical relation PatientUnit.
More specifically, dimensional rule (7) is used for data gen-
eration, and each tuple in PatientWard generates one tuple in
PatientUnit, with its unit obtained by rolling-up . 2

VI. CONCLUSIONS

We have described in general terms how to specify in
Datalog± a multidimensional ontology that extends a mul-
tidimensional data model. We have identified some properties
of these ontologies in terms of membership to known classes
of Datalog±, the complexity of conjunctive query answering,
and the existence of algorithms for the latter task. Finally, we
showed how to apply the ontologies to multidimensional and
contextual data quality, in particular, for obtaining quality an-
swers to queries through dimensional navigation. MD contexts
are also of interest outside applications to data quality. They
can be seen as logical extensions of the MD data model.
Acknowledgments: Research funded by NSERC Discovery, and
the NSERC Strategic Network on Business Intelligence (BIN). L.
Bertossi is a Faculty Fellow of IBM CAS. We thank Andrea Cali and
Andreas Pieris for useful information and conversations on Datalog±.

REFERENCES

[1] C. Batini, and M. Scannapieco. Data Quality: Concepts, Methodologies
and Techniques. Springer, 2006.

[2] L. Bertossi, F. Rizzolo, and J. Lei. Data Quality is Context Dependent.
Proc. WS on Enabling Real-Time Business Intelligence, Collocated with
VLDB, 2010, pp. 52-67.

[3] L. Bertossi. Database Repairing and Consistent Query Answering.
Morgan & Claypool, 2011.

[4] C. Bolchini, E. Quintarelli, and L. Tanca. CARVE: Context-aware
automatic view definition over relational databases. Information Systems,
2013, 38:45-67.

[5] A. Cali, G. Gottlob, and T. Lukasiewicz. Datalog±: a unified approach
to ontologies and integrity constraints. Proc. ICDT, 2009, pp. 14-30.

[6] A. Cali, G. Gottlob, and A. Pieris. Query answering under non-guarded
rules in datalog+/-. Proc. RR, 2010, pp. 1-17.

[7] A. Cali, G. Gottlob, and A. Pieris. Querying conceptual schemata with
expressive equality constraints. Proc. ER, 2011, pp. 161-174.

[8] A. Cali, G. Gottlob, and A. Pieris. Towards more expressive ontology
languages: The query answering problem. Artificial Intelligence, 2012,
193:87-128.

[9] D. Calvanese, G. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Towards more expressive ontology languages: The query answering
problem. J. of Automated Reasoning, 2007, 39:385-429.

[10] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
semantics and query answering. Theoretical Computer Science, 2005,
336:89-124.

[11] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: rewriting and
optimization. Proc. ICDE, 2011, pp. 2-13.

[12] C. Hurtado, C. Gutierrez, and A. Mendelzon. Capturing summarizability
with integrity constraints in OLAP. ACM Transactions on Database
Systems, 2005, 30:854-886.

[13] L. Jiang, A. Borgida, and J. Mylopoulos. Towards a compositional
semantic account of data quality attributes. Proc. ER, 2008, pp. 55-68.

[14] A. Maleki, L. Bertossi, and F. Rizzolo. Multidimensional contexts for
data quality assessment. Proc. AMW, 2012, pp. 196-209.

[15] D. Martinenghi, and R. Torlone. Querying databases with taxonomies.
Proc. ER, 2010, pp. 377-390.


