
On the Complexity of Query Answering under
Matching Dependencies for Entity Resolution

Leopoldo Bertossi Jaffer Gardezi
Carleton University, SCS University of Ottawa, SITE.

Ottawa, Canada Ottawa, Canada

Abstract. Matching Dependencies (MDs) are a relatively recent proposal for
declarative entity resolution. They are rules that specify, given the similarities
satisfied by values in a database, what values should be considered duplicates, and
have to be matched. On the basis of a chase-like procedure forMD enforcement,
we can obtain clean (duplicate-free) instances; actually possibly several of them.
The resolved answers to queries are those that are invariantunder the resulting
class of resolved instances. In previous work we identified some tractable cases
(i.e. for certain classes of queries and MDs) of resolved query answering. In this
paper we further investigate the complexity of this problem, identifying some
intractable cases. For a special case we obtain a dichotomy complexity result.

1 Introduction
A database may contain several representations of the same external entity. In this
sense it contains “duplicates”, which is in general considered to be undesirable. And
the database has to be cleaned. More precisely, the problem of duplicate- or entity-
resolution(ER) is about (a) detecting duplicates, and (b) merging duplicate represen-
tations into single representations. This is a classic and complex problem in data man-
agement, and in data cleaning in particular [9, 11, 4]. In this work we concentrate on
the merging part of the problem, in a relational context.

A generic way to approach the problem consists in specifyingwhat attribute val-
ues have to be matched (made identical) under what conditions. A declarative language
with a precise semantics could be used for this purpose. In this direction, matching
dependencies (MDs) have been recently introduced [12]. They represent rules for re-
solving pairs of duplicate representations (considering two tuples at a time). Actually,
when certain similarity relationships between attribute values hold, an MD indicates
what attribute values have to be made the same (matched).

Example 1. The similarities of phone and address indicate that the tuples refer to the
same person, and the names should be matched. Here,723-9583≈ (750) 723-9583and
10-43 Oak St.≈ 43 Oak St. Ap. 10.

People (P) Name Phone Address
John Smith 723-9583 10-43 Oak St.

J. Smith (750) 723-958343 Oak St. Ap. 10

An MD capturing this cleaning policy, could be the following:

P [Phone] ≈ P [Phone] ∧ P [Address] ≈ P [Address] →P [Name]
.
= P [Name].

This MD involves only one database predicate, but in general, an MD may involve two
different relations. �

Here we report on new results (in Section 4) on the computation of resolved query an-
swers wrt. a set of MDs, i.e. of those answers that are invariant under the MD-based ER
process. We identify syntactic classes of MDs for which, computing resolved answers
to conjunctive queries in a syntactic class, isalwaysintractable.

2 Preliminaries

We assume we are dealing with relational schemas and instances. Matching dependen-
cies (MDs) are symbolic rules of the form:∧

i,j

R[Ai] ≈ij S[Bj] →
∧

k,l

R[Ak]
.
= S[Bl], (1)

whereR,S are relational predicates, and theAi, ... are attributes for them. The LHS
captures similarity conditions on a pair of tuples belonging to the extensions ofR and
S in an instanceD. We abbreviate this formula as:R[Ā] ≈ S[B̄] → R[C̄]

.
= S[Ē].

MDs have adynamic interpretationrequiring that those values on the RHS should be
updated to some (unspecified) common value. Those attributes on a RHS of an MD are
calledchangeable attributes.

The similarity predicates≈ (there may be more than one in an MD depending on
the attributes involved) are treated here as built-ins, butare assumed to satisfy: (a)sym-
metry: if x ≈ y, theny ≈ x; and (b)equality subsumption: if x = y, thenx ≈ y.
However,transitivity is notassumed (and in some application it may not hold).

MDs are to be “applied” iteratively until duplicates are solved. In order to keep
track of the changes and comparing tuples and instances, we use global tuple identi-
fiers, a non-changeable surrogate key for each database predicate that has changeable
attributes. The auxiliary, extra attribute (when shown) appears as the first attribute in a
relation, e.g.t is the identifier inR(t, x̄). A position is a pair(t, A) with t a tuple id,
andA an attribute (of the relation wheret is an id). Theposition’s value, t[A], is the
value forA in tuple (with id)t.

A semantics for MDs acting on database instances was proposed in [13]. It is based
on achase procedurethat is iteratively applied to the original instanceD. A resolved
instanceD′ is obtained from a finitely terminating sequence of instances, say

D 7→ D1 7→ D2 7→ · · · 7→ D′, (2)
terminating inD′, that satisfies the MDs asequality generating dependencies[1], i.e.
replacing

.
= by equality.

The semantics specifies the one-step transitions or updatesallowed to go fromDi−1

to Di, i.e. “7→” in (2). Only modifiable positionswithin the instance are allowed to
change their values in such a step, and as forced by the MDs. Actually, the modifiable
positions syntactically depend on a whole setM of MDs and instance at hand; and
can be recursively defined (see [13, 14] for the details). Intuitively, a position(t, A) is
modifiable iff: (a) There is at′ such thatt andt′ satisfy the similarity condition of an
MD with A on the RHS; or (b)t[A] has not already been resolved (it is different from
one of its other duplicates).

Example 2. Consider the MDR[A] = R[A] → R[B]
.
= R[B], and the instanceR(D)

below. The positions of the underlined values inD are modifiable, because their values
are unresolved (wrt the MD).

R(D) A B

t1 a b
t2 a c

7→
R(D′) A B

t1 a d
t2 a d

D′ is a resolved instance since it satisfies
the MD interpreted as an FD (the update
valued is arbitrary).

D′ has no modifiable positions with unresolved values: the values forB are already the
same, so there is no reason to change them. �

More formally, thesingle step semanticsis a follows. Each pairDi, Di+1 in an up-
date sequence (2), i.e. a chase step, mustsatisfythe setM of MDs, modulo unmod-
ifiability, denoted (Di, Di+1) |=um M , which holds iff: (a) For every MD, say
R[Ā] ≈ S[B̄] → R[C̄]

.
= S[D̄] and pair of tuplestR andtS , if tR[Ā] ≈ tS [B̄] in Di,

thentR[C̄] = tS [D̄] in Di+1; and (b) The value of a position can only differ between
Di andDi+1 if it is modifiable wrtDi.

This semantics stays as close as possible to the spirit of theMDs as originally in-
troduced [12], and alsouncommittedin the sense that the MDs do not specify how the
matchings have to be realized.1

Example 3. Consider the following instance and set of MDs. Here, attributeR(C) is
changeable. Position(t2, C) is not modifiable wrt.M andD: There is no justification

R(D) A B C

t1 a b d

t2 a c e

t3 a b e

R[A] = R[A] → R[B]
.
= R[B]

R[B] = R[B] → R[C]
.
= R[C].

to change its valuein one stepon the basis of an MD andD. However, position(t1, C)
is modifiable. We obtain two resolved instances forD: D1 andD2 below.

R(D1) A B C

t1 a b d

t2 a b d

t3 a b d

R(D2) A B C

t1 a b e

t2 a b e

t3 a b e

D1 cannot be obtained in a single (one
step) update since the underlined value is
for a non-modifiable position. However,
D2 can. �

Among theresolved instanceswe prefer those that are closest to the original instance.
Accordingly, aminimally resolved instance(MRI) of D is a resolved instanceD′ such
that the number of changes of attribute valuescomparingD with D′ is a minimum.
In Example 3, instanceD2 is an MRI, but notD1 (2 vs. 3 changes). We denote with
Res(D,M) andMinRes(D,M) the classes of resolved, resp. minimally resolved, in-
stances ofD wrt M .

Given a conjunctive queryQ, a set of MDsM , and an instanceD, theresolved an-
swersto Q from D are those that are invariant under the entity resolution process, i.e.
they are answers toQ that are true in all MRIs ofD: ResAnsM (Q, D) := {c̄ | D′ |=
Q[c̄], for everyD′ ∈ MinRes(D,M)}. We denote withRA(Q,M) the decision prob-
lem{(D, c̄) | c̄ ∈ ResAnsM (Q, D)}.

The definition of resolved answer is reminiscent of that of consistent query answers
(CQA) in databases that may not satisfy given integrity constraints (ICs) [2, 5]. Much
research in CQA has been about developing (polynomial-time) query rewriting method-
ologies. The idea is to rewrite a query, say conjunctive, into a new query such that the
new query on the inconsistent database returns as usual answers the consistent answers
to the original query. In all the cases identified in the literature on CQA (see [6] for
a survey, and [17] for recent results) depending on the classof conjunctive query and
ICs involved, the rewritings that produce polynomial time CQA have been first-order.

1 We have proposed and investigated other semantics. One of them is as above, but with a modi-
fied chase conditions, e.g. applying one MD at a time. Anotherone imposes that previous res-
olutions cannot be unresolved. In [7, 8, 3] a semantics that usesmatching functionsto choose
a value for a match is developed.

Doing something similar for resolved query answering (RQA)under MDs brings new
challenges: (a) MDs contain the non-transitive similaritypredicates. (b) Enforcing con-
sistency of updates requires computing the transitive closure of such operators. (c) The
minimality of value changes(that is not always used in CQA or considered for consis-
tent rewritings). (d) The semantics of resolved query answering for MD-based entity
resolution is given, in the end, in terms of a chase procedure.2 However, the semantics
of CQA is model-theoretic, given in terms repairs that are not operationally defined, but
arise from set-theoretic conditions.3

3 Tractability and Datalog Query Rewriting
In [14, 15], a query rewriting methodology for RQA under MDs was presented. In this
case, the rewritten queries turn out to be Datalog queries with counting, and can be
obtained for two main classes of sets of MDs: (a) MDs do not depend on each other,
i.e. non-interactingsets of MDs [13]; (b) MDs depend cyclically on each other, e.g. a
set containingR[A] ≈ R[A] → R[B]

.
= R[B] andR[B] ≈ R[B] → R[A]

.
= R[A] (or

relationships like this by transitivity).
Here cycles help us, because the termination condition for the chase imposes a sim-

ple form on the minimally resolved instances (easier to capture and characterize) [14].
For these sets of MDs a conjunctive query can be rewritten to retrieve, in polynomial
time, the resolved answers, provided there are no joins on existentially quantified vari-
ables corresponding to changeable attributes:unchangeable attribute join conjunctive
(UJCQ) queries [15]. For example, for the MDR[A] = R[A] → R[B,C]

.
= R[B,C]

on schemaR[A,B,C], Q : ∃x∃y∃z(R(x, y, c) ∧ R(z, y, d)) is not UJCQ; whereas
Q′ : ∃x∃z(R(x, y, z) ∧ R(x, y′, z′) is UJCQ. For queries outside UJCQ, the resolved
answer problem can be intractable even for one MD [15].

The case of a set of MDs consisting of

R[A] ≈ R[A] → R[B]
.
= R[B] andR[B] ≈ R[B] → R[C]

.
= R[C], (3)

which is neither non-interacting nor cyclic, is not coveredby the positive cases for
Datalog rewriting above. Actually, for this set RQA becomesintractable for very simple
queries, likeQ(x, z) : ∃yR(x, y, z), that is UJCQ [13].

4 Intractability of Computing Resolved Query Answers
In the previous section we briefly described classes of queries and MDs for which RQA
can be done in polynomial time in data (via the Datalog rewriting). We also showed that
there are intractable cases, by pointing to a specific query and set of MDs. The questions
that naturally arise are: (a) What happens outside the Datalog rewritable cases in terms
of complexity of RQA? (b) The exhibited query and MDs correspond to a more general
pattern for which intractability holds? We address these questions here.

For all setsM of MDs we consider below, at most two relational predicates appear
in M , and when there are two predicates, both appear in all MDs inM . According to
the syntactic restrictions for MDs in (1), those two predicates occur in all conjuncts
of an MD in M . Furthermore, all the sets of MDs considered below will turnout to

2 For some implicit connections between repairs and chase procedures, e.g. as used in data ex-
change see [16], and as used under database completion with ICs see [10].

3 For additional discussions of differences and connectionsbetween CQA and resolved query
answering see [13, 15].

be, as previously announced, both interacting and acyclic.Both notions and others can
be captured in terms of the MDgraph, MDG(M), a directed graph, such that, for
m1,m2 ∈ M , there is an edge fromm1 tom2 if there is an overlap betweenRHS(m1)
andLHS(m2) (the right- and left-hand sides of the arrows as sets of attributes) [13].
M is acyclic whenMDG(M) is acyclic. Our results require several terms and notation
that we now define.

Definition 1. Consider a setM of MDs involving the predicatesR andS. A change-
able attribute queryQ is a (conjunctive) query in UJCQ, containing a conjunct of the
form R(x̄) or S(ȳ) such that all variables in the conjunct are free and none occur in
another conjunct of the formR(x̄) or S(ȳ). Such a conjunct is called ajoin-restricted
free occurrenceof the predicateR orS. �

By definition, the class ofchangeable attribute queries(CHAQ) is a subclass of UJCQ.
Both classes depend on the set of MDs at hand. For example, forthe MDs in (3),
∃yR(x, y, z) ∈ UJCQ r CHAQ, but∃w∃t(R(x, y, z) ∧ S(x,w, t)) ∈ CHAQ. We
confine attention to UJCQ and subsets of it because, as mentioned in the previous sec-
tion, intractability limits the applicability of the duplicate resolution method for queries
outside UJCQ. The requirement that the query contains a join-restricted free occur-
rence ofR or S eliminates from consideration certain queries in UJCQ for which the
resolved answer problem is trivially tractable. For example, for MDs in (3), the query
∃y∃zR(x, y, z) is not in CHAQ, but is tractable simply because it does not return the
values of a changeable attribute (the resolved answers are the classic answers). The join
restriction simplifies the analysis while still including many useful queries.

Definition 2. A setM of MDs is hard if for every CHAQQ, RA(Q,M) is NP-hard.
M is easyif for every CHAQQ, RA(Q,M) is in PTIME. �

Of course, a set of MDs may not be hard or easy. In the followingwe give some syntactic
conditions that guarantee hardness for classes of MDs.

Definition 3. Letm be an MD. The symmetric binary relationLRel(m) (RRel(m)) re-
lates each pair of attributesA andB such that a conjunct of the formR[A] ≈ S[B] (resp.
R[A]

.
= S[B]) appears inLHS (m) (resp.RHS(m)). An L-component(R-component)

of m is an equivalence class of the reflexive and transitive closure,LRel(m)eq (resp.
RRel(m)eq), of LRel(m) (resp.RRel(m)). �

The first results concernlinear pairs of MDs, i.e. those whose graphMDG(M)
consisting of the verticesm1 andm2, say
m1: R[Ā] ≈1 S[B̄] → R[C̄]

.
= S[Ē], andm2: R[F̄] ≈2 S[Ḡ] → R[H̄]

.
= S[Ī], (4)

with only an edge fromm1 to m2, i.e. (R[C̄] ∪ S[Ē]) ∩ (R[F̄] ∪ S[Ḡ]) 6= ∅, whereas
(R[H̄] ∪ S[Ī]) ∩ (R[Ā] ∪ S[B̄]) = ∅. The linear pair is denoted by(m1,m2).

Definition 4. Let (m1,m2) be a linear pair as in (4). (a)BR is a binary (reflexive and
symmetric) relation on attributes ofR: (R[U1], R[U2]) ∈ BR iff R[U1] andR[U2] are
in the same R-component ofm1 or the same L-component ofm2. Similarly forBS .
(b) An R-equivalent set(R-ES) of attributes of(m1,m2) is an equivalence class of
TC (BR), the transitive closure ofBR, with at least one attribute in the equivalence
class belonging toLHS(m2). The definition of anS-equivalent set(S-ES) is the same,
with R replaced byS.
(c) An (R or S)-ESE of (m1,m2) is boundif E ∩ LHS (m1) is non-empty. �

Theorem 1. Let (m1,m2) be a linear pair as in (4), withR andS distinct predicates.
Assume that each similarity relation has an infinite set of mutually dissimilar elements.
Let ER andES be the classes ofR-ESs andS-ESs, resp. The pair(m1,m2) is hard if
RHS(m1) ∩ RHS(m2) = ∅, and at least one of the followingdoes nothold:
(a) At least one of the following is true: (i) there are no attributes ofR in RHS(m1) ∩

LHS (m2); (ii) all ESs inER are bound; or (iii) for each L-componentL of m1,
there is an attribute ofR in L ∩ LHS (m2).

(b) At least one of the following is true: (i) there are no attributes ofS in RHS(m1) ∩
LHS (m2); (ii) all ESs inES are bound; or (iii) for each L-componentL of m1,
there is an attribute ofS in L ∩ LHS (m2). �

Theorem 1 says that a linear pair of MDs is hard unless the syntactic form of the MDs is
such that there is a certain association between changeableattributes inLHS(m2) and
attributes inLHS (m1) as specified by conditions (ii) and (iii). Whenm1 is applied to
an instance, similarities can be produced among the values of attributes ofRHS(m1)
which are not required by the chase but result from a particular choice of update values.
Suchaccidental similaritiesaffect the subsequent updates made by applyingm2, mak-
ing the query answering problem intractable [13]. For pairsof MDs satisfying (a)(ii) or
(a)(iii) (or (b)(ii) or (b)(iii)) in Theorem 1, the similarities resulting from applyingm2

are restricted to a subset of those that are already present among the values of attributes
in LHS (m1), making the problem tractable.

However, when condition (ii) or (iii) is satisfied, accidental similarities among the
values of attributes inRHS(m1) cannot be passed on to values of attributes inRHS(m2).

This result gives a syntactic condition for hardness. It is an important result, because
it applies to many cases of practical interest. For example,the linear pair(m1,m2) in
(3) turns out to be hard (for all CHAQ queries, in addition to∃yR(x, y, z)).

All syntactic conditions/constructs on attributes above,in particular, the transitive
closures on attributes, are “orthogonal” to semantic properties of the similarity relations.
When similarity predicates are transitive, every linear pair not satisfying the hardness
criteria of Theorem 1 is easy.

Theorem 2. (dichotomy for transitive similarity)Let (m1,m2) be a linear pair with
RHS(m1) ∩RHS(m2) = ∅. If the similarity operators are transitive, then(m1,m2) is
either easy or hard. �

The next result concernspair-preservingacyclic sets of MDs, defined by:M is pair-
preserving if, for any attributeR[A] occurring in a MD, there is only one attributeS[B]
such thatR[A] ≈ S[B] or R[A]

.
= S[B] occur in an MD. These sets of MDs can be of

arbitrary size (still subject to the condition of containing at most two predicates). The
pair-preserving assumption typically holds in a duplicateresolution setting, since the
values of pairs of attributes are normally compared only if they hold the same type of
information (e.g. they are both addresses or both names).

Definition 5. LetM be pair-preserving and acyclic,B an attribute inM , andM ′ ⊆ M .
B is non-inclusivewrt. M ′ if, for everym ∈ MrM ′ with B ∈ RHS(m), there is an
attributeC such that: (a)C ∈ LHS(m), (b) C 6∈

⋃
m′∈M ′ LHS(m′), and (c)C is

non-inclusivewrt. M ′. �

This is a recursive definition of non-inclusiveness. The base case occurs whenC is
not inRHS(m) for anym, and so must be inclusive (i.e. not non-inclusive). Because

C ∈ LHS(m) in the definition, for anym1 such thatC ∈ RHS(m1), there is an edge
from m1 to m. Therefore, we are traversing an edge backwards with each recursive
step, and the recursion terminates by the acyclicity assumption.

Non-inclusiveness is a generalization of conditions (a) (iii) and (b) (iii) in Theorem
1 to a set of arbitrarily many MDs. It expresses a condition ofinclusion of attributes in
the left-hand side of one MD in the left-hand side of another.Theorem 3 tells us that
a set of MDs that is non-inclusive in this sense is hard. Notice that the condition of
Theorem 1 that there exists an ES that is not bound does not appear in Theorem 3. This
is because, by the pair-preserving requirement, there cannot be a bound ES for any pair
of MDs in the set that is a linear pair. For linear pairs, Theorem 3 becomes Theorem 1.
Theorem 3. Let M be pair-preserving and acyclic. Assume there is{m1,m2} ⊆ M ,
and attributesC ∈ RHS(m2), B ∈ RHS(m1)

⋂
LHS(m2) with: (a) C is non-

inclusive wrt{m1,m2}, and (b)B is non-inclusive wrt{m2}. Then,M is hard. �

Acknowledgments: Research supported by the NSERC Strategic Network on Business Intelli-
gence (BIN ADC05), NSERC/IBM CRDPJ/371084-2008, and NSERCDiscovery.

References
[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
[2] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent

databases.Proc. PODS, 1999.
[3] Z. Bahmani, L. Bertossi, S. Kolahi and L. Lakshmanan. Declarative entity resolution via

matching dependencies and answer set programs. Proc. KR 2012.
[4] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. Euijong Whang, and J. Widom.

Swoosh: A generic approach to entity resolution.VLDB Journal, 2009, 18(1):255-276.
[5] L. Bertossi. Consistent query answering in databases.ACM Sigmod Record, 2006,

35(2):68-76.
[6] L. Bertossi. Database Repairing and Consistent Query Answering, Morgan & Claypool,

Synthesis Lectures on Data Management, 2011.
[7] L. Bertossi, S. Kolahi, and L. Lakshmanan. Data cleaningand query answering with match-

ing dependencies and matching functions.Proc. ICDT, 2011.
[8] L. Bertossi, S. Kolahi and L. Lakshmanan. Data cleaning and query answering with match-

ing dependencies and matching functions.Theory of Computing Systems, 2013, 52(3):441-
482.

[9] J. Bleiholder and F. Naumann. Data fusion.ACM Computing Surveys, 2008, 41(1):1-41.
[10] A. Cali, D. Lembo and R. Rosati. On the decidability and complexity of query answering

over inconsistent and incomplete databases. Proc. PODS 2003, pp. 260-271.
[11] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey.IEEE

Trans. Knowledge and Data Eng., 2007, 19(1):1-16.
[12] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules.Proc. VLDB, 2009.
[13] J. Gardezi, L. Bertossi, and I. Kiringa. Matching dependencies: semantics, query answering

and integrity constraints.Frontiers of Computer Science, Springer, 2012, 6(3):278-292.
[14] J. Gardezi, L. Bertossi. Query rewriting using datalogfor duplicate resolution. Proc. 2nd

Workshop on the Resurgence of Datalog in Academia and Industry (Datalog 2.0, 2012),
Springer LNCS 7494, pp. 86-98, 2012.

[15] J. Gardezi and L. Bertossi. Tractable cases of clean query answering under entity resolu-
tion via matching dependencies. Proc. International Conference on Scalable Uncertainty
Management (SUM’12), Springer LNAI 7520, pp. 180-193, 2012.

[16] B. ten Cate, G. Fontaine and Ph. Kolaitis. On the data complexity of consistent query an-
swering. Proc. ICDT 2012, pp. 22-33.

[17] J. Wijsen. Certain conjunctive query answering in first-order logic.ACM Trans. Database
Syst., 2012, 37(2):9.

