A Proofs and Intermediate Results

Proof of lemma 1:

1. M = p(a): T, then M = p(a) : te and M |= p(a) : fe. Thus, M = T(1C),
a contradiction.

2. We know that M |= p(a) : tc V p(a) : £ and M = p(a) : tq V p(a) :
(since p(a) : tq € T(DB, IC or p(a) : fd € T(DB,IC)). Thus, one of thL
following cases must be true: (1) M = p(a) : t. and M = p(a) tq, and
therefore M |: pla): t, (2) M Epla): tc and M = p(a) : £q, and therefore
M |= pla) : ,,, (3) M = pla) : f. and M [pla) : ta, and therefore
MEDPp a)) M |= p(a) : f. and M |= p(a) : fq, and therefore
M 'Z p (L

0O

Proof of lemma 2: We have to prove that M(DB,DB’') = 7(DB) and
M(DB,DB') E T(IC).

1. Let us consider p(a) : a € T(DB). If a = tg, then p(a) € DB, and then by
considering (1) we obtain that Ip(p(a)) =t or Ip(p(a)) = f., and therefore
M(DB,DB') |= p(a) : a. If a = f4, then p(a) ¢ DB, and then by con-
sidering (1) we obtain that Ip(p(a)) = f or Ip(p(a)) = ta, and therefore
M(DB,DB') = p(a)

2. (a) Let us suppose that p;(T1) tte V-V pu(Th) tte Vi (Th) : fe V-V
gm(Th) - fo € T(IC), and let us assume that py(a;) : te V- -V pp(an) :
te Vai(by): fo Vo oV qunl@,y) @ f. was obtained from this constraint by
instantiating in the domain of the database. In this case we have that
P TV -V pu(T)V =g (TY) V- -V =g (T)n) is an element of IC, and
therefore we have that DB’ |=pg py(@1) V-V pu(@,) V =g (b)) V -+ -V
_'qm(bm)'

Firstly, we are going to consider what happens if DB’ |=pp pi(a;)
(1 <1 < n). If p; is a built-in predicate, then Igr(p;(a;)) = t, since
M(DB,DB') gives to the built-in predicates in the database the appro-
priate truth values, and therefore M(DB,DB') |= p;(a;) : te. If p; is
not a built-in predicate, then Ip(p;(a;)) = t or Ip(pi(a;)) = ta, since
pi(a;) € DB’, and therefore M(DB,DB’) k= p;(a;) : te.

Secondly, we are going to consider what happens if DB’ =pp —q;(b;)
(1 < i < m). If g; is a built-in predicate, then Ig(q;(b;)) = f, since
M(DB,DB’) gives to the built-in predicates in the database the ap-
propriate truth values, and therefore .M(DB,DB’) = q;(B,-) cfe I g
is not a built-in predicate, then Ip(q;(b;)) = f or Ip(q;(b;)) = fa, since
gi(b;) ¢ DB’, and therefore M(DB,DB’) = ¢;(b;) : f..

(b) Let us consider a predicate p in P. By ro:xqiderin« (1) we know that
for every tuple @ (of appropriate arity) Ip(p(a)) = t, Ip(p(a)) = f,
Ip(p(@)) = ta or Ip(p(a)) = fa, and the I‘Lf()I‘(M(DB,DB’') = p(a) :
te V opla) : f.. Thus, we conclude that M(DB,DB’) = Vz(p(z) :

te V p(z) : £.). Additionally, if Ip(p(a)) = t or Ip(p(a)) = ta, then
M(DB,DB') |£ p(a) : f., and if Ip(p(a)) = f or Ip(p(a)) = f., then
M(DB,DB') £ p(a) : te. Thus, we also conclude that M(DB,DB') =
Vz(-p(z) : te V -p(z) : £e).

0

Proof of lemma 3: We are going to prove that DB ¢ =pg IC. Let us suppose
that py (T V-V pu (T) Vg (T V- -V =y (T),) is an integrity constraint in
IC, and let us assume that py(a,) V-V p,(a,) V =q1(b1) V + - V =gy (b,) was
obtained from it by instantiated in the domain of the database. In this case we
have that pi(@1) i te V- -V pu(@n) : te Vg (b)) : fe V- -V guu(by) : fe could be
obtained by instantiated an integrity constraint in 7 (IC). Thus, we have that
M ': pl(al) itV Vpn(a-n) tte V (11(51) : fc VeV q:n({_)m) : fc‘
Firstly, we are going to consider what happens if M = pi(a;) : te (1 <
i < n). If p; is a built-in predicate, then Ig(p;(d;)) = t, since M gives to
the built-in predicates in the database the value t or f, and if in this case we
suppose that Ir(pi(a;)) = f then M = pi(a;) : te, a contradiction. Therefore
DB F=pe pi(a;i). If p; is not a built-in predicate, then p;(a;) : ta € T(DB)
or pi(a;) : f4 € T(DB). In the first case we have that M | p;(a;) : t, and
therefore p;(a@;) € DB . In the second case M |= p;(a;) : ta, and therefore
pi(a;) € DB .
Secondly, we are going to consider what happens if M = ¢;i(b;) : f. (1 <
i < m). If ¢ is a built-in predicate, then Ig(gi(h;)) = f, since M gives to
the built-in predicates in the database the value t or f, and if in this case we
suppose that Ir(gi(bi)) = t then M (£ ¢i(b;) : fe, a contradiction. Therefore
DB Eps —q,-(B;). If ¢; is not a built-in predicate, then q;(ag) :tqg € T(DB) or
gi(b;) : £4 € T(DB). In the first case we have that M = ¢;(b;) : fa, and therefore
gi(b;) € DB 4. In the second case M = ¢;(b;) : £, and therefore g;(b;) & DB 4.
O

Proof of proposition 1:

1. By Lemma 3, we conclude that DB E=pp IC.

2. Now, we need to prove that DBy, is minimal. Let us suppose this is not
true. Then, there is a database instance DB” such that DB" =pp IC and
A(DB,DB") g A(DB,DB).

(a) From Lemma 2, we conclude that M(DB,DB") |= 7(DB,IC).

(b) Now, we are going to prove that M(DB,DB") <A M.
If M(DB,DB") |= p(a) : ta, then by considering (1) we can conclude
that p(a) € DB and p(a) € DB*, and therefore p(a) € A(DB,DB").
But A(DB,DB") g A(DB, DB), and therefore p(a) € DB . Thus,
we can conclude that M = p(a) : t V p(a) : ta. If we suppose that
M = p(a) : t, then M |~ p(a) : fq, but we know that M = T(DB,IC)
and p(a) : fg € T(DB, IC), since p(a) ¢ DB, a contradiction. Therefore,
M |= p(ﬁ.) tta.
If M(DB,DB") |= p(a) : fa, then by considering (1) we can conclude
that p(a) € DB and p(a) € DB", and therefore p(a) € A(DB,DB").

But A(DB,DB") ;Ct A(DB,DB), and therefore p(a) ¢ DB . Thus,
we can conclude that M |= p(a) : v p(a) : £f,. If we suppose that
M |=p(a) : f, then M [£ p(a) : tq, but we know that M = T(DB,IC)
and p(a) : ta € T(DB,IC), since p(a) € DB, a contradiction. Therefore,
M = p(@) : fa. Thus, we can deduce that M(DB,DB") <a M.
Finally, we know that there exists p(a) such that it is not in A(DB, DB")
and it is in A(DB,DB). Thus, p(a) € DB and p(a) € DB", and
therefore M(DB,DB") = p(a) : t, or p(a) € DB and p(a) € DB”, and
therefore M(DB, DB") = p(a) : f. Then, we have that M(DB,DB") |~
p(a) : tya and M(DB,DB") [~ p(a) : f,. Additionally, since p(a) €
A(DB,DB,,), we can conclude that p(a) € DB and p(a) ¢ DB, or
pla) € DB and p(a) € DB 4. In the first case we can conclude that
M = pl(a) : fa, since M must be satisfied p(a) : £V p(a) : fa, and
if we suppose that M |= p(a) : £, then M [= p(a) : tq, but p(a) :
ta € T(DB,IC) in this case, a contradiction. In the second case we
can conclude that M = p(a) : t,, since M must be satisfied p(a) :
t vV p(a) : ta, and if we suppose that M = p(a) : t, then M [~ p(a) : fy,
but p(a) : fg € T(DB,IC) in this case, a contradiction. Thus, we can
conclude that M |= p(a) : ta Vv p(a) : fa. Therefore we can deduce that
M £4 M(DB,DB").

Finally, we deduce that M is not e-consistent maximal in the class of the

models of 7 (DB, IC), with respect to A, a contradiction.

Proof of proposition 2:

1. By Lemma 2, we conclude that M(DB,DB') &= 7(DB, IC).

2. Let us suppose that M(DB,DB’) is not e-consistent maximal in the class
of models of T(DB,IC) with respect to A. Then, there exists M |=
T(DB,IC), such that M <, M(DB,DB’). By using this it is possible
to prove that A(DB,DB) g A(DB,DB').

(a) Let us suppose that p(a) € A(DB,DB). Then p(a) € DB and p(a) ¢
DB, or p(a) ¢ DB and p(a) € DB 4. In the first case we can conclude
that p(a) : ta € T(DB,IC) and M |=p(a) : f v p(a) : fa. If we suppose
that M |= p(a) : f, then M [~ p(a) : tq, a contradiction. Thus, we
have that M = p(a) : fa. But M <, M(DB,DB’), and therefore
M(DB,DB') [= p(a) : fa. Then, by considering (1) we conclude that
p(a) ¢ DB', and therefore in this case it is possible to conclude that
p(a) € A(DB,DB’). In the second case we can conclude that p(a) : fa €
T(DB,IC) and M = p(a) : tVp(a) : ta. If we suppose that M |= p(a) :
t, then M £ p(a) : fq, a contradiction. Thus, we have that M |= p(a) :
ta. But M <4 M(DB,DB’), and therefore M(DB,DB') = p(a) : ta.
Then, by considering (1) we conclude that p(a) € DB’ and therefore in
this case it is possible to conclude that p(a) € A(DB,DB'). Thus, we
can conclude that A(DB,DB) G A(DB,DB’).

(b) Since M(DB,DB’) £ 4 M, there exists p(a) such that M(DB,DB’) |=
pla) : tavVpla) : fy and M = p(a) : t v p(a) : £ By using (1)
and the first fact it is possible to conclude that p(a) € A(DB,DB').
If we suppose that p(a) € DB, then p(a) : ta € T(DB,IC), and
therefore by considering the second fact it is possible to deduce that
M must satisfy p(a) : t. Thus, we can conclude that in this case
p(a) € DBy, and therefore p(a) ¢ A(DB,DB). By the other hand,
if we suppose that p(a) ¢ DB, then p(a) : fg € 7T(DB,IC), and
therefore by considering the second fact it is possible to deduce that
M must satisfy p(a) : f. Thus, we can conclude that in this case
p(a) € DB, and therefore p(a) ¢ A(DB, DB). Finally, we conclude
that A(DB,DB) £ A(DB,DB’).

We know that DB’ is a database instance, and therefore A(DB, DB') must
be a finite set. Thus, we can conclude that A(DB,DBu,) is a finite set,
and therefore DB 4 is a database instance. With the help of Lemma 3, we
deduce that DBy = IC. But this a contradiction, since DB’ is a repair of
DB with respect to IC and A(DB,DB () G A(DB,DB’).

Proof of lemma 4: Let us suppose that
TDB,IC)Fri(é) :7aV- -V - Vre(cr): Ta. (5)

Because of the form of the clauses in 7(DB,IC), the above a-clause can be
obtained by applying a series of reduction and resolution rules to the clauses in
T(DB) U T(B) (the database part of T(DB,IC) plus builtins) and a clause of
the form

ri(t) fe v vri(ty) fe Vi (tis) tte V
Vg () | te, (6)

where the latter is a clause obtained from T (IC) (the constraint part of
T(DB,IC)) by resolution (and factorization) alone.

Furthermore, it is easy to show that resolution applied to a pair of range-
restricted constraints yields a range-restricted constraint. Thus, (6) is range-
restricted.

Since (5) is obtained from (6) by resolution and reduction with the clauses
in 7(DB), there must be clauses r;(¢;) : t Vri(e) : T € T(DB), 1 <i < j
(which are resolved with (6)), and clauses ry () : fVry(ep) : T € T(DB),
j < i <k (which are reduced with (6)), such that there is a substitution # for
which ;6 = ¢; (1 <i<k).

Therefore, due to the range-restrictedness of (6), every constant in ¢ (j <
i' < k) occurs in some & (1 < i < j). Since every constant in ¢ is in the active
domain of DB, we conclude that every constant mentioned in (5) belongs to the
active domain of DB. O

Proof of corollary 1: By Lemma 4, the clauses in 72(DB,IC) can mention
only the constants that occur in the active domain of DB, which is a finite set.
0

Proof of theorem 3: At the end of section 6 we showed that the decision
problem is equivalent to the problem of deciding, given a finite collection of sets,
and a subset of the union of the family, whether the subset can be extended to
a minimal hitting set of the family. In the following lemmas we prove that this
is N P-complete.

Lemma 5. Given a finite collection of sets S and a hitting set of it H, H is a
minimal hitting set of S if and only if for each h € H there exvists an A € S such
that AN H = {h}.

Proof

(=) Let us suppose that the lemma is not true. Then there exists h € H such
that for every A € S, ANH # {h}. We are going to prove H' = H — {h} is also
a hitting set. Let us consider A € S. If h € A, then there exists another h' € H
such that ' € A, since AN H # {h}, and therefore ANH' # 0. If h ¢ A, then
there exist h’ # h such that h' € AN H, and therefore A N H' # (. Thus, we
obtain a contradiction.

(<) If H ;Ct H, then there exists h € H such that h ¢ H'. But we
know that there is a set A € S such that ANH = {h}, and therefore ANH' = .
Thus, H' is not a hitting set of S.

Lemma 6. Given a finite collection of sets S and a set H € US, the problem
of deciding if there exists a minimal hitting set H' of S such that H € H' is NP

Proof We are going to reduce our problem to SAT. For each € US we introduce
a propositional letter z, and we define:

F(S.H)=(\ \V AR

heH {AeS | he A} {a€A | a#h}

N\ hA(A \/ a).

heH {A€S | ANH=0}a€A

There exists a minimal hitting set H' of S which contains H if and only if f(H, S)

is a satisfied formula.

(=) For every proposition letter z in f(H,S) we define o(z) = 1 if and only if

€ H'

1. If h € H, then h € H', and therefore by lemma 5 we conclude that
there exists 4 € S such that A N H' = {h}. Thus, for every a €
A — {h} we have that a ¢ H', and then o(a) = 0. We conclude that
7(Viaes | neay NMaea | apny @) = 1.

2. o(Aper h) =1, since H € H'.

3.IfAe Sand ANH =0, then AN(H' — H) # (), since H' is a hitting set
of S. Thus, there exists a € H' such that a € A, and therefore o(a) = 1. We
conclude that o(\/ ., a) = 1.

(<) Let o such that o(f(H,S)) = 1. We construct H" = {x | o(z) = 1}.
H S H", since o(A\ . h) = 1. H" is a hitting set of S. Let us consider A € S.
If ANH #0, then ANH" # 0. 1f ANH = 0, then o(\/,. 4 a) = 1, and therefore
AN(H" - H) #0.

H'" is a finite set. Then there exists a minimal hitting set of S such
that H' € H". We are going to prove that H € H'. By contradiction,
let us suppose that there exists h € H such that h & H'. We know that
0(Viaes | neay Maea | azny 7@) = 1. Then there exists A € S such that
f’(/\{ueA | ath} —-a) = 1, and therefore A N H' = @, by definition of H' and
given that h & H'. Thus, we conclude a contradiction.

Lemma 7. Given a finite collection of sets S and a set H € US, the problem

of deciding if there exists a minimal hitting set H' of S such that H & H' is
NP-hard

Proof. We are going to reduce SAT(3) to our problem. Given a formula ¢ = C) A
-+ A C}, where every C; is a clause, we define PL(yp) as the set of propositional
letters mentioned in it. Additionally, for each clause Cj, of the form py vV ---V
PV oq VoV gy, we define

CH(Cr) = {pl —13 ----s_prr.—]--s /)| —O-s reey Qm—o}'
After that, we define f(¢) = (S, H), where

S={{vp,p0} | pe PL(p)}U{{vp,p-1} | p€ PL(p)}U{CH(C;) | 1<i<

H={vp | pe PL(p)}

We are going to prove that ¢ is consistent if and only if there exists a
minimal hitting set H' of S such that H € H'.

(=) Let o that satisfies ¢. We define
H'"=HU{p0 | pe PL(p) and a(p) =0} U {p-1 | p€ PL(y) and o(p) = 1}

H" is a hitting set of S, and therefore there exists H' minimal hitting set of S
such that H' € H", since H" is a finite set. If we suppose that there is vp € H
such that v_p € H', then H' N {v_p,p 0} = 0 or H' N {v_p,p-1} = B, given that
a(p) =1 or o(p) = 0. Thus, we conclude a contradiction.

(<) Let us suppose that there exists H' minimal hitting set of S such
that H € H'. Notice that for every p € PL(yp) we have that p.0 & H' or
p-1 ¢ H', since if both elements would be in H', then H' — {v_p} will be a hitting
set, a contradiction given that H' is minimal. Thus, we can define a function
a: PL(p) — {0,1} by means of the rule ¢(p) = 1if and only if p.1 € H'. We
have that o(yp) = 1, given that for every clause C;, H' N CH(C;) # 0. O

