Query Answering in Peer-to-Peer Data Exchange
Systems

Leopoldo Bertossi and Loreto Bravo

Carleton University, School of Computer Science, Ottawa, Canada
{bertossi,lbravo}@scs.carleton.ca

Abstract. The problem of answering queries posed to a peer who is a member of a
peer-to-peer data exchange system s studied. The answers have to be consistent wrt
to both the local semantic constraints and the data exchange constraints with other
peers; and must also respect certain trust relationships between peers. A semantics
for peer consistent answers under exchange constraints and trust relationships is
introduced and some techniques for obtaining those answers are presented.

1 Introduction

In this paper the problem of answering queries posed to a peer who is a member of
a peer-to-peer data exchange system is investigated. When a peer P receives a query
and is going to answer it, it may need to consider both its own data and the data stored
at other peers’ sites if those other peers are related to P by data exchange constraints
(DECs). Keeping the exchange constraints satisfied, may imply for peer P to get data
from other peers to complement its own data, but also not to use part of its own data.
In which direction P goes depends not only on the exchange constraints, but also on the
trust relationships that P has with other peers. For example, if P trust another peer Q’s
data more than its own, P will accommodate its data to Q’s data in order to keep the
exchange constraints satisfied. Another element to take into account in this process is a
possible set of local semantic constraints that each individual peer may have.

Given a network of peers, each with its own data, and a particular peer P in it, a
solution for P is -loosely speaking- a global database instance that respects the exchange
constraints and trust relationships P has with its immediate neighbors and stays as close as
possible to the available data in the system. Since the answers from P have to be consistent
wrt to both the local semantic constraints and the data exchange constraints with other
peers, the peer consistent answers (PCAs) from P are defined as those answers that can
be retrieved from P’s portion of data in every possible solution for P. This definition may
suggest that P may change other peers’ data, specially of those he considers less reliable,
but this is not the case. The notion of solution is used as an auxiliary notion to characterize
the correct answers from P’s point of view. Ideally, P should be able to obtain its peer
consistent answers just by querying the already available local instances. This resembles
the approach to consistent query answering (CQA) in databases [1,/4], where answers
to queries that are consistent with given ICs are computed without changing the original
database.

We give a precise semantics for peer consistent answers to first-order queries. First
for the direct case, where transitive relationships between peers via ECs are not auto-

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 476-483] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Query Answering in P2P Data Exchange Systems 477

matically considered; and at the end, the transitive case. We also illustrate, by means of
extended and representative examples, mechanisms for obtaining PCAs. One of them
is first order (FO) query rewriting, where the original query is transformed into a new
query, whose standard answers are the PCAs to the original one. This methodology has
intrinsic limitations. The second, more general, approach is based on a specification of
the solutions for a peer as the stable models of a logic program, which captures the
different ways the system stabilizes after satisfying the DECs and the trust relationships.

Aninstance r of arelational database can be seen a a set of ground atoms. Accordingly,
an instance 1’ is a repair of instance r wrt a set of integrity constraints IC' if ' = IC
and v’ minimally differs from 7 in terms of inclusion of set of tuples [1].

2 A Framework for P2P Data Exchange

In this section we will describe the framework we will use to formalize and address the
problem of query answering in P2P systems.

Definition 1. A P2P data exchange system *J3 consists of:

(a) A finite set P of peers, denoted by A, B, C, ..., P, Q, ...

(b) For each peer P, a database schema R (P), that includes a domain D(P), and relations
R(P), However, it may be convenient to assume that all peers share a common, fixed,
possibly infinite domain, D. Each R(P) determines a FO language £(P). We assume
that the schemas R (P) are disjoint, being the domains the only possible exception. R
denotes the union of the R(P)s.

(c) For each peer P, a database instance r(P) corresponding to schema R(P).

(d) For each peer P, a set of L(P)-sentences IC(P) of ICs on R(P).

(e) For each peer P, a collection X'(P) of data exchange constraints X (P, Q) consisting
of sentences written in the FO language for the signature R(P) U R(Q), and the Q’s are
(some of the) other peers in P.

(f) A relation trust C P x {less, same} x P, with the intended semantics that when
(&, less, B) € trust, peer A trusts itself less than B; while (A, same, B) € trust indicates
that A trusts itself the same as B. In this relation, the second argument functionally
depends on the other two. By default a peer trusts its own data more than that of other
peers. U

Each peer P is responsible for maintaining its material instance wrt IC(P), indepen-
dently from other peers. In particular, we assume 7(P) |= IC(P). However, when local
data is virtually changed to accommodate to other peers’ data, the local ICs could be
virtually violated. It is possible to keep the local ICs satisfied also at query time by using
methodologies for consistent query answering, i.e. for consistently answering queries in
databases that fail to satisfy certain ICs [4]. A peers may submit queries to other peers in
accordance with the restrictions imposed its DECs and using the other peer’s relations
appearing in them.

Definition 2. (a) We denote with R(P) the schema consisting of R(P) extended with
the other peers’ schemas that contain predicates appearing in X'(P). (b) For a peer P

478 L. Bertossi and L. Bravo

and an instance 7 on R(P), we denote by 7, the database instance on R(P), consisting
of the union of 7 with all the peers’ instances whose schemas appear in R(P). (c)
If r is an instance over a certain schema S and S’ is a subschema of S, then r|S’
denotes the restriction of r to S’. In particular, if R(P) C S, then r|P denotes the
restriction of 7 to R(P). (d) We denote by R(P)%** the union of all schemas R(Q), with
(P, less, Q) € trust. Analogously is R(P)**™¢ defined. a

From the perspective of a peer P, its own database may be inconsistent wrt the data
owned by another peer Q and the DECs in X(P, Q). Only when P trust Q the same
as or more than itself, it has to consider Q’s data. When P queries its database, these
inconsistencies may have to be taken into account. Ideally, the answers to the query
obtained from P should be consistent with X'(P, Q) (and its own ICs X/(P)). In principle,
P, who is not allowed to change other peers’ data, could try to repair its database in
order to satisfy X'(P) U IC(P). This is not a realistic approach. Rather P should solve
its semantic conflicts or incompleteness of data at query time, when it queries its own
database and those of other peers. Any answer obtained in this way should be sanctioned
as correct wrt to a precise semantics.

The semantics of peer consistent query answers for a peer P is given in terms of
all possible minimal, virtual, simultaneous repairs of the local databases that lead to
a satisfaction of the DECs while respecting P’s trust relationships to other peers. This
repair process may lead to alternative global databases called the solutions for P. Next,
the peer consistent answers from P are those that are invariant wrt to all its solutions. A
peer’s solution captures the idea that only some peers’ databases are relevant to P, those
whose relations appear in its trusted exchange constraints, and are trusted by P at least
as much as it trusts its own data. In this sense, this is a “local notion”, because it does
not take into consideration transitive dependencies (but see Section [3)).

Definition 3. (direct case) Given a peer P in a P2P data exchange system and an instance
r on R, an instance ' on R is a solution for P if v’ is a repair of r wrt to X'(P) U
IC(P) that does not change the more trusted relations, more precisely: (a) ' |=
U{Z(P,Q) | (P, less, Q) or (P, same, Q) € trust} U IC(P); (b) r'|P = r|P for every
predicate P € R(Q), where Q is a peer with (P, less, Q) € trust; (c) v’ minimally differs
from r in the sense that (' ~ 7) U (r . r’) is minimal under set inclusion among those
instances that satisfy (a) and (b). O

Intuitively, a solution for P repairs the global instance wrt the DECs with peers that P
trusts more than or the same as itself, but leaving unchanged the tables that belong to
more trusted peers. As a consequence of the definition, tables belonging to peers that are
not related to P or are less trustable are not changed. That is, P tries to change its own
tables according to what the dependencies to more or equally trusted peers prescribe.

The solutions for a peer are used as a conceptual, auxiliary tool to characterize the
peer consistent answers; and we are not interested in them per se. Solutions are virtual
and may be only partially computed if necessary, if this helps us to compute the correct
answers obtained in/from a peer. The “changes” that are implicit in the definition of
solution via the set differences are expected to be minimal wrt to sets of tuples which
are inserted/deleted into/from the tables.

Query Answering in P2P Data Exchange Systems 479

In these definitions we find clear similarities with the characterization of consistent
query answers in single relational databases [4]. However, in P2P query answering,
repairs may involve data associated to different peers, and also a notion of priority that
is related to the trust relation.

Example 1. Consider a P2P data exchange system with peers P1, P2, P3, and schemas
R; = {R',...}. (a) Instances r(P1) = {R!(a,b), R'(s, 1)},

r(P2) = {R%(c,d), R*(a,e)}, r(P3)={R3(a,f),R3(s,u)}.

(b) trust = { (P1, less, P2), (P1,same,P3)}. (c) ¥(P1,P2) = { Vay(R?*(z,y) —
Ri(z,y)) }; X (P1,P3) = { Vayz(R'(z,y) A R*(z,2) — y = 2) }. Here, the
global instance is r = {R'(a,b), R*(s,t), R*(c,d), R*(a,e), R3(a, f), R3(s,u)}. It
has two repairs according to Definition B namely ' = {R'(a,b), R'(s,t), R'(c, d),
RY(a,e), R*(c,d), R*(a,e) };

and 7"’ = { R*(a,b), R*(c,d), R*(a,e), R*(c,d), R*(a, €), R3(s,u)}. O

Definition 4. Given a FO query Q(Z) € L(P) posed to P, a ground tuple ¢ is a peer
consistent answer to @ for P iff 7/|P = Q(%) for every solution ’ for P. O

Example 2. (example [1 continued) The query @Q : R!(z,y) posed to P1 has as peer
consistent answers the tuples: (a, b), (¢, d), (a, €), because those are the tuples found in
relation R! in the restriction to P1’s schema in every solution for P. a

Notice that this definition is relative to a fixed peer, and not only because the query
is posed to one peer and in its query language, but also because this notion is based
on the “direct or local” notion of solution for a single peer, which considers its “direct
neighbors” only. This is a first step towards the general case of transitive dependencies,
that will be explored in Section [Sl However, this restricted case is the basis for the
transitive case, because P does not see beyond its neighbors; and when P requests data
to a neighbor, say Q, the latter may have to find local solutions of its own by considering
its direct neighbors. The transitive case has to combine these local solutions.

Peer consistent answers to queries can be obtained by using techniques similar to
those for CQA, e.g. query rewriting [1,4]. However, there are important differences,
because now we have some fixed predicates in the repair process.

Example 3. (example [] continued) If P1 is posed the query Q : R!(z,y), asking for
the tuples in relation R?, its answers can be obtained through the rewritten query Q' :
[RY(z,y) AV21 ((R3(, 21) A—322 R%(2, 20)) — 21 = y)] V R%(x,y), whichrequires
from P1 to submit queries to its peers. The final answers are (a, b), (¢, d), (a, e), precisely
the answers obtained in Example[2] O

Notice that a query () may have peer consistent answers for a peer which are not
answers to () when the peer is considered in isolation, which makes sense, because the
peer may import data from other peers

This query rewriting approach differs from the one used for CQA. In the latter case,
literals in a query are resolved (by resolution) against ICs in order to generate residues

! Another difference with CQA, where all consistent answers are answers to the original query;
at least for conjunctive queries and generic ICs [4].

480 L. Bertossi and L. Bravo

that are iteratively appended as extra conditions to the query. In the case of P2P data
systems, the query may have to be modified in order to include new data that is located
at a different peer’s site. This cannot be achieved by imposing extra conditions alone,
but instead, by relaxing the query in some sense. Since query answering in P2P systems
includes sufficiently complex cases of CQA, a FO query rewriting approach to P2P query
answering is bound to have limitations in terms of completeness [4]. Instead, we will
now propose a more general methodology based on answer set programming.

3 Referential Data Exchange Constraints

An answer set programming approach to the specification of solutions for a peer can be
developed. Those specifications will be similar to those of repairs of single relational
databases under referential integrity constraints [2]]. However, as we have seen, there are
important differences with CQA.

In most applications we may expect the DECs for a peer to be inclusion dependencies
or referential constraints, which will be used by this peer to either import data from or
to validate its own data with another peer. We now give an example of an even more
more involved referential constraint that shows the main issues around this kind of
specifications.

Example 4. Consider a P2P system with peers P and Q, with schemas { R+ (-,), Ra(-, ")},
{S1(+,+), Sa(-,-)}, resp.; and assume that P is querying its database subject to its DEC
that mixes tables of the two peers on each side of the implication:

VaVyVz3w (R (z,y) A S1(z,y) — Ra(x,w) A S2(z,w)), (H

We consider the case where (P, less,Q) € trust, i.e. P considers Q’s data more
reliable than its own. If (I) is satisfied by the combination of the data in P and Q, then
the current global instance constitutes P’s solution. Otherwise, alternative solutions for
P have to be found, keeping Q’s data fixed in the process. This is the case, when there
are ground tuples R1(d,m) € r(P), S1(a,m) € r(Q), such that for no ¢ it holds both
Ro(d,t) € r(P) and Sa(a, t) € 7(Q).

Obtaining peer consistent answers for peer P amounts to virtually restoring the
satisfaction of (), by virtually modifying P’s data. In order to specify P’s modified
relations, we introduce virtual versions R}, Rj of Ry, Ro, containing the data in peer
P’s solutions. In consequence, at the solution level, we have the relations R}, R}, S1, S.
Since P is querying its database, its original queries will be expressed in terms of relations

|, RS only (plus, possibly, built-ins).

The contents of the virtual relations R}, R/, are obtained from the material sources
Ry, R5, 51, SQE Since S7, S are fixed, the satisfaction of (Il) requires R to be a subset
of Ry, and R}, a superset of Ry. The specification of these relations is done in extended
disjunctive logic programs with answer set (stable model) semantics [[13l]. The first rules
for the specification program I/ are:

Rll(xay) — Rl(xay)v not _'Rll(x7y) Ré(xvy) — R2($7y), not _'RIQ(xay)v (2)

2 We can observe that the virtual relations can be seen as virtual global relations in a virtual data
integration system [18,20].

Query Answering in P2P Data Exchange Systems 481

which specify that, by default, the tuples in the source relations are copied into the new
virtual versions, but with the exception of those that may have to be removed in order to
satisfy (1) (with Ry, Ry replaced by R, R5). Some of the exceptions for R} are specified
by

=R (z,y) < Ri(z,y),S1(2,y), not auzy(z,2), not auws(z). 3)

aury (v, z) « Ra(z,w), S2(2,w). auzz(z) « S2(z,w). 4

That is, Ry (z,y) is deleted if it participates in a violation of (I}) (what is captured by
the first three literals in the body of (3) plus the first rule in (), and there is no way to
restore consistency by inserting a tuple into 2o, because there is no possible matching
tuple in Sy for the possibly new tuple in Ry (what is captured by the last literal in the
body of (@) plus the second rule in @)). In case there is such a tuple in So, we either
delete a tuple from R; or insert a tuple into Ro:

~Ri(z,y) V Ry(z,w) < Ri(2,y), S1(z,y), not auz:(z, 2), S2(2, w),
choice((z, z), w). Q)]

That is, in case of a violation of (), when there is tuple of the form (a, t) in S for
the combination of values (d, a), then the choice operator [14] non deterministically
chooses a unique value for ¢, so that the tuple (d, t) is inserted into Rs as an alternative
to deleting (d, m) from R;. The choice predicate can be replaced by a standard predicate
plus extra rules that choose a unique value for ¢ [14]]. No exceptions are specified for R%,
which makes sense since R} is a superset of Ry. Then, the negative literal in the body
of (@) can be eliminated. However, new tuples can be inserted into R}, what is captured
by rule (3). Finally, the program must contain as facts the tuples in the original relations
Rl, RQ, Sl, 52.

If P equally trusts itself and Q, both P and Qs’ relations are flexible when searching for
a solution. The program becomes more involved, because now S7, S2 may also change;
and virtual versions for them must be specified. a

This example shows the main issues in the specification of a peer’s solutions under
referential DECs. The program with choice operator can be translated into one with
standard answer set (or stable model) semantics [14]; and the solutions are in one to
one correspondence with the answer sets of the program. Actually, each answer set .S
corresponds to a solution (.S) for peer P which coincides with the original, material,
global instance on the tables other than R;, Ro, whereas for the latter the contents are of
the form {¢ | R}() € S},7 = 1, 2, resp. The absence of solutions for a peer is captured
through the non existence of answer sets for program /7.

Since program II represents in a compact form all the solutions for a peer, the peer
consistent answers from a peer can be obtained by running a query program expressed in
terms of the virtually repaired tables, in combination with the specification program I7.
For this the combined program is run under the skeptical answer set semantics, for which
a system like DLV [[19] can be used. For example, the query Xz, z) : Jy(R1(z,y) A
Ro(z,y)) issued to peer P, would be peer consistently answered by running the query
program Ansq(z, z) — Ri(z,y), R5(z,y) together with program IT. Although only
(the new versions of) P’s relations appear in the query, the program may make P import
Q’s data.

482 L. Bertossi and L. Bravo

In the presence of referential DECs, the choice operator may have to choose values
from the infinite underlying domain, but outside the active domains. There are several
options, some of them already considered for CQA: (a) Live with an open infinite domain;
(b) Assign null values without propagation through DECs [2]; (c) Consider an appropriate
finite and closed proper superset of the active domains [6]]; (d) Introduce fresh constants
whenever needed from a separate domain [8]. We do not commit to any of these options
here, but this choice and the class of referential ECs (e.g. presence cycles) may determine,
e.g. decidability of peer consistent answering [7-9, 16].

If a peer P has local ICs IC(P) to be satisfied, also at query time, then the program
that specifies its solutions should take care of its ICs. A simple but radical way of doing
this consists in using program denial constraints. If in Section [3] we had for peer P
the local functional dependency (FD) VaVyVz(R:(x,y) A Ri(z,2) — y = z), then
program would include the program constraint < R;(z,y), R1(z,2),y # 2, having
the effect of pruning those solutions that do not satisfy the FD. However, a more flexible
-or “robust” [L1]- alternative for keeping the local ICs satisfied, consists in having the
specification program split in two layers, where the first one builds the solutions, without
considering the local ICs, and the second one, repairs the solutions wrt the local ICs, as
done with single inconsistent relational databases [2]]. A more uniform approach consists
in identifying IC(P) with X(P, P) and considering (P, same, P) € trust.

Finally, we should notice that obtaining peer consistent answers has at least the data
complexity of consistent query answering, for which some results are known [7,9L[12].
In the latter case, for common database queries and ICs, IT4 -completeness is easily
achieved. On the other side, the problem of skeptical query evaluation from the disjunc-
tive programs we are using for P2P systems is also /714’ -complete in data complexity
[LQ]. In this sense, the logic programs are not contributing with additional complexity
to our problem.

4 A LAV Approach

There are some clear connections between P2P query answering and virtual integration
of data sources by means of mediator based systems [16}21]. There are basically two
approaches to the latter problem. According to global-as-view (GAV), each virtual table
at the mediator (global) level is expressed as a view of the collection of relations in the
data sources. According to local-as-view (LAV), relations in the (local) data sources as
expressed as views of the virtual global relations. GAV is more natural and simpler for
query evaluation than LAV, but LAV is simpler to deal with when sources leave and
enter the integration system. GLAV is a mixture of the two approaches (see [18]] for a
survey).

The logic programming-based approach proposed in Section [3] can be assimilated
to the GAV approach, because tables in the solutions are specified as views over peer’s
schemas. However, a LAV approach could also be attempted, and we also introduce
virtual, global versions S7, S5 of Sp,Sa. The source relations Ry, Ra, 51,5 are de-
fined as views of the virtual relations in a solution, namely by R;(z,y) < Ri(z,y).,
Ro(z,y) «— Ry(z,y)., S1(z,y) «— Si(x,y)., Se(z,y) «— Sh(x,y).; and are declared
closed, open, clopen and clopen, resp. [[13]. These labels depend on the IC (1)) and the

Query Answering in P2P Data Exchange Systems 483

trust relationships; actually by the fact that Ry, Ry can change, but not .S;, S>. More
precisely, the closure of R; corresponds to the fact that (I) can be satisfied by deleting
tuples from R, then the contents of the view defined in there must be contained in the
original material source relation. The openness of R indicates that we can insert tuples
into Ry to satisfy the constraint, and then, the extension of the solution contains the
original source. Since, S7, S2 do not change, they are declared as both closed and open,
i.e. clopen.

If a query is posed to peer P, it has to be first formulated in terms of R}, R}, and then
it can be peer consistently answered by querying the integration system subject to the
global IC: Vayz3w(R)(z,y) AS1(z,y) — R4(x,w) A Sh(z,w)). A methodology that
is similar to the one applied for consistently querying virtual data integration systems
under LAV can be used. In [5] methodologies for open sources are presented, and in
[13] the mixed case with both open, closed and clopen sources is treated. However, there
are differences with the P2P scenario; and the methodologies need to be adjusted as
discussed below.

The methodology presented in [3] for CQA in virtual data integration is based on a
three-layered answer set programming specification of the repairs of the system: a first
layer specifies the contents of the global relations in the minimal legal instances (to this
layer only open and clopen sources contribute), a second layer consisting of program
denial constraints that prunes the models that violate the closure condition for the closed
sources; and a third layer specifying the minimal repairs of the legal instances [S]] left by
the other layers wrt the global ICs. For CQA, repairs are allowed to violate the original
labels.

In our P2P scenario, we want, first of all, to consider only the legal instances that
satisfy the mapping in the table and that, in the case of closed sources, include the
maximum amount of tuples from the sources (the virtual relations must be kept as
close as possible to their original, material versions). For the kind of mappings that
we have in the table, this can be achieved by using exactly the same kind of spec-
ifications presented in in [3] for the mixed case, but considering the closed sources
as clopen. In doing so, they will contribute to the program with both rules that im-
port their contents into the system (maximizing the set of tuples in the global rela-
tion) and denial program constraints. Now, the trust relation also makes a difference.
In order for the virtual relations to satisfy the original labels, that in their turn cap-
ture the trust relationships, the rules that repair the chosen legal instances will consider
only tuple deletions (insertions) for the virtual global relations corresponding to the
closed (resp. open) sources. For clopen sources the rules can neither add nor delete
tuplesﬁ This methodology can handle universal and simple referential DECs (no cy-
cles and single atom consequents, conditions that are imposed by the repair layer of
the program), which covers a broad class of DECs. The DEC in () does not fall
in thil% class, but the repair layer can be adjusted in order to generate the solutions
for P

3 This preference criterion for a subclass of the repairs is similar to the loosely-sound semantic
for integration of open sources under GAV [17].
* For the specification, c.f. the appendix in http://arxiv.org/abs/cs.DB/0401015

484 L. Bertossi and L. Bravo

5 The Transitive Case

It is natural to consider transitive DECs when a peer A, that is being queried, gets data
from a peer B, who in its turn -and without A possibly knowing- gets data from a peer
C to answer A’s request. Most likely there is no explicit DEC from A to C; and we do
not want to derive them. In order to approach peer consistent query answering in this
more complex scenario, it becomes necessary to integrate the local solutions, what can
be achieved by integrating the “local” specification programs. In this case, we prefer to
define the global solutions directly from the the stable models of the combined program
obtained from the specification of direct interactions. This is more natural and simpler
than extending to the global case the definition of solution for the direct case[Of course,
there might be no solutions, what is reflected in the absence of stable models for the
program. A problematic case appears when there are implicit cyclic dependencies [16].
Example 5. (exampledlcontinued) Let us consider another peer C with arelation U (-, -).
The following exchange constraint X'(Q,C) : VaVy(U(z,y) — Si(x,y)) exists from
Q to C and (Q,less,C) € trust, meaning that Q trusts C’s data more than its own.
When P requests data from Q, the latter will request data from C’s relation U. Now,
consider the peer instances: 71 = {(a,b)},s1 = {}, 72 = {}, s2 = {(¢,e), (¢, f)}
and u = {(c¢,b)}. If we analyze each peer locally, the solution for Q would contain
the tuple S1(c,b) added; and P would have only one solution, corresponding to the
original instances, because the DEC is satisfied without making any changes. When
considering them globally, the tuple that is locally added into Q requires tuples to be
added and/or deleted into/from P in order to satisfy the DEC. The combined program
that specifies the global solutions consists of rules (), (@) plus both (@) and (3)), but with
S1 replaced by S in the body. Finally, we add Si(z,y) < Si(z,y), not =S1(z,y),
which is a persistence rule for Sy; and S{(z,y) < U(z,y), not Si(x,y), which en-
forces the satisfaction of X'(Q, C). The solutions obtained from the stable models are:
= {52(67 6)7 SQ(Cv f)7 U(C’ b)v Si((}, b)v Rl2<av f)7 Rll(av b)}’TH = {SQ(C’ 6), 52(67 f)’
U(e,b),Si(e,b)}, """ = {Sa(c,e),Sa(c, f),U(¢,b),S1(c,b), Ry(a,e), Ry (a,b)}. O

Acknowledgements. Research funded by NSERC Grant 250279-02 and a grant from
the CITO/IBM-CAS Student Internship Program. L. Bertossi is Faculty Fellow of the
IBM Center for Advanced Studies, Toronto Lab. We appreciate conversations with Ariel
Fuxman and Pablo Barcelo.

References

1. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent Databases.
In Proc. ACM Symposium on Principles of Database Systems (PODS 99), ACM Press, 1999,
pp. 68-79.

2. P. Barcelo, L. Bertossi, and L. Bravo. Characterizing and Computing Semantically Correct
Answers from Databases with Annotated Logic and Answer Sets. In Semantics in Databases,
Springer LNCS 2582, 2003, pp. 1-27.

> The approaches to P2P data exchange semantics in [[8[[1] also appeal to this kind of 2-step
process, however in a framework based on epistemic logic.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Query Answering in P2P Data Exchange Systems 485

L. Bertossi and L. Bravo. Consistent Query Answers in Virtual Data Integration Systems.
Book chapter in ‘Inconsistency Tolerance in Knowledge-bases, Databases and Software Spec-
ifications’, Springer, to appear.

. L. Bertossi and J. Chomicki. Query Answering in Inconsistent Databases. In Logics for

Emerging Applications of Databases, J. Chomicki, G. Saake and R. van der Meyden (eds.),
Springer, 2003.

. L. Bravo and L. Bertossi. Logic Programs for Consistently Querying Data Sources In Proc.

International Joint Conference on Artificial Intelligence (IJCAI 03), Morgan Kaufmann, 2003,
pp. 10-15.

. L. Bravo and L. Bertossi. Disjunctive Deductive Databases for Computing Certain and

Consistent Answers to Queries from Mediated Data Integration Systems To appear in Journal
of Applied Logic.

. A. Cali, D. Lembo, and R. Rosati. On the Decidability and Complexity of Query Answering

over Inconsistent and Incomplete Databases. In Proc. ACM Symposium on Principles of
Database Systems (PODS 03), ACM Press, 2003, pp. 260-271.

. D. Calvanese, E. Damaggio, G. De Giacomo, M. Lenzerini, and R. Rosati. Semantic Data

Integration in P2P Systems. In Proc. International Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P 03), Springer LNCS 2944, 2004.

. J. Chomicki and J. Marcinkowski. Minimal-Change Referential Integrity Maintenance Using

Tuple Deletions. arXiv.org paper cs.DB/0212004. To appear in Information and Computation.
E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity And Expressive Power Of
Logic Programming. ACM Computer Surveys, 2001, 33(3), 374-425.

E. Franconi, G. Kuper, L. Lopatenko, L. Serafini. A Robust Logical and Computational
Characterisation of Peer-to-Peer Database Systems. In Proc. International Workshop on
Databases, Information Systems and Peer-to-Peer Computing (DBISP2P 03), Springer LNCS
2944, 2004.

A. Fuxman and R.J. Miller. Towards Inconsistency Management in Data Integration Systems.
In Proc. IJCAI-03 Workshop on Information Integration on the Web.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing, 1991, 9:365-385.

F. Giannotti, D. Pedreschi, D. Sacca, C. Zaniolo. Non-Determinism in Deductive Databases.
In Proc. International Conference on Deductive and Object-Oriented Databases (DOOD 91),
Springer LNCS 566, 1991, pp. 129-146.

G. Grahne and A. Mendelzon. Tableau Techniques for Querying Information Sources through
Global Schemas. In Proc. International Conference on Database Theory (ICDT 99), Springer
LNCS 1540, 1999, pp. 332-347.

A.Y. Halevy, Z.G. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer Data Manage-
ment Systems. In Proceedings International Conference on Data Engineering (ICDE 03),
2003, pp. 505-518.

D. Lembo, M. Lenzerini, and R. Rosati. Source Inconsistency and Incompleteness in Data
Integration. In Proc. Knowledge Representation meets Databases (KRDB 02), 2002.

M. Lenzerini. Data Integration: A Theoretical Perspective. In Proc. ACM Symposium on
Principles of Database Systems (PODS 02), ACM Press, 2002, pp. 233-246.

N. Leone et al. The DLV System for Konwledge Representation and Reasoning. arXiv.org
paper ¢s.L0O/0211004. To appear in ACM Transactions on Computational Logic.

A. Levy. Logic-Based Techniques in Data Integration. In Logic Based Artificial Intelligence,
J. Minker (ed.), Kluwer, 2000, pp. 575-595.

L. Tatarinov et al. The Piazza Peer Data Management Project. ACM SIGMOD Record, 2003,
32(3):47-52.

	Introduction
	A Framework for P2P Data Exchange
	Referential Data Exchange Constraints
	A LAV Approach
	The Transitive Case

