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Abstract. Inconsistency arises in many areas in advanced computing.
Examples include: Merging information from heterogeneous sources; Ne-
gotiation in multi-agent systems; Understanding natural language dia-
logues; and Commonsense reasoning in robotics. Often inconsistency is
unwanted, for example, in the specification for a plan, or in sensor fusion
in robotics. But sometimes inconsistency is useful, e.g. when lawyers look
for inconsistencies in an opposition case, or in a brainstorming session
in research collaboration. Whether inconsistency is unwanted or useful,
there is a need to develop tolerance to inconsistency in application tech-
nologies such as databases, knowledgebases, and software systems. To
address this, inconsistency tolerance is being built on foundational tech-
nologies for identifying and analysing inconsistency in information, for
representing and reasoning with inconsistent information, for resolving
inconsistent information, and for merging inconsistent information. In
this introductory chapter, we consider the need and role for inconsis-
tency tolerance, and briefly review some of the foundational technologies
for inconsistency tolerance.

1 The Need for Inconsistency Tolerance

Traditionally the consensus of opinion in the computer science community is
that inconsistency is undesirable. Many believe that databases, knowledgebases,
and software specifications, should be completely free of inconsistency, and try
to eradicate inconsistency from them immediately by any means possible. Others
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address inconsistency by isolating it, and perhaps resolving it locally. All seem
to agree, however, that data of the form q and ¬q, for any proposition q cannot
exist together, and that the conflict must be resolved somehow.

This view is too simplistic for developing robust software or intelligent sys-
tems, and furthermore, fails to use the benefits of inconsistent information in
intelligent activities, or to acknowledge the fact that living with inconsistency
seems to be unavoidable. Inconsistency in information is the norm in the real-
world, and so should be formalized and used, rather than always rejected.

There are cases where q and ¬q can be perfectly acceptable together and
hence need not be resolved. Consider for example an income tax database where
contradictory information on a taxpayer can be useful evidence in a fraud inves-
tigation. Maybe the taxpayer has completed one form that states the taxpayer
has 6 children (hence the tax benefits for that) and completed another that
states the taxpayer has 0 children. Here, this contradictory information needs
to be kept and reasoned with. A similar example is in law courts where lawyers
on opposing sides (for prosecution and defence) will seek contradictions in the
opposition. Moreover, they will try to direct questions and to use evidence to
engineer the construction of contradictions.

In other cases, q and ¬q serve as a useful trigger for various logical actions.
Inconsistency is useful in directing reasoning, and instigating the natural pro-
cesses of argumentation, information seeking, multi-agent interaction, knowledge
acquisition and refinement, adaptation, and learning.

In a sense, inconsistency can be seen as perfectly acceptable in a system, or
even desirable in a system, as long as the system has appropriate mechanisms
for acting on the inconsistencies arising [27]. Of course, there are inconsistencies
that do need to be resolved. But, the decision to resolve, and the approach to
resolution, need to be context-sensitive. There is also the question of when to
resolve inconsistencies. Immediate resolution of inconsistencies can result in the
loss of valuable information if an arbitrary choice is made on what to reject.
Consider for example the requirements capture stage in software engineering.
Here premature resolution can force an arbitary decision to be made without
the choice being properly considered. This can therefore overly constrain the
requirements capture process.

The call for robust, and intelligent, systems, has led to an increased interest in
inconsistency tolerance in computer science. However, introducing inconsistency
tolerance is a difficult and challenging aim. In the next section, we consider some
of the problems, at the level of formal logic, arising from inconsistency. Then, in
the subsequent section, we review a range of foundational technologies for use
in developing inconsistency tolerance.

2 Problems Arising from Inconsistency

Classical mathematical logic is very appealing for knowledge representation and
reasoning: The representation is rich and the reasoning powerful. Furthermore,
classical reasoning is intuitive and natural. The appeal of classical logic however,
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extends beyond the naturalness of representation and reasoning. It has some very
important and useful properties which mean that it is well-understood and well-
behaved, and that it is amenable to automated reasoning.

Much of computer science is based on classical logic. Consider for exam-
ple hardware logic, software specifications, SQL databases, and knowledgebase
systems. Classical logic is therefore a natural starting point for considering in-
consistency tolerance. Inconsistency is very much a logical concept, and so we
should consider the effect of inconsistency on classical logic.

Unfortunately, inconsistency causes problems in reasoning with classical logic.
In classical logic, anything can follow from an inconsistent set of assumptions.
Let ∆ be a set of assumptions, let � be the classical consequence relation, and
let α be a formula, then ∆ � α denotes that α is an inference from ∆ using
classical logic. A useful definition of inconsistency for a set of assumptions ∆ is
that if ∆ � α and ∆ � ¬α then ∆ is inconsistent. A property of classical logic is
that if ∆ is inconsistent, then for any β in the language, ∆ � β. This property
results from the following proof rule, called ex falso quodlibet, being a valid proof
rule of classical logic.

α ¬α

β

So inconsistency causes classical logic to collapse. No useful inferences follow
from an inconsistent set of assumptions. It can be described as exploding, or
trivialised, in the sense that all formulae of the language are consequences of
inconsistent set of assumptions.

Since much of computer science is based on classical logic, the collapse of
it in the face of inconsistency is a profound problem. We need to define the
mechanisms for handling information in terms of a logic. So if classical logic is
not appropriate for inconsistent information, we need to look elsewhere for a
logic for inconsistency tolerance, or we need to consider mechanisms on top of
classical logic to manage the information.

Even if we adopt a logic that does not collapse, i.e. ex falso quodlibet does
not hold, we still need ways to handle the conflicting information. If we have a
database that contains both α and ¬α, we may need to answer the query “is α
true?”. An obvious strategy is that we only answer queries after we have cleaned
the data by removing information to restore consistency. Another strategy is to
take credulous approach to answering queries and so answer positively if the
fact is in the database irrespective of the existence of its complement: In this
case the answer would be “yes”. A third strategy is to take a skeptical approach
to answering queries and so answer positively if the fact is in the database
and its complement is not: In this case the answer would be “no”. A fourth
strategy is a qualified credulous approach which refines the credulous inference
with information about the existence of its complement.

The strategy of restoring consistency is not necessarily simple. For a set of
formulae ∆, one option is to remove the union of the minimally inconsistent
subsets to fix the inconsistency. Consider the set of beliefs.

∆ = {α, α → β, β → γ, δ → ¬β, δ}
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There is only one minimally inconsistent subset of ∆:

{α, α → β, δ → ¬β, δ}.

To revise ∆, we can subtract the minimally inconsistent subset, and use
the remainder as the revised knowledgebase. This is the same as taking the
intersection of the maximally consistent subsets as the revised knowledgebase.
So the revised knowledgebase is {β → γ}. From this example, we see that the
subtraction of the minimally inconsistent subset from the knowledgebase is quite
drastic. An alternative is just to remove the smallest number of assumptions in
order to restore consistency. Given ∆, we only need to remove one formula to
restore consistency. There are four possible clauses we could choose for this:

α
α → β
δ → ¬β

δ

So this gives us four choices for a revised set of assumptions. Each of these
choices is a maximally consistent subset.

∆1 = {α, β → γ, δ → ¬β, δ}
∆2 = {α, α → β, β → γ, δ}

∆3 = {α, α → β, β → γ, δ → ¬β}
∆4 = {α → β, β → γ, δ → ¬β, δ}

Clearly, such a revision is much more modest. But then we see we have a
choice to make which may call for further knowledge and/or further strategies.

The conclusion we can draw from the discussions and examples in this section
is that whilst classical logic is very useful in computer science, it needs to be
adapted for use with inconsistent information, and that adapting it can involve
some difficult issues. This has been the subject of much research, some of which
we touch upon in the next section.

3 Foundational Technologies for Inconsistency Tolerance

Inconsistency tolerance is being built on foundational technologies for identifying
and analysing inconsistency in information, for representing and reasoning with
inconsistent information, for resolving inconsistent information, and for merging
inconsistent information.

The central position is that the collapse of classical logic in cases of inconsis-
tency should be circumvented. In other words, we need to suspend the principle
of absurdity (ex falso quodlibet) for many kinds of reasoning. A number of useful
proposals have been made in the field of paraconsistent logics.

In addition, we need strategies for analysing inconsistent information. This
need has in part driven the approach of argumentation systems which compare
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pros and cons for potential conclusions from conflicting information. Also impor-
tant are strategies for isolating inconsistency and for taking appropriate actions,
including resolution actions. This calls for uncertainty reasoning and meta-level
reasoning. Furthermore, the cognitive activities involved in reasoning with in-
consistent information need to be directly related to the kind of inconsistency.
So, in general, we see the need for inconsistency tolerance giving rise to a range
of technologies for inconsistency management.

3.1 Consistency Checking

In order to manage inconsistency in knowledge, we need to undertake consis-
tency checking. However, consistency checking is inherently intractable in the
propositional case. To address this problem of the intractability, we can consider
using (A) tractable subsets of classical logic (for example binary disjunctions
of literals [30]), (B) heuristics to direct the search for a model (for example in
semantic tableau [56], GSAT [67], and constraint satisfaction [22]), (C) some
form of knowledge compilation (for example [53, 19]), and (D) formalization of
approximate consistency checking based on notions described below, such as
approximate entailment [49, 66], and partial and probable consistency.

Heuristic approaches, which have received a lot of attention in automated
reasoning technologies and in addressing constraint satisfaction problems, can
be either complete such as semantic tableau or Davis-Puttnam procedure [20] or
incomplete such as in the GSAT system [68]. Whilst in general, using heuristics
to direct search has the same worst-case computational properties as undirected
search, it can offer better performance in practice for some classes of theories.
Note, heuristic approaches do not tend to be oriented to offering any analysis of
theories beyond a decision on consistency.

In approximate entailment, classical entailment is approximated by two se-
quences of entailment relations. The first is sound but not complete, and the
second is complete but not sound. Both sequences converge to classical entail-
ment. For a set of propositional formulae ∆, a formula α, and an approximate
entailment relation |=i, the decision of whether ∆ |=i α holds or ∆ �|=i α holds
can be computed in polynomial time.

Partial consistency takes a different approach to approximation. Furthermore,
consistency checking for a set of formulae ∆ can be prematurely terminated when
the search space exceeds some threshold. When the checking of ∆ is prematurely
terminated, partial consistency is the degree to which ∆ is consistent. This can
be measured in a number of ways including the proportion of formulae from
∆ that can be shown to form a consistent subset of ∆. Maximum generalized
satisfiability [57] may be viewed as an example of this.

Yet another approach is probable consistency checking [40]. Determining the
probability that a set of formulae is consistent on the basis of polynomial time
classifications of those formulae. Classifications for the propositional case can be
based on tests including counting the number of different propositional letters,
counting the multiple occurrences of each propositional letter, and determining
the degree of nesting for each logical symbol. The more a set of formulae is
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tested, the greater the confidence in the probability value for consistency, but
this is at the cost of undertaking the tests.

Identifying approximate consistency for a set of formulae ∆ is obviously not
a guarantee that ∆ is consistent. However, approximate consistency checking is
useful because it helps to focus where problems possibly lie in ∆, and to prioritize
resolution tasks. For example, if ∆ and Γ are two parts of a larger knowledgebase
that is thought to be inconsistent, and the probability of consistency is much
greater for ∆ than Γ , then Γ is more likely to be problematical and so should
be examined more closely. Similarly, if ∆ and Γ are two parts of a larger knowl-
edgebase that is thought to be inconsistent, and a partial consistency identified
for ∆ is greater than for Γ , then Γ seems to contain more problematical data
and so should be examined more closely by the user.

In databases, inconsistency is a notion relative to the satisfaction of a given
set of integrity constraints (ICs), which are properties of the admissible database
states. They impose semantic restrictions on the data in order to capture the
correspondence of the data with the outside world that is being modelled by
the database. We say that the database is inconsistent when the ICs, expressed
as logical formulas, are not satisfied by the database, which can be seen as a
first-order structure [64].

From this point of view, checking satisfaction of integrity constraints amounts
to determining is a sentence is true in the given database. This can be easily done
by posing and answering a query to/from the database. Taking into account that
databases evolve as updates on it are executed, it becomes necessary to check
every database state generated in this way. This process can be simplified using
an inductive approach [54]: If the database was consistent before executing a
certain update, then according to the kind of update and the kind of IC, it may
be necessary to check only a formula that is much simpler that the original IC; or
nothing at all if the update is irrelevant to the IC at hand [13]. Most approaches
to consistency handling in database are directed to either detect potential incon-
sistencies, so that a problematic update is rejected before execution, or to accept
the update even if an inconsistency is produced, but then detect or make a di-
agnosis of the data participating in the inconsistency, followed by an additional,
remedial or compensating update that restores or enforces consistency [32, 16].

Clearly each approach to making consistency checking viable involves some
form of compromise, and none is perfect for all applications. We therefore need a
variety of approaches with clearly understood foundations and inter-relationships
with other approaches. Furthermore, different techniques may give us different
perspectives on inconsistencies in a given knowledgebase.

3.2 Paraconsistent Logics

Reasoning with inconsistency involves some compromise on the inferential ma-
chinery of classical logic. There is a range of proposals for logics (called para-
consistent logics) for reasoning with inconsistency. Each of the proposals has
advantages and disadvantages. Selecting an appropriate paraconsistent logic for
an application depends on the requirements of the application.
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Types of paraconsistent logic that are proving to be of use for knowledge rep-
resentation and reasoning in intelligent computing systems include: (1) Weakly-
negative logics which use the full classical language, but a subset of the classical
proof theory [21, 5]; (2) Four-valued logics which use a subset of the classical
language and a subset of the classical proof theory, together with an intuitive
four-valued semantics [6, 63, 4]; (3) Signed systems which involve renaming all
literals in a theory and then restoring some of the original theory by progressively
adding formal equivalences between the original literals and their renamings [10];
and (4) Quasi-classical logic which uses classical proof theory but restricts the
notion of a natural deduction proof by prohibiting the application of elimination
proof rules after the application of introduction proof rules [11, 35, 36].

These options behave in quite different ways with sets of assumptions. None
can be regarded as perfect for handling inconsistent information in general.
Rather, they provide a spectrum of approaches. However, in all the approaches
the aim is to stay close to classical reasoning, since, as we have acknowledged,
classical logic has many appealing features for knowledge representation and
reasoning.

Paraconsistent logics are central to developing tolerance to inconsistency. Key
research frontiers on this subject include: (1) developing a deeper understand-
ing of the relationship of paraconsistency and substructural logics (for more
information see Chapter 9 by John Slaney entitled “Relevant Logic and Para-
consistency”); (2) developing a deeper understanding of the computational com-
plexity of paraconsistent logics (for more information see Chapter 6 by Sylvie
Coste-Marquis and Pierre Marquis entitled “On the Complexity of Paraconsis-
tent Inference Relations”); (3) developing automated reasoning technology for
paraconsistent logics such via quantified Boolean formulae (for more informa-
tion see Chapter 4 by Philippe Besnard, Torsten Schaub, Hans Tompits, and
Stefan Woltran entitled “Representing Paraconsistent Reasoning via Quantified
Boolean Formulae”).

3.3 Argumentation Systems

Argumentation is an important cognitive activity that draws on conflicting
knowledge for decision-making and problem solving. It normally involves identi-
fying relevant assumptions and conclusions for a given problem being analysed.
Furthermore, this often involves identifying conflicts, resulting in the need to
look for pros and cons for particular conclusions. This may also involve chains
of reasoning, where conclusions are used in the assumptions for deriving further
conclusions. In other words, the problem may be decomposed recursively.

Coalition Systems. These are based on identifying sets of arguments that de-
fend each other against counter-arguments by banding together for self-defence.
The seminal proposal that can be described as using coalitions is by Dung [24].
This approach assumes a set of arguments, and a binary “attacks” relation be-
tween pairs of arguments. A hierarchy of arguments is then defined in terms of
the relative attacks “for” and “against” each argument in each subset of the
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arguments. In this way, for example, the plausibility of an argument could be
defended by another argument in its coalition (i.e. its subset).

Coherence Systems. One of the most obvious strategies for handling inconsis-
tency in a knowledgebase is to reason with consistent subsets of the knowledge-
base. This is closely related to the approach of removing information from the
knowledgebase that is causing an inconsistency. In coherence systems, an argu-
ment is based on a consistent subset of a inconsistent set of formulae — the incon-
sistency arises from the conflicting views being represented. Further constraints,
such as minimality or skeptical reasoning, can be imposed on the consistent sub-
set for it to be an allowed argument. This range of further constraints gives us
a variety of approaches to argumentation including [52, 14, 7, 8, 25, 2, 34, 12].

Defeasible Logics. There are a number of proposals for defeasible logics. The
common feature for these logics is the incorporation of a defeasible implication
into the language. Defeasible logics have their origins in philosophy and were
originally developed for reasoning problems similar to those addressed by non-
monotonic logics in artificial intelligence. In [59, 60], Pollock conceptualises the
notions of reasons, prima facie reasons, defeaters, rebutting defeaters, and un-
dercutting defeaters, in terms of formal logic. Arguments can then be defined
as chains of reasons leading to a conclusion with consideration of potential de-
featers at each step. Different types of argument occur depending on the nature
of the reasons and defeaters. This has provided a starting point for a number
of proposals for logic-based argumentation including abstract argument systems
[71], conditional logic [55], and ordered logic [47].

There are many proposals for formalisms for logic-based argumentation. For
general reviews of formalisms for argumentation see [31, 70, 61, 17]. Furthermore,
some of these formalisms are being developed for applications in legal reasoning
[62], in medical reasoning and risk assessment [26], and in agent-based systems
[58]. A review of argumentation systems that relate proposals to potential appli-
cation areas in knowledge engineering, decision-support, multi-agent negotiation,
and software engineering, is given in [15].

3.4 Inconsistency Analysis

Given an inconsistent set of formulae ∆, we may need to know more about the
nature of the inconsistency and the nature of information being offered by ∆. In
some sense, we may desire inconsistency analysis based on notions that can be
measured in ∆.

The seminal work on measuring inconsistency is by Shannon [69]. This work,
based on probability theory, can be used in a logical setting when the worlds are
the possible events. This work is also the basis of Lozinskii’s work [51] for defining
the quantity of information of a formula (or knowledgebase) in propositional
logic. But this definition is not suitable when the knowledgebase is inconsistent.
In this case, it has no classical model, so we have no “event” to count. To address
this, models of maximal consistent subsets of the knowledgebase are considered.
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Another related measure is the measure of contradiction. It is usual in clas-
sical logic to use a binary measure of contradiction: a knowledgebase is either
consistent or inconsistent. This dichotomy is obvious when the only deductive
tool is classical inference, since inconsistent knowledgebases are of no use. But,
as we have identified earlier, there are now a number of paraconsistent logics
developed to draw non-trivial conclusions from an inconsistent knowledgebase.
So this dichotomy is not sufficient to describe the measure of contradiction of a
knowledgebase, one needs more fine-grained measures.

Some interesting proposals have been made for this including: Consistency-
based analyses that focus on the consistent and inconsistent subsets of a knowl-
edgebase [39]; Information theoretic analyses that adapt Shannon’s information
measure [51, 72]; Probabilistic semantic analyses that consider maximal consis-
tent probability distributions over a set of formulae [42, 43]; Epistemic actions
analyses that measure the degree of information in a knowledgebase in terms of
the number of actions required to identify the truth value of each atomic proposi-
tion and the degree of contradiction in a knowledgebase in terms of the number of
actions needed to render the knowledgebase consistent [44]; and Model-theoretic
analyses that are based on evaluating a knowledgebase in terms of three or four
valued models that permit an “inconsistent” truth value [33, 37, 38].

This topic is the basis of Chapter 7 by Anthony Hunter and Sebastien
Konieczny entitled “Approaches to Measuring Inconsistent Information”.

3.5 Belief Revision

Given a knowledgebase ∆, and a revision α, belief revision theory is concerned
with the properties that should hold for a rational notion of updating ∆ with
α. If ∆ ∪ α is inconsistent, then belief revision theory assumes the requirement
that the knowledge should be revised so that the result is consistent.

The AGM axioms, by Alchurron, Gardenfors and Makinson [1, 29], are pos-
tulates to delineate the behaviour of revision functions for belief sets (consider
this as the set of all inferences obtained from a set of formulae). In the revision
operation, as little of the belief set is changed as possible in order to include
some new information. This requirement to change as little as possible precludes
the change from a consistent set to an inconsistent set. In other words, some
beliefs will be removed in order to maintain consistency.

The postulates appear as rational and intuitive properties that would be
highly desirable. However, delivering efficient and effective systems that meet the
postulates has proved to be challenging. There have been many developments of
belief revision theory including iterated belief revision [18, 48], and relating belief
revision to database updating [41]. These also offer intuitive abstract constraints
for revision/updating. For a review of belief revision theory see [23].

There are some more concrete proposals for knowledgebase merging that ad-
here to belief revision postulates. In Konieczny and Pino Perez [45], there is a
proposal for merging beliefs based on semantically characterizing interpretations
which are “closest” to some sets of interpretations. But the approach does not
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exploit any meta-level information such as preferences. The approach has been
generalized by considering merging with respect to integrity constraints [46].

Another approach that extends belief revision theory, called arbitration op-
erators, is by Liberatore and Schaerf [50]. This is a form of merging restricted to
merging only two knowledgebases and it forces the result to be the disjunction
of the two original knowledgebases.

Proposals for belief revision that incorporate priorities include ordered theory
presentations [65] and prioritized revision [28]. In ordered theory presentations,
if a formula is less preferred than another which contradicts it, those aspects
of it which are not contradicted are preserved. This is done by adopting an in-
ferentially weaker formula to avoid the contradiction with the more preferred
formula. This merging can be undertaken in an arbitrarily large partially order-
ing of formulae. In prioritized revision, a belief revision operator is defined in
terms of selecting the model that satisfies the new belief and is nearest to the
existing beliefs. The measure of nearness can be used in iterated belief revision
where the more preferred items are used in later revisions.

Similar in spirit to belief revision is the recent work on consistent query an-
swering in databases [3, 9]. The idea, as opposed to traditional approaches to
inconsistency handling, is to live with an inconsistent database, but obtaining
only consistent information (with respect to given integrity constraints) when
queries are answered. That consistent information is the one that is invariant or
persists under all possible minimal ways of restoring consistency of the database.
There may be several alternative minimal repairs for a database, in consequence
what is consistently true in a database instance is what is true in a collection of
other instances that are the minimally repaired version of the original one. This
approach shares many similarities with the problem of updating a database seen
as a logical theory (or a model) by means of a set of sentences (the integrity con-
straints). In this case, the data is flexible, subject to repair, but the integrity con-
straints are hard, not to be given up. So, what is consistently true is what is true
wrt to the revised database. A more precise comparison can be found in [3, 9].

4 Towards Viable Technologies

We are now at an exciting stage in the development of inconsistency tolerance.
Rich foundations are being established, and a number of interesting and comple-
mentary application areas are being explored in decision-support, multi-agent
systems, database systems, and software engineering.

Key frontiers in developing viable applications technologies include: Inte-
grating data from heterogeneous databases (for more information see Chapter 3
by Leo Bertossi and Loreto Bravo entitled ”Consistent Query Answers in Vir-
tual Data Integration Systems”); Computational complexity issues in integrity
maintenance (for more information see Chapter 5 by Jan Chomicki and Jerzy
Marcinkowski entitled ”On the Computational Complexity of Minimal-Change
Integrity Maintenance in Relational Databases”; Representing and reasoning
with spatial data (for more information see Chapter 8 by Andrea Rodriguez
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entitled ”Inconsistency Issues in Spatial Databases”; and Computational com-
plexity issues in handling XML specifications (for more information see Chapter
2 by Marcelo Arenas, Leonid Libkin and Wenfei Fan entitled ”Consistency of
XML specifications”).

5 Conclusions

In this introduction, we have highlighted the need for inconsistency tolerance
in order to create more robust and more intelligent computing systems. Incon-
sistency tolerance is being built on foundational technologies of identifying and
analysing inconsistency in information, for representing and reasoning with in-
consistent information, for resolving inconsistent information, and for merging
inconsistent information. Inconsistency tolerance is now being developed for a
range of applications in database, knowledgebase and software systems.
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