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ABSTRACT
Summarizability in a multidimensional (MD) database refers
to the correct reusability of pre-computed aggregate queries
(or views) when computing higher-level aggregations or roll-
ups. A dimension instance has this property if and only if
it is strict and homogeneous. A dimension instance may fail
to satisfy either of these two semantics conditions, and has
to be repaired, restoring strictness and homogeneity. In this
work, we take a relational approach to the problem of repair-
ing dimension instances. A dimension repair is obtained by
translating the dimension instance into a relational instance,
repairing the latter using established techniques in the re-
lational framework, and properly inverting the process. We
show that the common relational star and snowflake schemas
for MD databases are not the best choice for this process.
Actually, for this purpose, we propose and formalize the path
relational schema, which becomes the basis for obtaining di-
mensional repairs. The path schema turns out to have useful
properties in general, as a basis for a relational representa-
tion and implementation of MD databases and data ware-
houses. It is also particularly suitable for restoring MD sum-
marizability through relational repairs. We compare the di-
mension repairs so obtained with existing repair approaches
for MD databases.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data
Models, Schema and subsechema; H.2.7 [Database Man-
agement]: Database Administration—Data warehouse and
repository, Security, integrity, and protection

General Terms
Design, Theory, Experimentation

Keywords
Multidimensional DBs, Semantic constraints, Repairs

∗Research supported by NSERC Strategic Network on Busi-
ness Intelligence (BIN,ADC02), and NSERC Discovery.
†Contact author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
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1. INTRODUCTION
Multidimensional (MD) databases (MDDBs) [23] repre-

sent data at a high level of abstraction, using multiple di-
mensions to give sense and context to usually quantitative
data, the so-called facts in data warehouses (DWHs).

Example 1. [9] We have data for a phone company about
the cell phones usage depending on time and location. The
Location dimension represents the hierarchy of the wireless
network spots. Each cell phone number has an area code
(41 or 45), and belongs to a city (TCH (Talcahuano), TEM
(Temuco), or CCP (Concepcion)). Area codes and cities be-
long to a region (VIII or IX). Figure 1(a) shows the schema
for the Location dimension, with categories Number, Area
Code, etc.; and Figure 1(b) an instance of that schema.

Figure 1: (a) Location schema. (b) Location instance.

Region is a parent for categories Area Code and City; and an
ancestor of category Number. Element N2 of category Number
has element IX as an ancestor in category Region. Figure 2
shows data for network usage, linked to Number category. 2

Figure 2: Cell phone traffic facts database.

In MDDBs, it should be possible to use results for an ag-
gregate query at a lower levels of the category hierarchy to
(correctly) calculate aggregations at higher levels of the same
hierarchy. A dimension instance with this property is called
summarizable, a notion introduced in [29] in the context of
statistical databases. A non-summarizable MDDB will re-
turn incorrect query results when using pre-computed views,



or will force users to compute aggregate query answers and
views from scratch, losing efficiency [23, 27].
For a dimension to be summarizable, first it must be strict,

meaning that each element in a category has at most one
parent element in each upper category [23, 27, 29]. Secondly,
it has to be homogeneous, i.e. each element in a category
has at least one parent element in each parent category [23,
29]. We usually and informally refer to the combination of
these two conditions as the summarizability conditions.
In Example 1, strictness is violated, because N3 has two

grandparents in the Region category (IX and VIII). More-
over, the Location dimension is non-homogeneous, i.e. het-
erogenous: element 41 has no parent in category Region.
For design reasons, a dimension instance may become

non-summarizable [23]; also after dimension updates. Non-
strictness and heterogeneity are common in MDDBs (and
DWHs). Such MDDBs are said to be inconsistent. In such
a case, one can try to restore the properties of strictness and
homogeneity, through a repair process [2].
Repairs of relational databases that violate integrity con-

straints (ICs) have been investigated in the literature (cf. [7,
8] for surveys) . Intuitively, a repair of a relational instance
D that does not satisfy a given set IC of ICs is an instance
D′ for the same schema, that does satisfy IC and minimally
departs from D. Much work has been done in the area of
relational repairs and consistent query answering [2].
A few recent approaches to repairing MDDBs have been

formally proposed. Non-summarizability is resolved by chang-
ing either the dimension instance or the dimension schema.
Instance-based repairs have been introduced and studied in
[9, 11, 14, 16] (cf. also [28]). Schema-based repairs have been
proposed in [21, 22], and formally defined and investigated
in [5]. None of these proposals assume a relational represen-
tation of MDDBs or appeal to specific implementations of
MDDBs. They work directly with the MD model.
It is common that MDDBs are implemented as relational

databases (ROLAP), which facilitates optimized query an-
swering and data storage [24, 30]. This is one reason why,
in this work, we address non-summarizability, as caused by
heterogeneity or non-strictness, through a relational repre-
sentation of MDDBs. This choice also allows us to investi-
gate the applicability of notions and mechanisms developed
for relational repairs when dealing with inconsistent MD-
DBs, leveraging an existing rich body of research. We re-
store summarizability by repairing the underlying relational
database.
To achieve this goal and propose a sensible characteriza-

tion of MD repairs, we have to start by representing an ini-
tial, possibly inconsistent MDDB as a relational database,
through an MD2R mapping. This mapping translates the
multidimensional data model (MDM) into an adequate rela-
tional model. The latter includes a relational schema that
allows for the adequate representation of the MDDB con-
ditions of strictness and homogeneity as relational integrity
constraints (ICs). The translation is such, that the original
MDDB is inconsistent iff the resulting relational database is
inconsistent wrt the created ICs.
The resulting inconsistent relational instance is repaired

as a relational database, applying existing concepts and tech-
niques. As a result, we obtain a set of minimal relational
repairs. Finally, those repairs are translated back into MD
repairs. As expected, the feasibility of this approach de-
pends on the invertibility of the MD2R mapping [4, 6].

Figure 3: Path instance with tables RPLoc
1 , resp., RPLoc

2 , for
left, resp. right paths in Location dimension schema.

For this whole program to work, we need to identify an ex-
pressive relational representation for MDDBs that enables
the efficient verification of summarizability conditions through
an associated set of ICs. Moreover, there should be no in-
formation loss under the mapping and its inversion.

For motivation and comparison, we first show that the two
well-known relational representations of MDDBs, Star and
Snowflake, are not appropriate for our purpose. Next, we de-
fine a new, alternative relational representation of MDDBs,
based on what we call the path relational schema.

Example 2. (example 1 continued) Figure 3 shows the
Location dimension represented through the path schema.
Each relational table represents a path from the bottom-
most category to the top-most category in the dimension
schema. The hierarchy in Figure 1(a) contains two category
paths, which leads to two tables. Each path goes through
several data elements in the dimension instance. The se-
quence of elements on a path creates a tuple for the table.
Ac denotes the attribute corresponding to category c. 2

Via the relational path schema we can express and efficiently
check the strictness and homogeneity conditions through re-
lational ICs. The MD2R mapping turns out to be uniquely
invertible. Our results show the adequacy of our approach
to MD inconsistency handling via repairs of the associated
path relational instances. Notice that our MD repairs are
instance-based, as opposed to schema-oriented: The orig-
inal MD schema is not changed. Only the MD instance is
changed via its transformation into a relational instance and
subsequent repairs.

We obtain a class of MD repairs that differs from the class
of MD (also instance-oriented) repairs proposed in [11, 16]
([9, 14] deal only with non-strictness, assuming homogene-
ity). This discrepancy is due to the kind of minimality of
repairs that we impose on the relational side.

The relational repairs that we obtain can also be consid-
ered as simpler than those obtained by applying the same
kind of process (relational transformation followed by rela-
tional repair) to more classic relational representations, like
the star or snowflake (cf. Section 3). We use just changes
of attribute values, whereas for the latter two cases we may
need full tuple insertions or deletions. In Section 8 we pro-
vide experimental evidence in favor of using our path rela-
tional schemas as a basis for implementation of MDDBs and
DWHs. The experiments focus on performance at aggregate
query answering and inconsistency checking, independently
from repair computation.

This paper is structured as follows. Section 2 describes the
MD data model we use in our work. Section 3 shows that the
star and snowflake schemas are not appropriate for dealing
with inconsistency issues in MDDBs and DWHs. Section 4
proposes and formalizes the path relational schema as a new
relational representation for MDDBs. Section 5 discusses
the representation of summarizability conditions as ICs over
a path schema. Section 6 provides the relational repair se-



mantics for restoring consistency in path databases. Section
7 investigates the invertibility of the MD2R mapping. Sec-
tion 8 presents a purely MD characterization of the repairs
obtained through the relational route. Section 9 shows ex-
periments in relation to the use of the path relational schema
as a basis for MDDB and DWH implementation. Finally,
Section 10 draws some conclusions and points to ongoing
and future work. An extended version of this paper can be
found at [31]. It contains, in particular, the proofs missing
here, more examples and discussions, and also more experi-
mentation details.

2. PRELIMINARIES
We use the Hurtado-Mendelzon formalization of multi-

dimensional DBs [23]. In it, a dimension schema S is a
directed acyclic graph, represented by a pair of the form
⟨C,↗⟩. C is a set of categories, and ↗ is a binary relation
between categories, indicating the parent-child relationship
in the schema. Its transitive and reflexive closure is ↗∗.
There are no “shortcuts”, i.e. if ci ↗ cj , there is no (prop-
erly) intermediate category ck with ci ↗∗ ck and ck ↗ cj .
A dimension schema has a top category, All, reachable from
every other category: For every c ∈ C, c↗∗ All holds. There
is also a unique category with no children, the so-called base
category.
A dimension instance, D, of the dimension schema is a

pair ⟨M, <⟩, where M is the finite set of data elements,
and < (or <D) is binary relation on M, the parent-child
relationship, that parallels relation ↗. More precisely, there
is a mapping δ from M to C that assigns each data element
to a unique category. If δ(m) = c, we also say that m ∈ c.
In consequence, m1 < m2 iff δ(m1) ↗ δ(m2). The transitive
and reflexive closure of < is <∗. Element all ∈ M is the
only element of category All, and is expected to be reached
from any other element, but this may not necessarily hold.
For a pair of categories ci, cj , with ci ↗∗ cj , the roll-up

relation Rcj
ci (D) contains the pairs (mi, mj), with mi <

∗

mj , mi ∈ ci,mj ∈ cj . The roll-up relation is not necessarily
a function. Nor has it to be total, i.e. there may be mi ∈ ci
that does not roll up to an element in cj .

Example 3. The Location dimension schema in Figure
1(a) can be modeled through the following schema S:

C = {Number, AreaCode, City, Region, All}.
↗ = {(Number, AreaCode), (Number, City),

(AreaCode, Region), (City, Region),(Region, All)}.

For the corresponding dimension instance D, we have:

M = {N1, N2, N3, 41, 45, TCH, TEM, CCP, VIII, IX, all}.

< = {(N1, 41),(N1, TCH),(N2, 45),(N2, TEM),(N3, 45),(N3, CCP),
(45, IX),(TEM, IX),(TCH, VIII),(CCP, VIII),(VIII, all),
(IX, all)}.

RRegion
Number(D) = {(N1, VIII), (N2, IX), (N3, VIII), (N3, IX)} com-

putes ancestors in Region of base elements. 2

The MD semantic conditions of strictness and homogeneity,
together, guarantee the summarizability property for a di-
mension instance. They are usually global conditions, but
they can also be imposed locally.

Definition 1. [11, 16] (a) For a dimension schema S =
⟨C,↗⟩, a local strictness constraint is an expression of the
form ci → cj , where ci, cj ∈ C, ci ̸= cj , and ci ↗∗ cj . It is

satisfied by instance D, denoted D |= ci → cj , iff Rcj
ci (D) is

a (possibly partial) function.
(b) Instance D is strict if it satisfies the full-strictness con-
dition, i.e. the whole set FSS = {ci → cj | ci, cj ∈ C, ci ̸=
cj , and ci ↗∗ cj}. 2

Example 4. The instance for the Location dimension in
Figure 1 is non-strict: The roll-up relation RRegion

Number(D) in
Example 3 is not a function (N3 has two grand parents in
category Region). Thus, D ̸|= Number → Region. 2

Definition 2. [11, 16] (a) For a dimension schema S =
⟨C,↗⟩, a local homogeneity constraint (a.k.a. covering con-
straint) is an expression of the form ci ⇒ cj , with ci, cj ∈ C,
ci ̸= cj , and ci ↗ cj . It is satisfied by instance D, denoted
D |= ci ⇒ cj , iff Rcj

ci (D) is total.
(b) Instance D is homogenous iff it satisfies the full-homo-
geneity condition, i.e. the whole set FH S = {ci ⇒ cj | ci, cj
∈ C, ci ̸= cj , and ci ↗ cj}. 2

Example 5. For the instance in Figure 1, RRegion
AreaCode is

{(45, IX)}. Element 41 does not appear as a first argu-
ment. Then, the relation is not total, and the instance is
heterogenous: D ̸|= AreaCode ⇒ Region. 2

Remark 1. We will make some common assumptions [23]
that make the presentation easier: (a) The existence of a sin-
gle base category. (b) Dimension instances are complete, i.e.
elements that do not have children are all base elements.
(c) Although we will use the null value, NULL, in the rela-
tional representation of the original MD instance, the latter
does not contain NULL. Actually, NULL /∈ M. The seman-
tics of NULL will be as in SQL relational databases, with a
semantics à la SQL, as logically captured in [10]. 2

3. ROLAP REVISITED AND MDDBS
The star schema is the most common relational represen-

tation of an MD database, with a fact table with measure-
ments that is directly joined to dimension tables that contain
descriptive attributes.

We can obtain an example of this representation from Fig-
ures 1(b) and 2, if we create a referential IC from the latter
to a single relation representing the former [21, 25]. In it,
the categories are captured as attributes, and each base el-
ement with its ancestors generates a tuple for the relational
table. Figure 4 shows this representation of the Location

dimension as a relational instance for a star schema. Base
element N3 appears in two tuples, because it has multiple
ancestors at the higher category Region.

Figure 4: Star representation of dimension in Figure 1.

A weaknesses of the star schema as a relational representa-
tion of MD summarizability conditions (cf. Section 1) is that
checking homogeneity through relational ICs is problematic.
We could think that homogeneity is captured through the
absence of NULL. However, our running example shows that
this does not hold: The instance for Location in Figure



1 is heterogenous (check 41), but its star representation in
Figure 4 has no NULL.
However, checking a strictness constraint between cate-

gories can be done via a functional dependency (FD) between
the corresponding attributes in the star representation.
An additional problem with the star representation is its

lack of invertibility: Moving back from a star representa-
tion to a MD representation is uncertain. Due to the flat
structure of the star schema, we lose information about the
original MD2R mapping, and inverting the mapping may
not generate a unique MD instance (cf. Section 7).
While the star schema captures a dimension in a flat rela-

tional structure, the snowflake schema provides a hierarchi-
cal relational representation. Being a normalized version of a
star schema, its hierarchical structure makes query answer-
ing more complex [25]. Under this schema, each category
c in a dimension schema is represented by a separate table,
with Ac as first attribute. The other attributes in that table
correspond to the c’s parent categories. Each of them points
to or references the same attribute in its own table [21, 25].
Figure 5 shows the snowflake relational representation of the
Location dimension instance.

Figure 5:Snowflake representation of dimension in Figure 1.

The hierarchical structure of snowflake complicates captur-
ing and checking strictness through relational ICs: Since
each category is mapped to a single table, this requires ex-
ecuting several joins. For example, if we want to check
strictness between categories Number and Region through
the schema in Figure 5, we can see from the MD schema
that there are two ways to reach category Region from cat-
egory Number. On the relational side, we have to check each
path by joining the corresponding tables, to discover that N3
is related to different elements in Region.
More generally, checking local strictness conditions via

the snowflake representation amounts to checking relational
equality generating dependencies (EGD) [1], which can be
expressed in relational calculus by sentences of the form

∀x̄(φ(x̄) → x1j = x2j ), (1)

where φ is a formula that captures the required (and possible
multiple) joins, and x1j , x

2
j ∈ x̄.

Unlike strictness, checking homogeneity in a snowflake in-
stance is simple: The presence of NULL reflects the missing
parents, like the NULL for Region in Figure 5. Thus, we can
check homogeneity through NOT NULL relational constraints

(assuming that the original MD instance does not contain
null values). Local homogeneity, i.e. MD constraints of the
form ci ⇒ cj , can be checked by relational ICs of the form

∀x̄(ψ(x̄) → NotNull(xj)), (2)

with xj ∈ x̄, and NotNull a built-in predicate that is true
only when its argument is (symbolically) different from NULL.

The hierarchical structure of the snowflake schema makes
the MD2R mapping invertible. For example, the snowflake
instance in Figure 5 is uniquely invertible to the Location

MD dimension.

4. MDDBS AS PATH INSTANCES
We now propose a relational representation of MDDBs

that allows for: (a) a simple representation and verification
of summarizability conditions via relational ICs, (b) invert-
ibility of the MD2R mapping; and (c) a simple characteri-
zation of relational repairs (leading to MD repairs).

We formulated strictness and homogeneity conditions in
terms of roll-up relations, whose elements are pairs of data
elements that are connected by a path traversing the cate-
gory hierarchy. Then, in order to better express the summa-
rizability conditions in relational terms, the relational rep-
resentation will explicitly store those paths. We propose a
path-based mapping fromMDDBs to relational databases (cf.
[32] for a somehow similar XML-to-Relational mapping).

Definition 3. For a dimension schema S = ⟨C,↗⟩, a
base-to-all path (B2A) P is a list of categories ⟨c1, . . . , cn⟩,
where c1 is the base category, cn is All, and ci ↗ ci+1. 2

The path relational schema will represent each B2A path by
a single predicate. The categories in the path are mapped
to attributes for that predicate. A category can be mapped
to more than one attribute, in separate tables.

Definition 4. For a dimension schema S = ⟨C,↗⟩ and
dimension instance D = ⟨M, <⟩, a p-instance for a B2A
path P = ⟨c1, . . . , cn⟩ is a list of elements p = ⟨e1, . . . , en⟩,
with:1 (a) ei ∈ M and δ(ei) = ci, or ei = NULL. (b)
When ei and ei+1 are not NULL, ei < ei+1. (c) There is
no p-instance p′ that can be obtained from p by replacing a
NULLs by a non-NULL ei, and p

′ satisfies (a)-(b). The set of
p-instances for P is denoted by InstD(P ). 2

Condition (c) enforces the use of non-null data elements if
possible; equivalently, of NULL only when strictly needed.
Notice that NULL is incomparable via < with elements in M.
If the base category is non-empty (which we may assume),
there will be no p-instance starting with NULL.

Now we describe the relational transformation T (or
path mapping) of the dimension schema and instance:

(A) (Schema) For each c ∈ C, create a relational attribute
Ac. For each B2A path P of the form ⟨c1, . . . , cn⟩,
create a relational predicate RP [Ac1 , . . . , Acn ].

(B) (Instance) For each p-instance p ∈ InstD( P ) of the form
⟨ e1,. . .,en ⟩, create the relational tuple RP(e1, · · · , en).

Example 6. (example 2 continued) Figure 3 shows the
application of the path mapping rules to the Location di-
mension. The Location schema in Figure 1 has two B2A
paths: PLoc1 : ⟨Number, AreaCode, Region, All⟩ (Figure 3
left), and PLoc2 : ⟨Number, City, Region, All⟩ (Figure 3,

1We use the term “p-instance”, because later on we will talk
about “path instances”, which will be instances of the rela-
tional path schema.



right). Each of these paths is mapped to a separate rela-
tional table using rule (A), and has 3 associated p-instances.
Then, by rule (B), each relation has 3 tuples. For example,
the tuple (N2, 45, IX, all) in Figure 3 (left) originates in the
p-instance ⟨N2,45, IX, all⟩ ∈ InstD(P Loc

1 ). 2

Notice that the active domain Act(D) of the generated re-
lational instance D is contained in M ∪ {NULL}; and the
domain Dom(Ac) of attribute Ac is δ−1(c) ∪ {NULL}. Then,
Dom(Ac) ⊆ Act(D)∪{NULL}. We assume all ∈ Dom(AAll).
Even with all ∈ M, NULL may be a value for AAll if all is
not reached by lower-level elements in the MD instance.
Notice that the generated relational schema depends only

on the MD schema. In particular, the number of relational
tables depends on the number of paths in the MD schema,
and not on the MD instance.

5. MD CONSTRAINTS AS PATH ICS
An MD schema S will come endowed with a set K of (lo-

cal) strictness and homogeneity constraints (cf. Definitions
1 and 2). An MD instance D may not satisfy K, which
should be reflected in the violation by the associated rela-
tional instance D of a corresponding set Σ of relational ICs.
We show now the generation of Σ from K.
Checking a strictness condition ci → cj under the path

mapping depends on the set of B2A paths where both ci, cj
appear. Each such single path has to be checked, and also
pairs of paths containing ci, cj . Thus, we need functional de-
pendencies (FDs) for single paths (cf. Rule (C) below), and
also an IC for each pairs of paths (cf. Rule (D) below). The
latter are simple cases of equality generating dependencies
(much simpler than (1)). (FDs are also EGDs [1].)

(C) (FD generation) ci → cj 7→
{RP : Aci → Acj | P is a B2A path with ci, cj ∈ P}.

(D) (EGD generation) ci → cj 7→
{RP1.A

ci = RP2.A
ci → RP1.A

cj = RP2.A
cj |

P1, P2 is a pair of B2A paths with ci, cj ∈ P1 ∩ P2}.2

Rule (C) can be obtained as a special case of Rule (D).

Example 7. (example 2 continued) Global strictness con-
ditions for the Location dimension lead to the following (re-
duced) set of FDs:

RPLoc
1 : {ANumber → AAreaCode, AAreaCode → ARegion}. (3)

RPLoc
2 : {ANumber → ACity, ACity → ARegion}. (4)

Now, Number and Region are the only categories that require
Rule (D), because they reside on two different paths. We
generate the following EGD:

RPLoc
1 .ANumber = RPLoc

2 .ANumber → RPLoc
1 .ARegion =

RPLoc
2 .ARegion. (5)

These ICs are checked on the generated path instance. 2

Since we may have introduced NULL in a path relational in-
stance, we have to take them into account when checking
IC satisfaction in it. Several semantics have been proposed
for relational databases with null values. Here, we are using
a single null value, NULL, which we expect to behave as in
SQL databases. In [10] a precise definition of IC satisfac-
tion in relational DBs with SQL NULL was given, through

2Slightly abusing notation, here we are treating paths as sets
of categories.

a reconstruction in classical predicate logic. We adopt it
here, without going into the details. The main element in
this approach is the separation of attributes into relevant
and non-relevant, depending on their occurrence or not in
dependencies, and their possibility of taking value NULL. For
example, a join attribute is relevant.

More precisely, a relational dependency ψ is rewritten into
a sentence ψN , such that, for a relational instance D,

D |=N ψ :⇐⇒ Drel |= ψN . (6)
Here, |=N denotes the (new) notion of IC satisfaction in
databases with NULL. On the RHS, we have usual first-order
satisfaction with NULL treated as any other constant.3 In-
stance Drel is obtained by restricting D to its relevant at-
tributes, and ψN is a syntactic rewriting of ψ that takes into
account the possible occurrence of NULL.

Example 8. (example 7 continued) Dependency (5) writ-
ten as a first-order sentence becomes:
ψ : ∀n∀a∀r∀x∀c∀r′∀y (RPLoc

1 (n, a, r, x) ∧ RPLoc
2 (n, c, r′, y)

→ r = r′).
This formula does not take the possible occurrence of NULL
(with its intended semantics) into account. This is done
by its rewriting into ψN, through ψ’s set of relevant at-
tributes [10], namely, Rel = {RPLoc

1 .ANumber, RPLoc
1 .ARegion,

RPLoc
2 .ANumber,RPLoc

2 .ARegion}:
ψN : ∀n∀r∀r′(RPLoc,Rel

1 (n, r) ∧ RPLoc,Rel
2 (n, r′)) ∧

NotNull(n) ∧ NotNull(r) ∧ NotNull(r′) → r = r′). (7)

This IC is checked on the instance Drel that results from
restricting the instance D in Figure 3 to the attributes in
Rel . Drel has predicates RPLoc,rel

1 and RPLoc,rel
2 . It is easy

to check that for n = N3, r = IX and r′ = VIII, (7) is not true
in Drel , with evaluation done classically and treating NULL
as any other constant. Then, by (6), D 2N ψ, which agrees
with the local non-strictness of the original MD instance. 2

Homogeneity can be checked via the path instance D with
NOT NULL constraints (Rule (E) below). A NULL in a tuple of
D shows that the preceding elements in the corresponding p-
instance do not have ancestors all the way up. The two NULLs
in table RPLoc

1 (Figure 3) show that the path is discontinued
after element 41.

(E) (NOT NULL generation) ci ⇒ cj 7→
{NOT NULL RP .Acj | P is a B2A path with ci, cj ∈ P}.

All the ICs introduced in (C)-(E) can be easily written as
first-order sentences of the forms (1) or (2) (cf. Example 8).

Example 9. (example 2 continued) Homogeneity of the
Location instance can be checked with the NOT NULL con-
straints on the path instance:4

NOT NULL RPLoc
1 .{AAreaCode, ARegion, AAll}, (8)

NOT NULL RPLoc
2 .{ACity, ARegion, AAll}. (9)

As expected, the path instance in Figure 3 violates the con-
straints NOT NULL RPLoc

1 .ARegionand NOT NULL RPLoc
1 .AAll. 2

6. REPAIRING PATH INSTANCES
The mappings we introduced are such, that the MD in-

stance is non-summarizable iff the generated path instance is
inconsistent wrt the relational ICs. If the latter happens, we

3In particular, the unique names assumption applies to it.
4The first element in a p-instance is never NULL (cf. Def. 4).



can use relational repairs. This requires introducing appro-
priate relational repair operations for path instances; and a
notion of distance between instances, to capture minimality.
The relational ICs of Section 5 are denial constraints,

which can be enforced through tuple deletions or changes
of attribute values. Deleting a tuple from a path instance
implicitly removes a p-instance from the dimension, which
would lead to the loss of MD data, making inversion prob-
lematic. We adopt here repairs that are obtained via a mini-
mum number of changes of attribute values. These attribute-
based repairs have been used and investigated before, for
denial constraints and FDs (cf. [8] for references).

Definition 5. Let D be a relational instance, possibly
with NULL. (a) An atomic update on D is represented by
a triplet ⟨R(t̄), A, v⟩, where v is a new value in Dom(A) r
{NULL} assigned to attribute A in the database atom R(t) ∈
D.5 (b) An update on D is a finite set ρ of atomic updates
(not assigning more than one new value to an existing at-
tribute value t̄[A]). ρ(D) denotes the instance resulting from
applying (simultaneously all the updates in) ρ to D. (c) For
a set Σ of denial constraints (for D’s schema), an update ρ
on D is a minimal repair iff: 1. ρ(D) |=N Σ, and 2. there is
no ρ′, such that ρ′(D) |=N Σ, and |ρ′| < |ρ|. 2

An atomic update changes an existing value in the database
by a new non-null value that is already present in the database.
For our purposes, in Definition 5 we can consider only sets Σ
of denial constraints of the forms (C), (D), or (E), i.e. EGDs
and NOT-NULL constraints. In the following we will assume
that this is the case. For a repair ρ of D, we also call (the
result) ρ(D) a repair of D.

Example 10. (examples 7 and 9 continued) For the path
instance D in Figure 3, and the relational ICs in Examples
7 and 9, the following are repair candidates, among others
(for simplicity we use only the tuple ids of Figure 3):

ρ1 = {⟨RPLoc
1 (1), ARegion, VIII⟩, ⟨RPLoc

1 (1), AAll, all⟩,
⟨RPLoc

2 (3), ARegion, IX⟩},
ρ2 = {⟨RPLoc

1 (1), ARegion, VIII⟩, ⟨RPLoc
1 (1), AAll, all⟩,

⟨RPLoc
1 (3), AAreaCode, 41⟩, ⟨RPLoc

1 (3), ARegion, VIII⟩}.

Both of these (and other) updates restore the consistency of
D. However, ρ1 is the only minimal repair as of Definition
5. It changes the value of ARegion in the third tuple of RPLoc

2 ,
from VIII to IX. On the MD side, this change amounts to
modifying the link from element CCP to category Region.
Still on the MD side, ρ1 also creates an originally missing
link, by assigning VIII as the parent of 41. This is done by
ρ1 on the relational side by updating the first tuple in table
RPLoc

1 . Figure 6 shows this minimal repair of the original
path instance.
ρ2 is not minimal, but it still restores both strictness and

homogeneity on the MD side, by indirectly modifying the
link between N3 and category AreaCode, and also creating a
link from 41 to VIII.
Directly on the MD side, changing the parent of N3 from

CCP to TEM restores strictness of the Location dimension. If
we also add a link between 41 and VIII, we obtain an MD
“repair” corresponding to the following relational update:

ρ′ = {⟨RPLoc
1 (1), ARegion, VIII⟩, ⟨RPLoc

1 (1), AAll, all⟩,
⟨RPLoc

2 (3), ACity, TEM⟩, ⟨RPLoc
2 (3), ARegion, IX⟩}.

5As usual in relational DBs, we denote the value for at-
tribute A in a tuple R(t̄) with R(t̄)[A], or simply t̄[A] when
predicate R is clear from the context.

Figure 6: Minimal repair of the path instance.

ρ′, compared with ρ1, makes an unnecessary update onACity,
in the third tuple of RPLoc

2 . Hence, according to Definition
5, ρ′ is not a minimal relational repair. 2

Notice that NULLs are updated in the derived path instance
only when there is a NOT NULL constraint violation. Since
we might be interested in checking some of, but not nec-
essarily all, the possible homogeneity constraints, we would
have some attributes that are not restricted by a NOT NULL

constraint. In this case, a minimal relational repair might
still have NULLs (cf. Example 11 in [31]). On the other side,
restoring consistency wrt strictness constraints via relational
repairs does not modify the NULL values in the database.
The minimal repairs of a path instance associated to an MD
instance that violates homogeneity are NULL-free if homo-
geneity is globally imposed.

The semantics we are using for evaluating FDs and EGDs
in presence of NULL does not consider NULL as a source of
IC violation. Since strictness is violated when we have more
than one parent for an element in an upper category, strict-
ness seen from the relational side is not violated if an element
rolls up to a non-null value and NULL in a parent category.
The latter is reached on the relational side due to a missing
parent on the MD side.

Example 11. (example 8 continued) Consider the EGD
(5) obtained from the MD strictness constraint Number →
Region. Sentence (7) can be used for checking (5) in the
presence of NULL.

In order to illustrate the effect of NULL on the evaluation of
Number → Region via the instance in Figure 3, we instantiate
(7) on the first tuples of tables RPLoc

1 and RPLoc
2 , obtaining

RPLoc,Rel
1 (N1, NULL) ∧ RPLoc,Rel

2 (N1, VIII)) ∧NotNull(N1) ∧
NotNull(NULL) ∧NotNull(VIII) → NULL = VIII.

Due to the occurrence of NULL in relevant attributes, the an-
tecedent of the implication has the false conjunct NotNull(
NULL), which makes the whole sentence true. Hence, the in-
stance in Figure 3, even having N1 associated to both NULL
and VIII does not violate the EGD. This makes sense, be-
cause NULL was introduced as an auxiliary relational element
to deal with heterogeneity; and it does not appear on the
MD side. In the corresponding MD instance N1 is connected
only to VIII (cf. Figure 1(b)). 2

Theorem 1. For a relational path instance D and a set
Σ of relational ICs associated to an MD instance D with a
set K of MD strictness and homogeneity constraints, there
always exists a minimal repair wrt Σ.6 2

6Cf. [31] and Example 13 there for a proof and example.



7. BACK TO MD INSTANCES: INVERSION
We will define MD repairs (cf. Definition 6) via the trans-

lation of the MD database into a relational instance subject
to relational ICs that are derived from semantic MD con-
straints. The generated relational instance is repaired wrt
the ICs. In Section 8 we will address this question about
the kind of repairs that are obtained going through the re-
lational route. In this section, we will concentrate on the
invertibility of the relational mapping T (introduced in Sec-
tion 4), i.e. on how to obtain an MD instance from a given
(relational) path instance. This is a question about schema
mappings and their invertibility [4, 6].
Mapping T has two components, for the schema and the

instance. The former includes a transformation of a set of
MD constraints into relational ICs. We expect this two-part
mapping T to have an inverse T −1 with good properties:

Expected properties:

(E1)T −1(T (S)) = S, where S is the MD schema.

(E2)T −1(T (D)) = D, where D is the MD instance.

(E3)For an MD instance M, and a set of MD constraints K,
if D and Σ are their relational counterparts, and ρ(D)
is a repair of D wrt Σ, then T −1(ρ(D)) |= K holds.

We proceed as follows. First, we define the domain of T −1,
next we define T −1 with transformation rules, and finally, we
check that T −1 has the expected properties. Mapping T −1

is defined on triples ⟨R,Σ, D⟩, where R is a path schema, Σ
is a set of ICs over R, and D is an instance for R, s.t.:

1. For every predicate R[A1, · · · , An] ∈ R, An = AAll,
and Dom(AAll) = {all, NULL}. All predicates R share
the “first attribute”A1, and NULL /∈ Dom(A1) (we as-
sume there is a single base category). Other attributes
are allowed to take the value NULL. Different predicates
Ri may share attributes other than A1 and AAll.

2. The elements of Σ are of the form: (a) NOT NULL Ri.Aj ,
or (b) Ri.Ak = Rj .Al → Ri.Am = Rj .An, with Ri, Rj

not necessarily distinct predicates in R.

3. D satisfies the basic conditions in item 1. However, it
may be that D ̸|=N Σ. We can also assume, but this
is not crucial, that for every tuple R(e1, . . . , en) ∈ D,
if ei = NULL, then ej = NULL for every i ≤ j ≤ n.

For the definition of T −1(R), we associate attributes to cat-
egories. The joint and consecutive occurrence of attributes
in a relational predicate generates direct links between cat-
egories (cf. rule (F) below). The definition of T −1(D) is
given by considering each tuple separately, creating a cor-
responding p-instance for a dimension instance M for MD
schema S := T −1(R).7 This creates elements in categories
and links between elements belonging to directly connected
categories (cf. rule (G) below).

(F) (Schema inversion) For an attribute A appearing in an
R ∈ R, create a category (name) cA. The set of so-
created categories is denoted with C. For each re-
lational predicate R[A1, . . . , An] in R and 1 ≤ i ≤
n−1, create an edge from cAi to cAi+1 in the dimension
schema.

7Since the attributes Aj in R may not have names of the
form Ac, for c a category name, we will obtain an MD
schema that will be “isomorphic” to the original S, if any.
We will still denote with S the MD schema resulting from
the inversion.

(G) (Instance inversion) For each atom R(e1,. . ., en), with
R[A1, . . . , An] ∈ R, and 1 ≤ i ≤ n − 1, if ei ̸= NULL,
introduce ei as an element of (the extension of) cAi (i.e.
make δ(ei) := cAi). If ei+1 ̸= NULL, create an edge from
ei to ei+1.

Example 12. (example 10 continued) Figure 6 shows
the minimal repair of our path instance. Applying to it
the inversion rules just introduced, we obtain the dimension
instance in Figure 7. Dashed lines correspond to inserted
edges. More specifically, using rule (F) on RPLoc

1 , the top
table in Figure 6, creates a set of categories:8 RPLoc

1 [ANumber,
AAreaCode, ARegion, AAll] 7→ {Number, AreaCode,Region, All} ⊆
C, and also a set of↗-links: {⟨Number, AreaCode⟩, ⟨AreaCode,
Region⟩, ⟨Region, All⟩} ⊆ ↗.

Figure 7: Dimension instance obtained via inversion.

For instance inversion with rule (G), we map, e.g., the up-
dated (first) tuple (N1, 41, VIII, all) in the top table:

RPLoc
1 (N1, 41, VIII, all) 7→ {N1, 41, VIII, all} ⊆ M,

δ(41) = AreaCode, δ(VIII) = Region, δ(all) = All,

N1 < 41, 41 < VIII, VIII < all.
Applying rule (G) to other tuples in the relational (minimal
repair) instance D, we obtain an MD instance D, the one in
Figure 7. It turns out to be (globally) strict and homoge-
neous. In fact, for D in Figure 6, since D |= Σ (with Σ as
in Example 10), it holds D |= K. Here, K is the original set
of MD constraints that gave rise to Σ. 2

It easy to verify that a unique dimension instance is ob-
tained as a result of applying the inversion rules, and that
the expected properties (E1)-(E3) hold. Furthermore, it is
also easy to verify that both T and T −1 can be computed
in polynomial time.

8. A PURELY MD REPAIR SEMANTICS
With all the above elements we are ready to define a re-

pair semantics for MD databases wrt summarizability con-
straints. The definition is indirect, in the sense that we first
map the MD schema S and instance D to a relational schema
R and instance D, resp. Furthermore, the set K of local
summarizability constraints, i.e. local strictness and homo-
geneity constraints, on the MD side is translated into a set
Σ of relational ICs. So as D may not satisfy K, D may not
satisfy Σ. Then, we consider relational repairs for D wrt
Σ. These are attribute-based repairs [8] that change a mini-
mum number of attribute values. Those relational minimal
repairs form a class denoted by Rep(D,Σ). Inverting the re-
lational repairs takes us to a class of MD instances D′ that
satisfy K.

8Naturally identifying the generated category cA
c

with c.



Definition 6. Let D be an MD instance, K a set of local
summarizability constraints (LSCs) (i.e. local strictness and
local homogeneity constraints), D the instance T (D), and Σ
the class of relational ICs obtained from K. An MD instance
D′ is a path repair of D wrt K iff there is D′ ∈ Rep(D,Σ)
with D′ = T −1(D′). Rep(D,K) is the class of path repairs
of D wrt K. 2

Since the relational repairs in Rep(D,Σ) only change data
(not the relational schema), the elements of Rep(D,K) also
change only data, i.e. instance D (and not the MD schema
S). So, they are instance-oriented repairs of D. A path-
repair of D does not add new elements to categories. Actu-
ally, the MD data repair operations are insertions or dele-
tions of edges in the dimension instance. Violations of NOT
NULL ICs on the relational side (associated to the lack of ho-
mogeneity on the MD side) result in edge insertions for D.
Operations tackling non-strictness (EGD violations on the
relational side) may be insertions and deletions of links.
There have been previous approaches to MD instance-

based repairs [14, 28, 9].9 In [9], repairs assume homogene-
ity, and only address strictness. The closest approach to
ours is [11] (cf. also [16]). They define MD repairs directly
on the MD instance, wrt both local strictness and homo-
geneity constraints. In [11] a minimal repair is a new di-
mension instance that is consistent wrt the summarizability
constraints, and is obtained by applying a minimal number
of updates to the original dimension instance (edge inser-
tions or deletions between existing data elements). Let us
denote with Repbch(D,K) their class on minimal MD repairs,
which can be compared to our class Rep(D,K).

Example 13. (examples 10 and 12 continued) Figure 8
shows Repbch(D,K), i.e. the minimal MD repairs according
to [11] for the Location dimension in Figure 1. D3 cor-
responds to the one obtained in Example 12 via relational
translation, which produces only this single MD repair. So,
in this example, Rep(D,K) = {D3} $ Repbch(D,K).
It is easy to check that D2 can be obtained with the inver-

sion rules after applying the update ρ2 in Example 10. We
saw that ρ2 is not a minimal update, then D2 /∈ Rep(D,K).
Similarly for D1, that corresponds to the update ρ′ also dis-
cussed in Example 10 (it does not produce a minimal rela-
tional repair). Thus, D1 /∈ Rep(D,K) either. 2

The previous example might suggest that always Rep(D,K)
⊆ Repbch(D,K). This is not true: there are examples of MD
schemas and instances where repairs in Rep(D,K) are not
elements of Repbch(D,K) (cf. Example 16 in [31]). Despite
the incomparability of these repair classes under set inclu-
sion, it is still worth comparing Rep(D,K) and Repbch(D,K)
in more detail in the case of our ongoing example. This
will allow us to gain additional insight that will lead us to a
purely MD characterization of our MD repairs.

Example 14. (example 13 continued) Let us focus on
the edges inserted or deleted by each of the repairs in Figure
8. They all agree on the insertion of a link between 41 and
VIII, to enforce homogeneity. However, they differ on strict-
ness enforcement. Notice that the edges deleted or inserted
by D1 and D2 belong to the first level of the dimension hier-
archy, while repair D3 makes changes on its second level. D1

changes the link between element N3 and category City, up-
dating the p-instance ⟨N3,CCP,VIII,all⟩ into ⟨N3,TEM,IX,all⟩.
9For repairs based on changes on the MD schema cf. [21,
22], and more formally [5].

With D3 that p-instance is changed into ⟨N3,CCP,IX,all⟩. So,
D1 causes more changes on this p-instance in comparison to
D3. A similar comparison applies to D2 and D3. 2

This example shows that modifying different edges may be
reflected in different ways on the underlying relational data-
base. Hence, a notion of MD repair minimality (we already
have a notion of minimality on the relational side, in Defini-
tion 5) should not be solely based on the number of modified
edges, but also on which edges are being modified and at
which level. We define an MD measure that considers this.

Definition 7. Let D and D′ be dimension instances over
the same MD schema S and active domain M and category
association function δ. (a) The sets of insertions, deletions
and modifications as a result of updating D into D′ are:

ins(D,D′) = { (e1, e2) ∈ (<D′ r <D) | there is no e3

with (e1, e3) ∈ (<D r <D′)}.
del(D,D′) = { (e1, e2) ∈ (<D r <D′) | there is no e3

with (e1, e3) ∈ (<D′ r <D)}.
mod(D,D′) = { (e1, e2, e3) | (e1, e2) ∈ (<D′ r <D) and

(e1, e3) ∈ (<D r <D′)}.

(b) The cost of updating D into D′, denoted ucost(D,D′) is:

ucost(D,D′) =
∑

(e1,e2) ∈ (ins(D,D′)∪del(D,D′))

|α(e1, e2)| × |β(e2)|

+
∑

(e1,e2,e3) ∈ mod(D,D′)

|α(e1, e2)| × |γ(e2, e3)|, with:

α(e1, e2) = {p | p ∈ InstD(P ), {δ(e1), δ(e2)} ⊆ P, e1 ∈ p},
β(e) = { e′ ∈ M | e <⋆

D e′}, and γ(e2, e3) = {e′ ∈ M |
e2 <

⋆
D e′, but not e3 <

⋆
D e′}. 2

Intuitively, ucost(D,D′) captures the number of changes
made to the elements of p-instances belonging to D. From
the corresponding relational point of view, this is the num-
ber of changes of attribute-values, as an indirect result of
the MD updates. Each number of updated attribute values
as a result of each edge change is computed separately. The
sum of those values for all changed edges (e1, e2) gives the
total number of attribute value updates needed for updating
D into D′.

Example 15. (example 14 continued) We want
ucost(D,Di) for the MD repairs Di, i = 1, 2, 3.
ins(D,D1) = {(41, VIII)}, del(D,D1) = ∅, mod(D,D1) =
{(N3, TEM, CCP)},
ins(D,D2) = {(41, VIII)}, del(D,D2) = ∅, mod(D,D2) =
{(N3, 41, 45)},
ins(D,D3) = {(41, VIII)}, del(D,D3) = ∅, mod(D,D3) =
{(CCP, IX, VIII)}.
The sets α, β and γ are associated to instance D. They are:
α(41, VIII) = {⟨N1, 41, NULL, NULL ⟩}, α(N3, TEM) = {⟨N3,
CCP, VIII, all ⟩}, α(N3, 41) = {⟨N3, 45, IX, all ⟩}, α(CCP, IX)
= {⟨N3, CCP, VIII, all ⟩}; β(VIII) = {VIII, All}; γ(TEM, CCP)
= {TEM, IX}, γ(41, 45) = {41, VIII}, γ(IX, VIII) = {IX}.
With these elements we can compute each update cost:

ucost(D,D1) = |α(41, VIII)| × |β(VIII)|+ |α(N3, TEM)|
×|γ(TEM, CCP)| = 1× 2 + 1× 2 = 4,

ucost(D,D2) = |α(41, VIII)| × |β(VIII)|+ |α(N3, 41)|
×|γ(41, 45)| = 1× 2 + 1× 2 = 4,

ucost(D,D3) = |α(41, VIII)| × |β(VIII)|+ |α(CCP, IX)|
×|γ(IX, VIII)| = 1× 2 + 1× 1 = 3.



(a) D1 (b) D2 (c) D3

Figure 8: Minimal repairs in Repbch(D,K) for the Location dimension

D3 provides the least update cost for D, i.e. the minimum
number of changes to the underlying relational database,
which is consistent with the discussion in Example 12: D3

is the only MD repair for D that also corresponds to a min-
imal relational repair. Notice that the update cost for each
of D1,D2,D3 is the same as the number of changes made to
the p-instances of D, and also the same as the number of
attribute-value updates (the |ρ|s) performed via the corre-
sponding relational repairs. 2

Lemma 1. Let D be an instance for the MD schema S,
and K be a set of LSCs over S (cf. Definition 6). Let D
and Σ be the corresponding elements on the path relational
side, and ρ an update of D. For the MD instance D′ for S
with D′ = T −1(ρ(D)), it holds: ucost(D,D′) = |ρ|. 2

From this lemma (cf. [31] for a proof), we obtain a charac-
terization of our MD repairs in pure MD terms.

Theorem 2. Let D be an instance for the MD schema
S, and K be a set of LSCs over S. For every instance D′ for
S, it holds: D′ ∈ Rep(D,K) iff D′ |= K and ucost(D,D′) is
minimum (among the consistent S-instances). 2

This characterization of MD repairs implicitly takes into
consideration the effect of MD repair operations (edge in-
sertions and deletions) on the underlying relational instance.
As we seen above, not all the repairs proposed by [11] have to
be MD repairs in our sense, nor the other way around. This
is due to the fact that, in [11] edges are modified without
considering (neither explicitly nor implicitly) the underlying
relational side effects of the MD operations.
The repair approach in [11] applies minimality without

considering any sort of priority on edge changes. In contrast,
ours implicity does so, via the underlying relational side-
effects of MD edge changes. In particular, for our MD repair
process, edges with fewer connections to the base elements
are good candidates for change: they affect fewer tuples in
the underlying database. Among those edges, those that
reside at higher levels of the hierarchy are optimal choices
for change, because they update fewer attribute values in
the affected tuples. As a result, in our approach, those MD
repairs causing minimal side-effects are preferred.

9. EXPERIMENTS AND COMPUTATION
We had two main motivations behind the introduction

of the path schema for MDDBs, and ROLAP for DWHs,
in particular. The first one is the proposal of a new rela-
tional representation (schema) that is more suitable than
the most popular ones for capturing, representing, checking,
and enforcing summarizability constraints on MDDBs. As

discussed above, the path schema is particularly appropri-
ate for these tasks. In Section 9.2 below, we report on quite
satisfactory experiments on inconsistency detection. How-
ever, it would be difficult to “sell” this new form of relational
representation if a MDDB or a DWH built according to it
had a poor performance wrt aggregate query answering. Be-
ing this a crucial issue, we decided to concentrate our first
experiments on this particular task. The results are quite
encouraging and are reported in Section 9.1 below.

We also think that the path relational representation of
MDDBs is quite natural, and particularly appropriate for
representing the hierarchically dimensional structure of data,
particularly those subject to non-linear, i.e. lattice-like,
dimension hierarchies. Unlike the star schema, the path
schema allows to clearly and unambiguously read off the
multi-dimensional instance from the path database instance
(cf. Section 3). Compared with the snowflake representa-
tion, the path representation is equally good at capturing
dimension hierarchies, without incurring, as snowflake, in
the extra cost for query answering and inconsistency detec-
tion.

The second motivation is the use of an appropriate rela-
tional representation, the path relational schema, to support
actual MD repairs, directly on the relational representation,
or indirectly on the MD representation. We have introduced
in detailed and precise terms the repair semantics and the
operations that are needed to move and transfer results be-
tween the direct MD representation and the relational rep-
resentation. Experimenting with repairs has been left for
a second phase of experiments that corresponds to ongoing
work. Since experiments of this kind require algorithms for
repair computation, in Section 9.3 below we briefly describe
a couple of approaches we are currently developing.

9.1 Query answering under the path schema
Our repairing of MD databases is done via relational trans-

formations. However, if the original MD database is not
implemented as a path relational (PR) database, and we
wanted to use the latter for MD repairing, the translation
would introduce an additional cost. In consequence, it is
natural to ask about the possibility of using upfront path re-
lational schemas as the basis for the implementation of MD
databases or DWHs.

We claim that the path relational schema is a promis-
ing alternative to consider for a relational approach to MD-
DBs and DWHs, independently from its virtues wrt MD
repairing. We ran some experiments supporting this claim,
comparing a PR implementation with relational implemen-



tations based on the star and snowflake schemas. We ad-
dressed performance at aggregate query answering, on SQL
Server 2008. We illustrate them using our running example
(cf. Example 1).
In addition to the Location dimension (cf. Figure 1(a)),

we consider a Time dimension with a simple linear hierarchy:
Date ↗ Month, Month ↗ Year, and Year ↗ All. We count
Incoming and Outgoing calls (the facts) (cf. Figure 2).
The relational representations of the Location dimension

in the star, snowflake and path schemas that we imple-
mented are in Figures 4, 5 and 3, resp. The relational rep-
resentations of the Time dimension are simple, and done as
described in Sections 3 and 4.
We generated and loaded a sizeable amount of test data

into star, snowflake, and path databases. The generator
creates elements for each category in the dimension schema,
taking into account the hierarchy levels. The lower the cat-
egory level, the larger the set of elements, with the base
category containing 100,000 elements. For each of the three
relational DBs we tested several queries. Due to the space
limitations, we discuss in detail only one of them, namely
a query, Q, asking for the Incoming calls made from each
region (i.e. category Region) in year 2010. Q takes 3 dif-
ferent forms in SQL depending on the underlying relational
schema (cf. [31, sec. 9] for many more experimental details).
The final results of the experiment, including all queries, are
shown in Figure 9.
For the star schema, we need to join Traffic-Fact-Table

(the fact table in Figure 2) with the tables for the Location
dimension (RLoc) in Figure 4, and the Time dimension (RTime).
For the path schema, the structure of the SQL query de-

pends on the categories used in the aggregate query (Region
in this case). A category may belong to several B2A paths,
and we may have to use several path tables. Since Region

belongs to two B2A paths, in order to compute the roll-up
RRegion

Number from Number to Region, we need first the union of
sets of tuples in either path tables, with selected attributes
ANumber and ARegion. This intermediate result is joined with
the fact table and the relational Time table RPTime. As ex-
pected, the query posed to the path DB is more complex
than the one posed to the star DB. For this reason, the
“star query” executes faster than the “path query”.

As is well-known (cf. also Section 3), the hierarchical
structure of the snowflake schema requires several joins, which
are costly operations. As expected, the number of joins in
the query posed to the snowflake DB is considerably higher
than in the first two cases, and accordingly, the execution
time is also much higher. The execution times for the 3 SQL
queries are: 155.2 ms for the star DB, 193.8 ms for the path
DB, and 427.3 ms for the snowflake DB.
We considered other queries, involving other categories

of the Location dimension in the aggregation. They are
about the sum of Incoming calls made in year 2010 from
each cell phone number, area code, city, and finally, from all
of the numbers. The results are shown in Figure 9. Query
Q corresponds to category Region in Figure 9.
Notice that when the category we are rolling-up to in the

query is City or AreaCode, instead of Region, the structure
of the SQL query under the path schema is similar to the
one for the same query under the star schema. In this case,
only one B2A path has to be considered, and there is no
need to merge the tuples of several path tables. In cases like
this, we have similar query answering times under the star

and path schema, as shown in Figure 9.

Figure 9: Comparing path, star and snowflake schemas.

We observe that, as the level of the category in the ag-
gregate query increases, the query answering time for the
snowflake schema increases significantly, while the perfor-
mance for the star and path schemas is not considerably
affected by this factor. This is due to the hierarchical struc-
ture of snowflake, which requires a larger number of joins
for rolling-up to higher levels of the hierarchy. For the star
and path schemas, the number of joins is independent from
the level of the category used in the aggregate query. Our
results show that, as expected, the star schema provides the
best query answering performance, with the path schema
being the second best, by a small difference.

9.2 Inconsistency detection
In Section 3, we discussed that one of the important cri-

teria for a relational representation of a MD database is its
efficiency in checking the MD summarizability conditions,
as expressed through relational ICs. We made a case for the
path schema in this regard. We ran experiments on the time
it takes to check strictness and homogeneity of the Location
dimension in each of the star, snowflake and path instances.
Sections 3 and 4 describe how to represent summarizabil-
ity conditions with ICs over the star, snowflake and path
databases, respectively. We generated 70,000 p-instances
for the Location MD dimension instance, including around
600,000 cases of non-strictness; and 20,000 cases of hetero-
geneity, expressed by the occurrence of NULL in one of the
p-instance elements.

We generated a considerable proportion of cases of non-
strictness, to compare the difference between FD and EGD
evaluation under the star or path schemas, and observe the
impact of the several joins for snowflake. The times for non-
strictness detection for star, snowflake and path databases
are 17.007 sec, 1200 sec, and 15.686 sec, respectively, which
are in line with our discussions in Sections 3 and 5.

The considerably higher execution time for snowflake is
due to the its explicit hierarchical structure, which compli-
cates strictness checking due to a series of joins. On the
other side, simple constraints are required for the star and
path databases; and the negligible difference between their
execution times is due to different dimension table schemas
and the number of tuples belonging to each of those tables.
The additional EGDs used with the path schema for de-
tecting non-strictness in more than one path tables do not
considerably effect the performance.



For homogeneity, the kinds of ICs used for all 3 schemas
are the same, i.e. NOT NULL constraints. Hence, our main
concern in checking homogeneity was to verify the weakness
of star schema in completely capturing the heterogeneous
instances (cf. Section 3). In a first phase, detecting het-
erogeneity took 510 ms for the star schema, 866 ms for the
path schema, and 686 ms for the snowflake schema. The
difference between the first and the last two numbers is due
to the fact that only half of the heterogeneity cases were
captured under the star schema. On the other hand, since
in the path schema a category may be represented by more
than one table (like Region and All in the Location di-
mension), we need more NOT NULL constraints for the path
schema when compared with the snowflake schema. For this
reason, under snowflake the heterogeneity instances are re-
trieved faster than with the path schema. However, the
impact of this factor is not particularly high.
Since the other path and snowflake do support the de-

tection of all kinds of heterogeneity, they were competing in
handicapped terms with the star schema. For this reason, we
compared the performances with the same number of cases
of heterogeneity present in each of the three DBs, and all of
them detectable in the star DB. We generated 20,000 such
instances of heterogeneity; and the times obtained were 750
ms for the star schema, 962 ms for the path schema, and 758
ms for the snowflake schema. As expected, the performance
of the star schema deteriorated.

9.3 Repair computation
Earlier in this section, we have reported on some experi-

ments with the proposed relational schema in the direction
of aggregate query answering and inconsistency detection.
Experimentation with MD repairs is ongoing work. This re-
quires developing the corresponding algorithms, for repair
computation. In this direction, we are exploring two alter-
native methodologies, whose comparison will be interesting
to make.
The first one uses “answer set programs” (ASPs), simi-

lar to the repairs programs in [11, 16], that work directly
with the MD representation. In our case, given the different
MD repair semantics (as in Theorem 2), our programs in-
clude “weak constraints with weights”, that extend the ASP
paradigm [12]. They are used to minimize the number of vi-
olations of program constraints. For this reason, they can be
used to capture our numerical MD distance. (The distance
in [11, 16] is not numerical, but set-theoretical).
The other way to go consists in repairing directly the re-

lational instances obtained via the MD2R mapping wrt re-
lational ICs. ASPs have been also successfully used to com-
pute relational repairs and do consistent query answering
(cf. [15] and references therein). In this case, the ASPs also
require the use of weak constraints, because the number of
changes of attribute values is minimized. ASPs of this kind
have been used in [19].

10. CONCLUSIONS
In this paper we addressed two important problems in

relation to multidimensional (MD) databases. Each of them
has several aspects:
1. We proposed and analyzed a new relational representa-
tion for MDDBs, and data warehouses, in particular. This
so-called path relational schema (PRS) was also compared
with the traditional relational schemas for ROLAP, the star

and the snowflake schemas. Our experiments suggest that
the path relational schema has promising properties in terms
of query answering time when compared with the star and
snowflake schemas.

The PRS, enriched with natural relational ICs, is suitable
for handling inconsistency in MDDBs wrt MD summariz-
ability constraints. It allows for: (a) a natural relational
representation of those semantic requirements, (b) the pos-
sibility of completely and efficiently checking their satisfac-
tion. Our experiments support these claims.

2. We proposed a new characterization of repairs of MD
databases that fail to satisfy summarizability constraints.
We did this by first translating the problem into a similar
one formulated in purely relational terms. The proposed re-
lational schema and translation have nice invertibility prop-
erties.

Going the relational route has two main advantages: (a)
We can take advantage of much existing work on relational
repairs and consistent query answering. (b) The repair pro-
cess could be implemented directly on relational platforms.

As an alternative to the relational characterization of MD
repairs, we also offered a new definition of minimal MD
repairs in purely MD terms. As opposed to previous ap-
proaches, the new notion is sensitive to the levels in an MD
hierarchy where changes are made to restore consistency.

In this paper we haven’t considered consistent query an-
swering for aggregate queries. It would be natural to explore
the range semantics [3, 20]. We should also investigate the
existence of a corresponding notion of canonical instance in-
troduced in [9], that was used to do and approximate CQA.
Still around CQA, it would be interesting to fully exploit
our relational translation and the existing (or new) results
and techniques for relational repairs and CQA [8].

We think that the path relational route to MD repairs can
be particularly useful for doing MD database repairing and
CQA under updates [26]. In the MD scenario, considering,
in addition to summarizability constraints, also aggregation
constraints would be quite natural [18].

The relational framework offered by the path schema to-
gether with NOT NULL and EGDs deserves investigation per
se. In this vein, there are also interesting issues to explore
in relation to data exchange and schema mappings [4, 6]
(from one relational MD schema into another, like the path
schema), and also schema evolution [17].

We have briefly compared our MD repair semantics with
other MD data-oriented repairs. A deeper investigation is
still necessary. It is also interesting to compare our instance-
based MD repairs with the structural MD repairs that are
based on changes on the schema, or category lattice, and
the distribution of data elements [5]. They leave data and
their links unchanged, something that might be welcome and
relevant in some applications. On the other hand, schema-
based repairs may have a drawback that, since categories
are changed, queries have to be rewritten, and cached aggre-
gations partially recomputed. Virtual approaches to these
problems can be attempted, using MDX views [5]. For het-
erogeneity, structural repairs should be favored in the ab-
sence of predefined queries or when the rewriting is afford-
able.

Data-oriented repairs are well suited for addressing het-
erogeneity, and also non-strictness, specially when inconsis-
tencies occur at higher levels of the schema. In this latter
case, solving non-strictness via schema-based repairs tends



to enforce multiple schema changes.
An issue with our proposed approach is that it could re-

quire a new relational layer for an already existing MDDB
that has been implemented directly as such or via a star or
snowflake relational database. Instead of building a mate-
rialized relational layer on top, we should explore defining
the proposed path schema as a virtual view of the existing
representation/implementation (as in [5]). This view could
be seen as a logical layer [13] on top.
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