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Abstract

A mediator system allows users to pose queries against a global schema and returns

answers from multiple data sources. The rewriting of the user query in terms of the

local sources uses mappings, which in the Local-As-View (LAV) approach, describe

the source relations as views over the global schema. Among the existing algorithms

that perform query rewriting in LAV, the Extended Inverse Rules Algorithm (EIRA)

provides the most general approach. Given a set of mappings and database facts,

EIRA provides a logic program, which specifies a class of legal instances of the global

system. The specification of the legal instances can be used to compute certain

answers for user queries that are monotone.

However, the output of EIRA is only a program specification. Therefore, applying

it in a data integration system for query answering requires the design of a system that

can store, specify and query the metadata representation. Moreover, it is inefficient

to consider all the available mappings and use the facts from all the sources for

computing answers to the user query.

In this thesis, we describe the design, representation and implementation of a

mediator system, called Virtual Integration Support System (VISS), that uses an

optimized EIRA for query answering. We describe a general framework for metadata

representation in a virtual and relational data integration system under the LAV

approach. Specifically, we use XML and RuleML for representing metadata, viz. the

global and local schemas, the mappings between the former and the latter, and global

integrity constraints.

We also show how to obtain a reduced set of mappings and a subset of available

sources for a user query. Using this, we optimize the logic program by generating

only the required parts (i.e., those that can be used for answering the query) of
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the specification program in EIRA. We also import only the relevant facts using the

reduced list of sources for computing the answers.

We describe how XQuery can be used to retrieve the relevant information for

EIRA based on our optimized approach. The information is then used to build

the logic program specification for computing certain answers. The implementation

of VISS uses open-source tools and is used to compute certain answers to Datalog

queries, which are monotone.
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Chapter 1

Introduction

Current day computer applications have a need to access, process, report and specially

integrate data from various and disparate sources. The data sources are created,

maintained and published in formats that adhere to their own organization-specific

standards. Data integration systems aim to provide a single unified interface for

combining data in various formats from those multiple sources [13]. One of the main

approaches in the integration of data is to use a Data Warehouse, where data from

multiple data sources are extracted, transformed and projected as a new database,

which is a collection of views containing data [48] [70] [72] [66]. The architecture of

a Data Warehouse is shown in Figure 1.1. The data in the Data Warehouse may

be structured differently from the source. Data is not fresh as the load happens at

scheduled times.

Another form of data integration involves peers exchanging data based on certain

mappings [23]. When a query is posed to a peer, it sends its data and/or imports

data from other peers. The data exchange is an iterative process wherein each peer

can in turn import data from its neighboring peers based on trust relationships and

there is no central component managing the transfer of data.

The data integration approach we discuss in this research work is the mediation

system [69] or virtual data integration system that offers a query interface over a

single global schema. The global schema consists of relational predicates, in terms of

which the user can pose queries. However, there is no actual data contained in them.

When the mediator receives a query in terms of the global relations, it produces a
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Figure 1.1: Architecture of Data Warehouse.

query plan that identifies the relevant data sources and the relevant data in them,

and specifies how the data obtained from them has to be combined to build the final

answer. To produce such a plan, the mediator stores and processes certain mappings

or view definitions that associate the predicates in the global schema with those in

the local sources.

There are different approaches to virtual data integration, depending on how

metadata mappings are represented [68] [43]. The Local-As-View (LAV) approach,

which is used in this research work, defines the local source relations as views over

the global schema [15; 50]. In this way, each relevant source relation can be defined

independently from other source relations. By doing so, it is easier for any source to

join or leave the system, without affecting other source definitions.

The structure of the global schema and mappings constitute the metadata in a

mediator system. The metadata will also contain constraints and details for accessing

the data sources. The metadata describes the nature of the data sources and data

contained in them. The efficient implementation of a query planning mechanism

relies on a proper design, representation and querying of metadata to extract required
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information.

There are three main algorithms that aim to provide query rewriting under the

LAV approach. The Bucket Algorithm implemented in the Information Manifold

[55] mediator considers queries and view definitions that are conjunctive queries with

comparison predicates. In the case of the Extended Minicon Algorithm [62], the

queries and view definitions are conjunctive queries with comparison predicates such

as <,≤, 6=. The classic Inverse-Rules Algorithm (IRA) accepts view definitions with-

out comparison predicates but handles functional dependencies, recursive queries and

binding pattern limitations [53]. Under the LAV approach, the IRA provides all and

only certain answers to conjunctive queries.

In this research, we use Extended Inverse Rules Algorithm (EIRA) for query plan-

ning. EIRA is an extended version, introduced in [18] [15], of Inverse-Rules Algo-

rithm (IRA) [31]. EIRA inherits the advantages of IRA and also handles monotone1

queries with built-ins. It is based on a logic program specification of minimal legal

instances [19]. The resulting query plan obtained using this algorithm is expressed

as an extended Datalog program with stable model semantics [32]. Using EIRA, for

a monotone query, we obtain certain answers, which are true in all minimal legal

instances of the global system [19].

Given a user query and a set of view definitions in LAV, EIRA performs query

rewriting. The view definitions of the source relations are given by conjunctive queries

with built-ins. However, using EIRA ”as is” can prove inefficient as there may be

sources that violate some equality built-in in the query or may contain more than the

required data for the query. Using and querying these sources without any pruning,

becomes an overhead when we integrate data sources with large amounts of data.

Also, if we consider all the available view definitions, the logic program generated

using EIRA will contain unnecessary rules. Hence, query answering using EIRA will

have to use some optimization that reduces the number of sources based on built-ins

in the query and extracts only the required data from these sources.

1A query is monotone if its output obtained from a database instance remains true for any
superset of that database instance



4

We use the relations and mappings in the following running example to illus-

trate the main issues and how we address the issues using our design approach and

implementation of a virtual data integration system. Though the example uses rela-

tions from the animal domain, in general our mediator approach is applicable to any

relational data source.

Example 1 Consider a relational data source, animalkingdom , containing data

about animals. It contains the relations V1 storing information about animals of

all classes with attributes Name, Class, Food, V3 contains mammals with attributes

Name, Class, Food andV4 contains birds with attributes Name, Class, Food. Another

data source, animalhabitat , contains relationV2with attributes Name, Habitat and

relation V5 containing mammals with attributes Name, Food.

V1 Name Class Food

dolphin mammal fish

camel mammal plant

shark fish fish

frog amphibian insect

nightingale bird insect

V5 Name Food

deer grass

V3 Name Class Food

dolphin mammal fish

elephant mammal plant

giraffe mammal leaves

lion mammal animal

V2 Name Habitat

dolphin ocean

camel desert

elephant savannah

giraffe savannah

lion savannah

whale water

parrot tropical

nightingale forest

deer forest

frog wetlands

V4 Name Class Food

parrot bird nuts

robin bird insect

nightingale bird insect

An information system designer interested in providing information on animals de-

fines the following global schema G: Animal(Name, Class, Food), Vertebrate(Name),

Habitat(Name, Habitat). This can be done even before the data sources animalk-

ingdom and animalhabitat (and possibly others) are available to the system. A

mapping that associates the global relations Animal and Vertebrate with the local
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relation V1 is given as follows:

V1(Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (1.1)

Similarly mappings are defined between the global relations Animal and Habitat and

the other local relations V2, V3, V4 and V5 as follows:

V2(Name,Habitat)← Animal(Name,Class ,Food),Habitat(Name,Habitat). (1.2)

V3(Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”mammal”. (1.3)

V4(Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”bird”. (1.4)

V5(Name, Food)← Animal(Name, Class, Food), Class = ”mammal”. (1.5)

Now consider a Datalog query, Π(Q), posed to the mediator, to get all animals that

are mammals with their names and habitat:

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Class = ”mammal”. (1.6)

Equation (1.6) is a conjunctive Datalog query whose answers cannot be computed

by a simple direct computation of the rule body because the data is not stored as

material relations over the global schema. Instead, the mappings that describe the

source relations have to be used to produce a query plan that eventually queries the

(relevant) local sources where the data is stored. 2

It can be seen from Example 1 that, from the available sources and view definitions,

not all are required to answer the query in Equation (1.6). We can rule out the

data source V 4 as the query in Equation (1.6) specifically asks for mammal and V 4

contains data only about bird.
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1.1 Problem Statement and Contributions

EIRA handles user queries that are monotone, which is a superset of conjunctive

queries. EIRA also provides a mechanism for query answering in the presence of global

integrity constraints. The logic program approach helps provide further extensions

through the use of stable models. These features of EIRA allows us to use it in a

general way for query answering in different scenarios. However, currently we do not

have a mediator system that applies EIRA for computing certain answers. The design

of such a mediator will have to address the requirements for storage, specification and

querying of metadata. For efficient computation of certain answers using EIRA, the

design should include some pruning steps when querying the metadata. Given a list

of available data sources and view definitions, we need to prune the source relations

wherever possible, based on the conditions in the query. And from the relevant

sources, we need to extract the relevant data.

In this thesis, we describe a design, representation and implementation of a general

mediator system, the Virtual Integration Support System (VISS ), which can be used to

integrate multiple relational data sources (or sources wrapped as relational). VISS is a

first logic programming-based mediator system for the computation of certain answers

to monotone queries using EIRA. The design, representation and implementation of

VISS addresses some of the main aspects of a general mediator system namely:

1. Identifying and storing metadata information for use in query planning. The

metadata is accessed, managed and stored in the mediator. It does not contain

actual data.

2. Using expressive enough languages, namely XML and RuleML, and formats for

representing metadata contained in the mediator. For example, RuleML has

formal semantics to represent integrity constraints [17].

3. Using a standard way to query metadata to extract relevant information.

InVISS , we use the languages XML [13] and RuleML [17] to represent metadata

and the query language XQuery to query metadata. The metadata about schemas
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that are represented and stored as native XML are: (a) The access parameters for data

sources (userid, password, etc.); (b) The structure of relations at the sources; and (c)

The structure of relations in the global schema. The mappings inVISS are represented

using specifications in the first-order logic sublanguage andDatalog subsets of RuleML

[17]. RuleML is an XML-based markup language for representation and storage of

rules expressed as formulas of predicate logic. VISS is also the first mediator system

to use RuleML for representing LAV mappings.

The design ofVISS also enhances the use of EIRA for query answering as follows:

1. Prunes the query to remove global relations that do not have the ”right” vari-

ables to provide answers to query.

2. Filters data sources that are not related to global predicates (as specified in

their view definitions) in a monotone query.

3. Filters data sources whose view definitions violate any of the equality conditions

in a conjunctive query thereby reducing the list of data sources used. We extend

this approach to disjunctive queries, which contain equality condition.

4. Retrieves data that satisfies built-ins in the query, thereby reducing the amount

of data retrieved from data sources. We consider conditions such as =, ≥, ≤,

> and < present in the query and apply them when querying data sources.

5. Prunes rules for certain global relations generated by EIRA that are not required

for answering the query.

6. Removes rules in the program specification that are redundant, thereby struc-

turally optimizing the logic program.

The Bucket Algorithm and Minicon Algorithm provide mechanisms to detect and

filter irrelevant sources. Our approach partly follows the initial criteria used by these

algorithms to filter sources. We also take into account queries that are cartesian

products or do not have a join variable. Our approach can also be used for disjunctive

queries with equality conditions.
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In this thesis, we do not consider determining relevant sources based on global

integrity constraints on global schema. But we provide an idea of how this work

can be extended when there are global integrity constraints. When filtering sources,

we specifically consider equality (=) built-in in the query and view definitions. The

equality conditions are of the form x = c, where x is a variable and c is a constant.

In general, the query and view definitions may contain other built-in operators, such

as ≤,≥, 6=.

In order to gather the relevant information needed to compute a query plan,

VISS uses XQuery to query XML and RuleML metadata. This information is used

to build the logic program. VISS also generates the Refined Program Specifications,

as shown in [18] [15], of the minimal legal instances as an added feature. The refined

specification can be used to extend the functionality of VISS, providing support for

consistent query answering [16]. Consistent answers are defined as those that are

true in every repair of all the minimal legal instances of a global system.

This thesis is structured as follows. Chapter 2 introduces basic definitions related

to virtual data integration and Extended Inverse Rules Algorithm. Chapter 3 discusses

state of the art approaches used in the design and implementation of mediator systems

and techniques used for detecting relevant data sources. Chapter 4 shows how XML

and RuleML are used to specify schemas and mappings. Chapter 5 describes the

theory behind our pruning approach for detecting source relevance and optimizing

query answering using EIRA. Chapter 6 describes how queries in XQuery are used to

implement the pruning approach discussed in Chapter 5 in VISS. Chapter 7 describes

the architecture ofVISS . Chapter 8 provides details on the component ofVISS used for

building logic programs. Chapter 9 explains the design rationale ofVISS and provides

experimental results on various scenarios of user queries comparing our approach with

the original EIRA. Chapter 10 presents some conclusions and future work.



Chapter 2

Preliminaries

This chapter recalls the theoretical ideas and concepts pertaining to a mediator data

integration system and its components. We also describe the classification of data

sources from existing literature and concepts related to Extended Inverse Rules Algo-

rithm and its refined version.

2.1 Basic Notions

In general terms, a virtual data integration system has three main components [50]:

(a) A collection of local data sources with a (union) schema S; (b) A global schema G;

and (c) A set of mappingsM between the global and source schemas. A data source is

an autonomous database that adheres to its own set of integrity constraints (ICs) that

enforce consistency of data within that datasource by rejecting undesirable updates.

A database is a model of an external domain. It contains data that characterizes

and is relevant to the domain. The data may be structured, i.e. data is contained

in tables called relations, or unstructured, i.e. data is not easily machine readable

such as text files or even a mixture of both. In Example 1, V 1, V 2 are predicates

in source schema S. Those predicates offered by the global schema G do not have

corresponding material instances. They are available to the user for querying through

the mediator interface. In Example 1, Animal, Vertebrate and Habitat are elements

of the global schema. In the following, we will also denote the integration system

with G.

9
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2.2 Data Source Descriptions

A mediator should contain information on what is available at the sources and how

the relations in the sources are mapped to the relations in the global schema. The

description of sources determine the computation of the query plan. The description

is represented by a set of logical formulas called rules or mappings. A mapping M

between the predicates of local and global schema is a Datalog rule of the form:

R(X) ←−
n∧

i=1

Pi(Xi), (2.1)

where, R and P1, P2, ..., Pn are predicates in the local and global schemas. X , X1,

X2...Xn are tuples of variables and/or constants. Each variable occurring in X must

occur in one of X1, X2...Xn [2].

When defining mappings, the level of detail may differ between the local and

global schema. The global schema may also be organized structurally differently

from the local schema. That is, a relation in the global schema may be associated

with relations in different data sources and hence, contains attributes related to more

than one local relation.

There are three main approaches to define mappings between the global schema

and local sources [50].

Global-as-View : In the Global-as-View (GAV) approach, the global schema is

comprised of views over the tables that are in the union of the local schema [50].

Using GAV, R is a predicate in the global schema and P1, P2, ..., Pn are predicates in

the local schema in Equation (2.1).

Example 2 We define view AnimalInfo using GAV as follows:

AnimalInfo(Name, Class, Food)←V1 (Name, Class, Food).

If there are other sources, say V 3(Name, Class, Food), containing similar information
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as V 1, then we can define them using GAV as follows:

AnimalInfo(Name, Class, Food)←V3 (Name, Class, Food).

Here, AnimalInfo is a union of V1 and V3 . Similarly, we define the view AnimalHome

as:

AnimalHome(Name,Habitat) ← V1 (Name, Class, Food),V2 (Name,Habitat).

Here, AnimalHome is a join of relations V1 and V2 using attribute Name. 2

The GAV approach is not flexible for insertion or deletion of relations in the source

schema. However, query answering in GAV is simple in the absence of integrity

constraints and is accomplished by unfolding view definitions to come up with the

source relations [22].

Local-as-View : In the Local-as-View (LAV) approach, each relation in the local

data sources is expressed as a view over the global schema [55]. Using LAV, R is a

predicate in the local schema and P1, P2, ..., Pn are predicates in the global schema in

Equation (2.1). The global relations can be defined even before sources are added

to the system. Based on the global schema created, potential sources can be added

to contribute data to the system. Each source relation is independently defined from

other relations in terms of global relations. Hence, sources can leave or join the system

without affecting other view definitions.

Example 3 The global relations Animal and Vertebrate are associated with local

relation V 1 via a Datalog query, which defines V 1 as a view over G, as containing

animals that are vertebrates:

V1 (Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (2.2)

Another mapping describes V2 as containing animals and their habitat:

V2 (Name,Habitat)← Animal(Name,Class ,Food),Habitat(Name,Habitat). (2.3)
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Equations (2.2) and (2.3) are LAV mappings. Using these mappings, a possible query

plan in terms of source relations V 1 and V 2 for Equation (1.6) (cf. Example 1 in

Chapter 1) is:

Ans(Name,Habitat) ← V 1(Name, Class, Food), V 2(Name,Habitat). (2.4)

2

Example 3 shows that it is possible to define other sources contributing with infor-

mation about animals, such as invertebrates. In this sense, the information in the

sources V1 and V2 can be considered as incomplete with respect to what G might

potentially contain. As shown in Example 1 (cf. Chapter 1), for the Datalog query in

Equation (1.6), a query plan will have to be generated to extract relevant information

from the sources. A query plan is a rewriting of the query as a set of queries to the

sources and a way to combine their answers. In the case of LAV, this translates to

the problem of Answering Queries using Views, which is shown to be NP-complete

[54]. Hence, query answering in LAV is more challenging than GAV.

Global and Local-as-View : In Global and Local-as-View (GLAV) approach, a view

over the global schema is expressed as a view, which is a query over relations in local

datasources [34]. This can be represented as: ϕS(X) ←− ϕG(Xi), where, ϕS is a

query over source schema S, ϕG is a query over global schema G and X ⊆ Xi.

Example 4 Consider the source relations in Example 1. Using global relations An-

imal and Habitat, we define mappings as follows:

V 1(Name, Class, Food) ∧ V 2(Name,Habitat) → Animal(Name, Class, Food)

∧ Habitat(Name,Habitat).

2

The GAV and LAV mappings are special cases of GLAV.
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2.3 Classification of Sources

A source relation consists of a view definition ϕ, a label and a view extension v for ϕ

[41]. Based on the labels, the sources contributing data to the system can be classified

as open, closed or clopen (both open and closed). An open source contains a subset

of the data of its kind in the global instance, a closed source contains a superset of

the data of its kind in the global instance and a clopen source contains exactly all the

data of its kind in the global instance.

Example 5 Consider a LAV integration system that combines data sources about

vertebrate animals in a global relation V ertebrateAnimal(Name,Habitat).

Open Source: A source relation Mammal contains names of animals belonging to

class mammalia, given by the mapping:

Mammal(Name) ← V ertebrateAnimal(Name,Habitat).

Its material extension is given by: m = {dolphin, camel, panda}. Every animal listed

in Mammal corresponds to some tuples that the global instance contains. The source

relation Mammal contains a subset of the expected entries in V ertebrateAnimal.

That is, Mammal ⊆ ΠName(V ertebrateAnimal). Hence, Mammal is said to be

Open.

Closed Source: Consider a data source AnimalWorld, containing animals

that are vertebrates and invertebrates. The mapping between global relation

V ertebrateAnimal and the source relation is given by:

AnimalWorld(Name) ← V ertebrateAnimal(Name,Habitat).

Its material extension is given by: aw = {dolphin, camel, shark, panda, frog,

nightingale, spider, snail, squid, crabs}. The tuples in data source AnimalWorld

form a superset of animal family that are vertebrates. The tuple 〈spider〉 is

in AnimalWorld, but not in V ertebrateAnimal. That is, AnimalWorld ⊇

ΠName(V ertebrateAnimal). Hence, AnimalWorld is said to be Closed.
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Clopen Source: Consider a data source ChordataV ertebrata, containing names of

animals that belong to phylum chordata and subphylum vertebrata. The mapping

between global relation V ertebrateAnimal and the source relation is given by:

ChordataV ertebrata(Name) ← V ertebrateAnimal(Name,Habitat).

Its material extension is given by: cv = {dolphin, camel, shark, frog, nightingale,

panda}. Here, ChordataV ertebrata = ΠName(V ertebrateAnimal). Hence,

ChordataV ertebrata is said to be Clopen. 2

Let D be a global instance and (i) voi be a set of material source relations that are

open defined by the views, V o
i (Xi) ←− ϕo

i (Xi

′

), i = 1, ..., n, where, V o
i is a source

predicate, ϕo
i is a conjunction of global predicates and Xi ⊆ Xi

′

. Then, V o
i (D)

denotes the tuples obtained by applying to D, the view definition V o
i , (ii) v

c
i be a set

of material source relations that are closed defined by the views, V c
i (Xi)←− ϕc

i(Xi

′

),

i = 1, ..., m, where, V c
i is a source predicate, ϕc

i is a conjunction of global predicates

and Xi ⊆ Xi

′

. Then, V c
i (D) denotes the tuples obtained by applying to D, the view

definition V c
i and (iii) vli be a set of material source relations that are clopen defined

by the views, V l
i (Xi) ←− ϕl

i(Xi

′

), i = 1, ..., k, where, V l
i is a source predicate, ϕl

i is

a conjunction of global predicates and Xi ⊆ Xi

′

. Then, V l
i (D) denotes the tuples

obtained by applying to D, the view definition V l
i . The global instance D is legal, if:

(i) for open sources, the computed extension on D of each view V o
i contains voi ,

(ii) for closed sources, the computed extension on D of each view V c
i is contained in

vci and

(iii) for clopen sources, the computed extension on D of each view V l
i is the same as

vli.

That is,

Legal(G) := {globalD | voi ⊆ V o
i (D); i = 1, ..., n,

vci ⊇ V c
i (D); i = 1, ..., m,

vli = V l
i (D); i = 1, ..., k}.



15

Example 6 Consider data sources V1 and V2 in Equation (2.2) and (2.3) and the

extensions for the source predicates:

v1 = {(dolphin,mammal, fish), (camel,mammal, plant), (shark, fish, fish),

(frog, amphibian, insect), (nightingale, bird, insect)}.

v2 = {(dolphin, ocean), (camel, desert), (frog, wetlands)}.

The global instance D0 is given by:

Animal = {(dolphin,mammal, fish), (camel,mammal, plant),

(shark, fish, fish), (frog, amphibian, insect),

(nightingale, bird, insect), (snake, reptile, frog)}.

V ertebrate = {dolphin, camel, shark, frog, nightingale, snake}.

Habitat = {(dolphin, ocean), (camel, desert), (frog, wetlands)}.

The evaluation of the views on D0 gives:

V1(D0) = {(dolphin,mammal, fish), (camel,mammal, plant),

(shark, fish, fish), (frog, amphibian, insect),

(nightingale, bird, insect), (snake, reptile, frog)}.

V2(D0) = {(dolphin, ocean), (camel, desert), (frog, wetlands)}.

In this case, v1 ⊆ V1(D0) i.e. V1 is open and v2 = V2(D0) i.e. V2 is clopen. Hence, D0

is a legal global instance; and all its supersets are also legal instances. 2

A query Q is monotone if, for every two instances D, D
′

, D ⊆ D
′

=⇒ Q[D] ⊆

Q[D
′

] [2]. In particular, conjunctive queries are monotone [2]. Now, given a global

monotone query Q(X̄), i.e. expressed in terms of global predicates, a tuple t̄ is a

certain answer to Q if for every D ∈ Legal(G), it holds D |= Q[t̄], i.e. the query

becomes true in D with the tuple t̄. CertainG(Q) denotes the set of certain answers

[1] to Q.
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2.4 Program Specification and Query Answering

Extended Inverse Rules Algorithm, introduced in [19], for obtaining certain answers

from a LAV integration system, is based on a specification as a logic program Π(G)

with stable model semantics of the legal instances of the system. The stable models

of program Π(G) [37] are (in correspondence with) the legal instances of G. The

specification is inspired by IRA algorithm [31], which introduces Skolem functions to

invert view definitions. EIRA [19] replaces functions with auxiliary predicates, whose

functionality is enforced in the specification by means of a choice operator [39].

The program Π(G) for Simple Specification contains the following rules [19]:

1. The facts: dom(a), for every constant a ∈ U ; and V (ā), whenever V (ā) ∈ v, for

some source extension v ∈ G.

2. For every view (source) predicate V in the system, with definition V (X̄) ←

P1(X̄1), ..., Pn(X̄n), the rules:

Pj(X̄j) ← V (X̄),
∧

Xi∈(X̄j\X̄)

Fi(X̄,Xi), j = 1, ..., n.

3. For every auxiliary predicate Fi(X̄,Xi) introduced in 2., the rule that makes it

functional wrt the dependency of the last argument upon the first arguments:

Fi(X̄,Xi) ← V (X̄), dom(Xi), choice(X̄,Xi).

The choice operator picks up only one value for Xi for every combination of values for

X̄ . This operator can be eliminated as such, or equivalently, defined using standard

rules. As a result, we obtain a program with stable model semantics whose stable

models correspond to the choice models of the program [39]. We obtain them as

follows [19]:

(a) Each choice rule r : H ← B, choice((X̄), (Y )) in (3) is replaced by the rule:

H ← B, chosenr(X̄, Y ).
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(b) For each rule in (a), the following rules are included:

chosenr(X̄, Y ) ← B, not diffchoicer(X̄, Y ).

diffchoicer(X̄, Y ) ← chosenr(X̄, Y
′

), Y 6= Y
′

.

The substitution for choice operator and the whole program is in Example 7. These

specifications programs can also be modified in order to capture closed and exact

sources [15].

Example 7 Program Π(G) contains the facts:

dom(nightingale).dom(fish).dom(frog).dom(camel).

dom(amphibian).dom(fish).dom(insect).dom(plant).

dom(dolphin).dom(wetlands).dom(bird).dom(ocean).

dom(mammal).dom(shark).dom(desert).

V 1(frog, amphibian, insect).V 2(frog, wetlands).

V 1(dolphin,mammal, fish).V 2(dolphin, ocean).

V 1(shark, fish, fish).V 2(camel, desert).

V 1(nightingale, bird, insect).

And the rules:

Animal(Name,Class ,Food)← V1 (Name,Class ,Food).

Vertebrate(Name)← V1 (Name,Class ,Food).

Animal(Name,Class ,Food)← V2 (Name,Habitat),F1 (Name,Habitat ,Class),

F2(Name,Habitat ,Food).

F1(Name,Habitat ,Class)← V2 (Name,Habitat), dom(Class),

chosen1 (Name,Habitat ,Class).

chosen1 (Name,Habitat ,Class)← V2 (Name,Habitat), dom(Class),

not diffchoice
1
(Name,Habitat ,Class).
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diffchoice
1
(Name,Habitat ,Class)← chosen1 (Name,Habitat ,U ),

dom(Class),U 6= Class .

F2(Name,Habitat ,Food)← V2 (Name,Habitat), dom(Food),

chosen2 (Name,Habitat ,Food).

chosen2 (Name,Habitat ,Food)← V2 (Name,Habitat), dom(Food),

not diffchoice
2
(Name,Habitat ,Food).

diffchoice
2
(Name,Habitat ,Food)← chosen2 (Name,Habitat ,U ),

dom(Food),U 6= Food .

Habitat(Name,Habitat) ← V2 (Name,Habitat). 2

In this thesis, we refer to the specification program used for computing certain answers

as Simple Specification. For a monotone query, certain answers are those that are

true in all minimal legal instances, i.e. those that do not contain a proper legal

instance, of the global system. The answers obtained for a monotone query using

Simple Specification, under the cautious reasoning, correspond to certain answers

[19]. Cautious reasoning holds as true what is true in all of the stable models of the

program.

In some cases, the openness of sources can be satisfied by the contents of other

views and hence, it will not be necessary to compute values for the existential vari-

ables. But the choice operator in Simple Specification may still choose other values

for these variables [19]. This may lead to more legal instances than the minimal ones.

The instances corresponding to the models of the logic program from the Simple Spec-

ification form a class between the minimal and the legal instances, and it is a proper

subclass of the legal instances. But this does not affect the computation of certain

answers to monotone queries because, the minimal legal instances are contained in

the subclass of legal instances of the global system specified by Simple Specification.

Hence, what is true in the minimal legal instances of the global system is also true in

the subclass of legal instances specified by Simple Specification.

The minimal legal instances are used to restore consistency of the system for doing
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consistent query answering (CQA) [15; 18] (cf. [14] for a survey of CQA). While com-

puting consistent answers, using Simple Specification may cause more repairs than

required. There is a Refined Version of the Simple Specification, which is described

in [19]. It specifies only the collection of minimal legal instances. This is achieved by

using a stronger condition, AddVi
(X̄) in the place of V (X̄) in the choice rules. The

refined program for an open global system contains the following clauses [19]:

1. Fact dom(a) for every constant a ∈ U .

2. Fact Vi(ā) whenever ā ∈ vi for some source extension vi in G.

3. For every view (source) predicate Vi in the system with description,

Vi(X̄)← P1(X̄1), . . . , Pn(X̄n):

(a) For every Pk with no existential variables, the rules:

Pk(X̄k, to) ← Vi(X̄).

(b) For every set Sij of predicates of the description’s body that are related by

common existential variables Z1, . . . , Zm, the rules:

Pk(X̄k, vij) ← addvij(X̄
′

),
∧

Zl ∈ (X̄k\X̄
′
)

F l
i (X̄

′

, Zl), for Pk ∈ Sij.

addvij(X̄
′

) ← Vi(X̄), not auxvij(X̄),where X̄
′

= X̄ ∩ {
⋃

Pk∈Sij

Xk}.

auxvij(X̄
′

) ←

m∧

l=1

varvijZl
(X̄Zl

).

varvijZl
(X̄Zl

) ←
∧

Pk∈Sij&Zl∈X̄k

Pk(X̄k, nvij),

where X̄Zl
=

⋃
Pk∈Sij&Zl∈X̄k

Xk, for l = 1,. . . ,m.

4. For every predicate F l
i (X̄

′

, Zl) introduced in 3(b), the rules:

F l
i (X̄

′

, Zl) ← addvijZl
(X̄

′

), dom(Zl), choice((X̄
′

), (Zl)).

addvijZl
(X̄

′

) ← addvij(X̄
′

), not auxvijZl
(X̄

′

), for l = 1, . . . , m.

auxvijZl
(X̄

′

) ← varvijZl
(X̄Zl

),
∧

Zk 6=Zl&Zk∈X̄zl

F k
i (X̄

′

, Zk), for l = 1, . . . , m.
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5. For every global relation P (X̄), the rules:

P (X̄, nvij) ← P (X̄, vhk), for {(ij, hk)|P (X̄) ∈ Sij ∩ Shk, ij 6= hk}.

P (X̄, nvij) ← P (X̄, to), for {(ij)|P (X̄) ∈ Sij}.

P (X̄, td) ← P (X̄, vij), for {(ij)|P (X̄) ∈ Sij}.

P (X̄, td) ← P (X̄, to).

Here, addvij(X̄
′

) is true only when the openness of Vi is not satisfied through other

views. addvij(X̄
′

) is further specified by means of extra rules. The refined version

also uses annotation constants placed as an extra argument in the global relations.

Specification programs like these can be evaluated with DLV system [52], for example.

DLV computes certain answers wrt the skeptical (or cautious) stable model semantics

of disjunctive logic programs with weak negation and program constraints.



Chapter 3

State of the Art

In this chapter, we discuss the design and implementation features of mediator data

integration systems by describing their representation and querying of metadata. We

mainly analyze mediators related to our line of research by describing those systems

that use LAV. We also discuss the current main approaches for detecting relevant

sources [46] [62] [6], used for producing a query plan.

3.1 Relational Model with Objects

The Information Manifold (IM) [46] is a mediator that uses LAV approach for map-

pings. IM uses the Bucket Algorithm for query answering. The metadata consists

of description of source relations in terms of contents and capabilities of informa-

tion sources. Both the contents and capabilities are represented using a combination

of Horn rules and Classic Description Logic. The contents of sources are the LAV

mappings. Each source relation is associated with one capability record of the form:

(Sin, Sout, Ssel, min,max). The meaning of the capability record is to specify mini-

mum bindings of Sin elements required to get any of the elements in Sout.

Example 8 Consider the local relation V 1, which is mapped to global relations

Animal, V ertebrate as follows:

V1 (Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (3.1)

21
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The mapping is represented in IM as:

Contents:

V 1(Name, Class, Food) ⊆ Animal(Name, Class, Food), V ertebrate(Name).

Capabilities:

({Name, Class, food}, {Name, Class, Food}, {Name, Class, Food}, 1, 3).

The contents describe the openness of sources using ⊆. 2

The CARIN knowledge representation system is used in IM for metadata repre-

sentation but with limited expressive power. For example, the relational component

supports positive Datalog-like program and does not have a representation for dis-

junction and negation.

3.2 Infomaster

Infomaster [38] is a mediator system that uses LAV approach and stores metadata

mappings in Knowledge Interchange format. Each attribute in the global and source

relation is mapped separately. For accessing metadata for a user query, the mappings

are first loaded into a main memory database Epilog.

Example 9 The mapping in Equation (3.1) is represented in Infomaster as:

(⇐ (Animal.Name ?x ?y) (V 1.Name ?x ?y)).

(⇐ (Animal.Class ?x ?y) (V 1.Class ?x ?y)).

(⇐ (Animal.Food ?x ?y) (V 1.F ood ?x ?y)).

(⇐ (V ertebrate.Name ?x ?y)(V 1.Name ?x ?y)).

2

The system does not support built-ins in view definitions. The representation of each

attribute in a mapping results in a large knowledge base that will have to be brought
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to main memory, when accessed.

3.3 SIMS

SIMS mediator system [6] uses a description logic system, Loom, to represent meta-

data. The query answering approach in SIMS identifies relevant sources by accessing

the information sources to search for relevant data. The view definitions are repre-

sented by mapping each external relation to a concept in Loom using a visual content

model. Since only one concept can be associated with a source relation, this approach

presents a restriction to express a source relation as a join of two global relations.

SIMS uses a key column in source relation to create a Loom class. Every other column

is viewed corresponding to a Loom relation, which describes the relation between item

in this column and key column. Figure 3.1 shows an example of content model used

in SIMS for Equation (3.1) in Example 8.

 Figure 3.1: SIMS Model

3.4 Agora

Agora mediator system [58] follows LAV approach for mappings and represents re-

lations in global schema as XML documents. The XML DTD (Document Type

Definition) information for the XML documents representing each global relation is

stored in a set of generic tables. The view definition for a source relation is expressed

as a SQL query using attributes in the generic tables. We illustrate the representation
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in Agora in Example 10.

Example 10 Consider the following mapping:

V 1(Name, Class, Food)← Animal(Name, Class, Food).

The global relation Animal is represented in XML format with Animal as root ele-

ment and Name, Class and Food as child elements. The representation of mapping

for V 1 in Agora is given by:

select e1.elID as $m, v4.value as Name, v5. value as Class,

v6.value as Food

from

Document d0, URI u0, Value v0, Child c0,

Element e0, QName q0, Value v1, Child c1,

Element e1, QName q1, Value v2, Child c2,

Element e2, QName q2, Value v3, Child c3,

Value v4, Child c4, Value v5, child c5,

Value v6

where

d0.docURIID=u0.uriID and u0.uriValID=v0.valID and

v0.value="Animal.xml" and d0.docRootID=e0.elID and

e0.elQNameID=q0.qNameID and q0.qnLocalID=v1.valID

and v1.value="Animal" and c0.parentID=e0.elID and

c0.childID=e1.elID and e1.elQNameID=q1.qNameID and

q1.qnLocalID=v2.valID and v2.value="tuple" and

c1.parentID=e1.elID and c1.childID=e2.elID and

e2.elQNameID=q2.qNameID and q2.qnLocalID=v4.valID

and v4.value="Name" and c3.parentID=e1.elID and

c2.childValID=v4.valID and c3.parentID=e1.elID and

c3.childID=e3.elID and e3.elQNameID=q3.qNameID and

q3.qnLocalID=v5.valID and v5.value="Class" and

c4.parentID=e3.elID and c3.childValID=v5.valID and

c4.parentID=e1.elID and c5.childID=e4.elID and

e4.elQNameID=q4.qNameID and q4.qnLocalID=v6.valID

and v6.value="Food" and c5.parentID=e5.elID and

c4.childValID=v6.valID.

The tables in from clause are the generic tables in the mediator that store the

XML DTD of global relations. 2

The mediator accepts user queries in XQuery on the global schema and translates

them to SQL query on the global schema. This is because the mediator uses LeSelect,
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a relational engine, to pose queries to data sources for retrieving data. It is not

always possible to translate a query in XQuery to a query in SQL because some

of XQuery language features do not have an SQL equivalent [58]. If the query in

XQuery could be translated, the SQL query obtained in terms of the global schema

after the translation is rewritten into an SQL query in terms of the local sources.

A relational query rewriting algorithm is used for this purpose. The algorithm uses

view definitions that describe a source relation in terms of the elements in the generic

tables as shown in Example 10. In the rewriting step, the algorithm does not handle

arbitrary levels of nesting or grouping.

3.5 Review of Approach

The main features of systems described in the preceding sections shows that, repre-

sentation of metadata, viz. description of sources, global schema and mappings is

an important aspect in the design of a mediator. A key requirement, as seen in the

mediator systems reviewed, is a metadata representation that uses languages that

can express the vast metadata stored in a mediator. Another point of note is the

requirement of a query language when accessing metadata in a mediator. The query

language should also preferably allow some extension, if required, to avoid a cus-

tomized manipulation of metadata representation. Table 3.1 shows the main features

of some of the other existing mediators andVISS .

Table 3.1: Mediator Systems

Mediator Mappings Metadata Lan-
guage

Metadata
Access

Query An-
swering

Tukwila
[44]

LAV XML Custom C++
Code

Minicon

PICSEL
[40]

LAV CARIN Custom Java
Code

Query Expan-
sion and Ex-
istential Entail-
ment
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XML-
based
Mediation
Frame-
work
(XMF)
[49]

GAV XMF Mediation
Rule (XMR)

XMF Query Query unfold-
ing

Nimble
[30]

GAV XML XML-QL Query unfold-
ing

TSIMMIS
[35]

GAV Mediator Spec-
ification Lan-
guage(MSL)/OEM

LOREL Query unfold-
ing

Garlic [27] GAV Garlic data Lan-
guage(GDL)

O-SQL Query unfold-
ing

Hermes
[56]

GAV Prolog-like Custom C
code

Query unfold-
ing

MOMIS
[11]

GAV Object Definition
Language(ODL)
and Semantic links
using STASIS

O-SQL Query unfold-
ing

Xyleme
[29]

GAV XML in Natix store OQL and
XQL

Query unfold-
ing

Yat [64] GAV YAT Language Custom CGI
code

Query unfold-
ing

Automed
[45]

BAV Hypergraph Data
Model

Hypergraph
Query Lan-
guage

Schema Trans-
formation
Algorithm

MIX [9] GAV XML and XML
DTD

XML Match-
ing and
Structur-
ing Lan-
guage(XMAS)

Query unfold-
ing

MedMaker
[60]

GAV Mediator Specifica-
tion Language

Mediator
Specification
Interpreter

Query unfold-
ing

VISS LAV XML and RuleML XQuery EIRA

The mediators using GAV are included in Table 3.1 to highlight the metadata

representations used. However, specifications such as MSL and GDL are oriented

towards representing GAV mappings.
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3.6 Pruning Sources using Single Subgoal Buckets

(SSB)

The first phase of the Bucket Algorithm [55] provides a method to detect relevant

sources for a conjunctive query by considering each of the subgoals in the query. A

subgoal refers to a predicate in the body of the query or view definition. A bucket

called Single Subgoal Bucket is created for each subgoal. If a view definition contains

a subgoal, which can be mapped to a subgoal in the query, then the view is placed

in a bucket for that subgoal. If there are many subgoals that can be mapped to a

subgoal in the same view, the view appears in more than one bucket. In the presence

of built-ins in the query, views whose subgoals satisfy the built-ins are placed in the

bucket.

Example 11 We use source relations V 1, V 2, V 3, V 4 and V 5 and the global relations

Animal, Habitat and pose a query to get all animals that are mammals with their

names and habitat as follows:

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Class = ”mammal”. (3.2)

We use the following view definitions,

V1(Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (3.3)

V2(Name,Habitat)← Animal(Name,Class ,Food),Habitat(Name,Habitat). (3.4)

V3(Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”mammal”. (3.5)

V4(Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”bird”. (3.6)

V5(Name, Food)← Animal(Name, Class, Food), Class = ”mammal”. (3.7)

We consider one bucket each for the subgoals Animal and Habitat as follows:



28

Table 3.2: Subgoal Buckets.

Animal Habitat

V 1 V2

V2

V 3

V 5

We can see from Table 3.2, that view V 2 appears in the buckets for Animal and

Habitat. 2

The multiple occurrence of a view in the buckets may cause unnecessary candidate

rewritings, when the algorithm creates a plan by taking a view from each bucket and

combining it with views in the other buckets. If b1, b2, ..., bl are subgoal buckets

created, each containing m1, m2, ..., mn number of views, the number of candidate

rewritings considered in this algorithm is m1 ×m2 × . . .×mn. The algorithm misses

the check where we can safely assume that, if a view is placed in a bucket of a subgoal,

then it does not appear in the bucket of any other subgoal. This check can reduce

the number of candidate rewritings.

3.7 Pruning Sources using Shared Variable Buck-

ets (SVB)

An enhancement to Bucket Algorithm [59] for detecting relevant sources looks at

shared variables if the condition for constructing single subgoal buckets is not satisfied

by the view. A shared variable is one that is used to join two predicates and is

identified in the body of a rule by the multiple occurrence of the same variable in

more than one predicate. The Shared Variable Bucket proceeds by constructing a

bucket representing all the subgoals containing a shared variable. A view is placed

in a bucket if it covers all the subgoals in the bucket. The built-in conditions in the

query and view definitions are also checked before the view is placed in the bucket.

Shared Variable Bucket is considered only if an existential variable in a query, that is
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mapped to a variable in the subgoal of a view also participates in a join.

Example 12 We use the source relations V 1, V 2, V 3, V 4 and V 5, the global rela-

tions Animal, Habitat, the view definitions in Example 11 and the query in Equation

(3.2). In this case, the shared variable buckets will not be considered because the ex-

istential variable in the query, say Class(or Food), is not a join variable. Hence, SVB

approach will proceed similar to SSB and create single subgoal buckets. 2

3.8 Pruning Sources using Minicon Descriptions

(MCD)

The Minicon Algorithm [62] starts with subgoals in the query, and once it finds a

partial mapping with a subgoal in a view, looks at the variables in the query. The

algorithm considers attributes that are part of a join and finds the minimal additional

set of subgoals, called Minicon Descriptions (MCDs), that need to be mapped with

subgoals of this view. TheMinicon Algorithm gives a rewriting for conjunctive queries

and conjunctive view definitions with arithmetic comparison predicates. The MCD

has similarities with SVB approach.

Example 13 We consider the same view definitions and query in Example 11. First,

MCD determines that the view definition V 2 has all the required predicates in the

body that match those in the query. Then, it accepts sources V 1, V 3 and V 5 also as

relevant, because of the presence of built-in condition Class = ”mammal”. Hence,

MCD detects sources V 1, V 2, V 3 and V 5 as required sources for computing a query

plan. 2

3.9 Pruning Query and Inverse Rules

The classic Inverse Rules Algorithm(IRA) [31] proceeds by assuming that only re-

quired sources are available. But, after computing the inverse rules, it considers only

those rules corresponding to the global predicates in the query.
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Example 14 Consider the local relation V 1, which is mapped to global relations

Animal, V ertebrate as follows:

V1(Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (3.8)

For the query in Equation (3.2) in Example 11, we identified V 1 as one of the required

sources. The inverse rules for V 1 is given as:

Animal(Name,Class ,Food)← V1(Name,Class ,Food).

Vertebrate(Name)← V1(Name,Class ,Food).

But the query in Equation (3.2) does not contain V ertebrate. Hence, this rule will

be dropped during query evaluation. 2

3.10 Review and General Observations

The creation of buckets and the minicon descriptions are primarily used in the Bucket

and Minicon algorithms respectively for producing candidate rewritings. That is, the

sources identified in these approaches are used in the second phase of the algorithm

for computing a (union of) conjunctive plan. In the case of EIRA, we use a logic

program-based specification, where it is desirable to use only the relevant rules based

on the relevant source relations. We do this by using part of the approach used in

SSB, SVB and MCDs, namely, checking for view definitions that violate the built-in

conditions in the query. We also perform some additional checks to prune the sources,

where possible. Then, we use the relevant sources to determine the required rules in

Simple Specification for computing certain answers. At this point, we also prune

rules that may be redundant. In the following sections, we present some general

observations based on our approach.
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3.10.1 Cartesian Product Queries

We consider queries where a predicate does not have a join variable. In such cases,

the query itself would require some pruning and we can safely disregard some global

relations while computing answers.

Example 15 Suppose we have global relation FoodList, containing attribute Food

mapped to a source relation FoodV 1 as follows:

FoodV 1(Food)← FoodList(Food). (3.9)

Consider a query that asks for animal names using global relations Habitat and

FoodList as follows:

Ans(Name)← Habitat(Name,Habitat), F oodList(Food). (3.10)

Here, the answer does not change in the absence of predicate FoodList in the query.

Hence, we could prune predicate FoodList in the query, so we are left with global

relation Habitat, to get required sources from the view definitions. 2

We use a query pruning step to check for those global predicates in a query that are

not required for computing answers. The global predicates in the query that do not

have a join variable with the predicates containing attributes that appear in the head

of the query are pruned.

3.10.2 Data Retrieval

The algorithms discussed in the preceding sections, detect relevant sources for a con-

junctive query expressed in terms of the global relations. However, in the context of

optimization, we also have to take into account how these sources are finally queried

to get relevant data.

Example 16 We use the relations and query in Example 11. The relevant source

relations for the query in 3.2 are V 1, V 2, V 3 and V 5. Querying V 3 and V 5 for
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all records is acceptable because they contain records of animals belonging to class

mammals only. But, V 1 contains animals belonging to other classes also. Hence, a

query to this source relation will have to retrieve only tuples satisfying the condition

Class = ”mammal”. 2

In this context, we are formulating a way to query data sources without actually

accessing them to analyze the records contained in them. So, a query to two different

sources may still retrieve some redundant records. The relation V 1 may contain a

tuple (V 1(dolphin,mammal, fish)), which is also available in V 3. We rely solely

on the description of the view definitions to understand and formulate the query to

source relations.



Chapter 4

Metadata Representation

In this chapter, we first describe XML and RuleML in general. We explain how XML

is used to represent part of the metadata and then, we describe how the language

specification of RuleML is used for representing mappings under the LAV approach.

We also illustrate, using examples, the entire metadata representation in XML and

RuleML.

4.1 XML Metadata

XML is recognized as a language of choice to use in information integration appli-

cations because of its ability to handle variations in information content [13] [57].

When specifying metadata for integrating data sources, XML offers the flexibility

of defining database schemas that vary from source to source, and also within each

of them because it offers representation of custom elements to describe the content

stored. Also, XML information can be parsed using many available parsers. XML

documents have a tree structure that starts at a root element and branches to child

elements. The XML elements are defined using tags. [21] gives a formal definition for

an XML tree. XML is a W3C recommendation [20] for storing and exchanging infor-

mation and XML data can be queried using XQuery, which is a W3C recommended

query language for XML.

We show how XML is used for describing metadata about source and global

schemas. The root element in the metadata representation is VirInt. The VirInt

33
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element has a child element Schema. The elements Global and Local are child

elements of Schema. The Global element lists details of the global schema, namely

the global relations, their attributes and integrity constraints. Within the Global

element, we represent global relations using element Rel and their attributes are

represented using element Var. Rel and Var are siblings and their parent element

is Atom. The usage of Atom, Rel and Var elements follows the specification of

RuleML (cf. Section 4.3). The schema diagram for the specification of global schema

is shown in Figure 4.1.

Figure 4.1: Global Schema

Listing 4.1 shows XMLSchema definition (XSD) for specifying global schema in

the metadata representation.

Listing 4.1: XMLSchema Definition for describing the Global Schema

1 <?xml v e r s i o n=”1.0” encoding=”UTF−8” ?>
2 <xs : schema xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”>
3 <xs : element name=”Vir Int”>
4 <xs : complexType>
5 <xs : sequence>
6 <xs : element r e f=”Schema” />
7 </xs : sequence>
8 </xs : complexType>
9 </xs : element>
10 <xs : element name=”Schema”>
11 <xs : complexType>
12 <xs : sequence>
13 <xs : element r e f=”Local ” />
14 <xs : element r e f=”Global ” />
15 </xs : sequence>
16 </xs : complexType>
17 </xs : element>
18 <xs : element name=”Global”>
19 <xs : complexType>
20 <xs : sequence>
21 <xs : element r e f=”Atom” maxOccurs=”unbounded” />
22 </xs : sequence>
23 </xs : complexType>
24 </xs : element>
25 </xs : schema>
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We follow the W3C standard for specifying the XML Schema Definition (XSD)

[65] of metadata. For instance, our XML Schema refers to an element in the metadata

representation using xs:element. The elements VirInt, Schema and Global are

defined as complex types because they contain child elements. Lines 10-17 in Listing

4.1 defines Schema as a complex type containing the sequence of child elements

Local and Global. The element Atom is defined as occurring multiple times in the

metadata representation (cf. Line 21 in Listing 4.1). The structure of Atom element

and its child elements, Rel and Var, use RuleML specification, which are explained

in detail in Section 4.3.

The details of sources are stored within element Local. We describe sources by

storing information about type of source (i.e. type of DBMS), connection parameters,

and structure of relations. We use descriptive tags for this purpose. The Source ele-

ment, which is a child element of Local, is used to list all data sources participating

in the system and their details. Source element has an attribute Name, which spec-

ifies the name of data source. The child elements for Source are Type, Hostname,

Databasename, Userid, Password and Atom.

The Type element specifies the name of DBMS used (ex. Mysql, SQL Server,

Oracle, etc.). The parameters for connecting to a particular data source are specified

by elements such as Userid, Password, Hostname and Databasename. The

connection parameters are typically provided when registering a source to a mediator.

The access information is used when connecting to a data source to extract data from

relevant source relations to answer a query. The names of source relations and their

attributes are specified similar to the way for the Global element. The schema

diagram for specification of local schema in the metadata is shown in Figure 4.2.

Listing 4.2 specifies the XSD for local schema in the metadata representation. The

elements Type, Hostname, Databasename, Userid and Password are simple

elements as they do not have any child elements and are of type xs:string (Lines

23-27).
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Figure 4.2: Local Schema

Listing 4.2: XMLSchema Definition for describing the Local Schema

1 <?xml v e r s i o n=”1.0” encoding=”UTF−8” ?>
2 <xs : schema xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”>
3 <xs : element name=”Local”>
4 <xs : complexType>
5 <xs : sequence>
6 <xs : element r e f=”Source ” maxOccurs=”unbounded” />
7 </xs : sequence>
8 </xs : complexType>
9 </xs : element>
10 <xs : element name=”Source”>
11 <xs : complexType>
12 <xs : sequence>
13 <xs : element r e f=”Type” />
14 <xs : element r e f=”Hostname” />
15 <xs : element r e f=”Databasename” />
16 <xs : element r e f=”User id ” />
17 <xs : element r e f=”Password” />
18 <xs : element r e f=”Atom” />
19 </xs : sequence>
20 <xs : a t t r i b u t e name=”name” type=”xs : s t r i n g ” use=”r equ i r ed ” />
21 </xs : complexType>
22 </xs : element>
23 <xs : element name=”Type” type=”xs : s t r i n g ”/>
24 <xs : element name=”Hostname” type=”xs : s t r i n g ”/>
25 <xs : element name=”Databasename” type=”xs : s t r i n g ”/>
26 <xs : element name=”User id ” type=”xs : s t r i n g ”/>
27 <xs : element name=”Password” type=”xs : s t r i n g ”/>
28 </xs : schema>
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Example 17 The XML metadata about data sources animalkingdom and ani-

malhabitat, structure of local relations V1 and V2, and global schema consisting

of Animal, Habitat and Vertebrate (cf. Example 1, Chapter 1) are specified as shown

in Listing 4.3. 2

Listing 4.3: Sample XML describing the Local and Global Schema

1 <Vir Int xmlns=”http ://www.w3 . org ”
2 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s tance ”
3 x s i : schemaLocation=”http :// l o c a l h o s t /VDI/ metadataVISS . xsd”>
4 <Schema>
5 <Local>
6 <Source name=”animalkingdom”>
7 <Type>sq l expr e s s </Type>
8 <Hostname>animalkingdom</Hostname>
9 <Databasename>animalkingdom</Databasename>
10 <Userid>t e s t</Userid>
11 <Password>t e s t</Password>
12 <Atom>
13 <Rel>V1</Rel>
14 <Var>Name</Var>
15 <Var>Class</Var>
16 <Var>Food</Var>
17 </Atom>
18 </Source>
19 <Source name=”anima lhabi ta t”>
20 <Type>mysql</Type>
21 <Hostname>animalhabitat </Hostname>
22 <Databasename>animalhabitat </Databasename>
23 <Userid>te s t1 </Userid>
24 <Password>te s t1 </Password>
25 <Atom>
26 <Rel>V2</Rel>
27 <Var>Name</Var>
28 <Var>Habitat</Var>
29 </Atom>
30 </Source>
31 </Local>
32 <Global>
33 <Atom>
34 <Rel>Animal</Rel>
35 <Var>Name</Var>
36 <Var>Class</Var>
37 <Var>Food</Var>
38 </Atom>
39 <Atom>
40 <Rel>Habitat</Rel>
41 <Var>Name</Var>
42 <Var>Habitat</Var>
43 </Atom>
44 <Atom>
45 <Rel>Vertebrate</Rel>
46 <Var>Name</Var>
47 </Atom>
48 </Global>
49 </Schema> </VirInt>
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Listing 4.3 describes source animalkingdom as a database in sqlexpress (a type of

Database Management System)(Line 7) and the source animalhabitat as a database

in mySql (Line 20). We list access information for the data sources in UserId and

Password elements (Lines 10-11). Each data source can have many source relations

made available to the mediator. Therefore, there may be a sequence of Atom el-

ements for a data source that are listed as child elements of Source element. The

global relations are listed as child elements of Global element (Lines 33-47).

4.2 Integrity Constraints (ICs)

The data sources may adhere to their own local integrity constraints but, when in-

tegrating data from multiple sources, we may obtain data that is inconsistent wrt to

some Global Integrity Constraints (GICs). The Global Integrity Constraints may be

persistent, i.e. stored in the mediator or provided with the user query. If the GICs are

stored in the mediator, they will have to be represented as part of the metadata. We

show how GICs are specified in our metadata representation. However, the GICs are

not used for detecting relevant sources. The representation of GICs provides scope to

extend our technique for detecting relevant sources in the presence of GICs.1 First,

we look at functional dependencies of the form, FD : X → Y , where X and Y are

attributes of a global relation R. That is, each value of X is associated with only

one value of Y . We express this using IC : ¬(R(X, Y ) ∧ R(X,Z) ∧ Y 6= Z). The

schema diagram for metadata representation of this functional dependency is shown

in Figure 4.3.

Figure 4.3: IC: Functional Dependency

1[24] provides a mechanism to optimize repair programs for consistent query answering in the
presence of program constraints.
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Example 18 We illustrate the violation of functional dependency when integrating

data from multiple sources. We consider source relation V 1 as in Example 17. Sup-

pose we have a relation V 7 in a data source that contains data about animals similar

to V 1. The extension for V 7 is given by, v7 = {(frog, amphibian, worms), (parrot,

bird, nuts)}. Both V 1 and V 7 satisfy local functional dependency: Name → Food.

The mapping for V 7 is:

V 7(Name, Class, Food) ← Animal(Name, Class, Food), V ertebrate(Name).

The global data, however, does not satisfy the same functional dependency,

when considered as a Global IC. This is because V 1 contains a tuple

{(frog, amphibian, insect)}. 2

In cases such as Example 18, it becomes necessary to retrieve those answers that

are consistent wrt GICs, at query time. Global ICs can be specified in our XML

metadata representation. An example is shown in listing 4.4 for representing the

functional dependency illustrated in Example 18.
Listing 4.4: Representation of ICs

1 <Rulebase xmlns : r u l e=”http ://www. ru leml . org /0 .91/ xsd”
2 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s tance ”
3 x s i : schemaLocation=”http ://www. ru leml . org /0 .91/ xsd f i l e : data log . xsd”>
4 <Neg>
5 <And>
6 <Atom>
7 <Rel>Animal</Rel>
8 <Ind>X</Ind>
9 <Var>Class</Var>
10 <Ind>Y</Ind>
11 </Atom>
12 <Atom>
13 <Rel>Animal</Rel>
14 <Ind>X</Ind>
15 <Var>Class</Var>
16 <Ind>Z</Ind>
17 </Atom>
18 </And>
19 </Neg>
20 </Rulebase>

The element Rulebase is used to list the sequence of formulae acting as integrity

constraints (Line 1). The representation shows that there cannot be two tuples in

Animal, having values for attribute at position 3 (i.e. Food) (Lines 6-11) different

for the same value of attribute at position 1 (i.e. Name) (Lines 12-17). We also
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show representation of GICs, which specify dependency between relations, such as

universal and referential integrity constraints [8].

Example 19 Consider integrity constraints IC : ∀X(P (X)→ Q(X)), ∀X(Q(X)→

R(X)), ∀X(T (X) → P (X)). We represent the dependencies using XML representa-

tion shown in Listing 4.5. 2

Listing 4.5: Representation of FDs in metadata XML

<Rulebase xmlns : r u l e=”http ://www. ru leml . org /0 .91/ xsd”
xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s tance ”
x s i : schemaLocation=”http ://www. ru leml . org /0 .91/ xsd f i l e : data log . xsd”>

<Impl i e s>
<head>

<Atom>
<Rel>Q</Rel>
<Var>X</Var>

</Atom>
</head>
<body>

<Atom>
<Rel>P</Rel>
<Var>X</Var>

</Atom>
</body>

</Impl i e s>
<Impl i e s>

<head>
<Atom>

<Rel>R</Rel>
<Var>X</Var>

</Atom>
</head>
<body>

<Atom>
<Rel>Q</Rel>
<Var>X</Var>

</Atom>
</body>

</Impl i e s>
<Impl i e s>

<head>
<Atom>

<Rel>P</Rel>
<Var>X</Var>

</Atom>
</head>
<body>

<Atom>
<Rel>T</Rel>
<Var>X</Var>

</Atom>
</body>

</Impl i e s></Rulebase>
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Here, we use RuleML elements to specify GICs. We describe RuleML specification

in Section 4.3.

4.3 RuleML and Metadata Mappings

The mappings between global and local schemas inVISS is represented using RuleML

[17]. RuleML is a markup language for representing logical rules. RuleML 0.9 in-

troduced First-order logic sublanguage and its semantics is derived from classical

first order logic model theory. The First-Order Logic RuleML is a sublanguage of

Derivation RuleML [17]. Datalog, as represented in RuleML, is a sublanguage of

First-Order Logic RuleML. The RuleML sublanguages and modules are shown in

Figure 4.4. The Datalog sublanguage of RuleML has the required language specifica-

tions for representing view definitions under the LAV approach. In the next sections,

we describe the specific modules, from Datalog sublanguage of RuleML, that is used

for representing LAV mappings.

FOL+

folog

dishornlog

hornlog

datalog Negation 
Datalog

nafnegdatalog

negdatalog

nafdatalog

Binary

bindatalog

bindatagroundlog

bindatagroundfact

Atom
degree

op
Rel

@uri

Forall
Exists

declare
formula

RuleML
Assert
Retract
Query

formula

slot
@card

@weight

oid

arg
Ind

Data
Var

Skolem
Reify

@index
@type

Implies
body
head

Entails
Equivalent

torso
Rulebase

And
Or

formula
@material

@mapMaterial
@mapDirection

@direction
@mapClosure

@closure

atomquantifier

term

slot

performative

desc uri

connective

Figure 4.4: RuleML SubLanguages and Modules
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4.4 RuleML Modules

We use elements from connective, performative, term and atom modules of the Datalog

sublanguage of RuleML to represent mappings. We explain the specification of each

element and how they are used in LAV mappings in the following sections.

4.4.1 Performative Module

The performative module [17] contains elements and attributes for RuleML performa-

tives. A performative is a clause that does not evaluate to true or false. The elements

in performative module used to represent LAV mappings are:

RuleML: This element is the n-ary top-level element of a RuleML document.

RuleML permits ordered sets of performatives such as Assert.

Assert: This element acts as a wrapper specifying that its content is a formula,

making an implicit Rulebase assumption. The part of the XML Schema for per-

formative module that defines RuleML and Assert elements is shown in Listing

4.6.

Listing 4.6: XMLSchema Definition (XSD) for Performative Module

<!−− ∗∗∗ RuleML ∗∗∗ −−>
<xs : element name=”RuleML” type=”RuleML. type”/>
<xs : complexType name=”RuleML . type”>

<xs : group r e f=”RuleML . content”/>
</xs : complexType>
<xs : group name=”RuleML. content”>

<xs : sequence>
<xs : cho i c e minOccurs=”0” maxOccurs=”unbounded”>

<xs : element r e f=”Asser t”/>
</xs : cho ice>

</xs : sequence>
</xs : group>
<!−− ∗∗∗ Asser t ∗∗∗ −−>
<xs : element name=”Asser t ” type=”Asser t . type”/>
<xs : complexType name=”Asser t . type”>
</xs : complexType>

4.4.2 Connective Module

The connective module [17] contains elements and attributes for RuleML connectives.

A connective is an operation on one or more atoms resulting in a compound state-

ment with a truth value. The elements in connective module that are used in the

representation of LAV mappings are:
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Implies: This element denotes an implication rule. It consists of a conclusion

role (head), followed by a premise role (body) or equivalently (since roles constitute

unordered elements), a premise role, followed by a conclusion role.

body: This element represents the body of an implication rule denoted by element

Implies. It contains the premise(s), also known as ”antecedent” or ”if” part of the

rule.

head: This element represents head of an implication rule (Implies). It contains

the conclusion, also known as ”consequent” or ”then” part of the rule.

And: This element represents a conjunctive expression. We use this to represent

the body of a view definition. If the body of the view definition contains only one

predicate, this element can be ignored. That is, <And>Atom</And> is equivalent to

Atom.

The schema diagram for elements RuleML, Assert, Implies, head and body

is given in Figure 4.5.

Figure 4.5: LAV Mapping using RuleML Elements

The part of the XML Schema for connective module that defines Implies, head,

body and And elements is shown in Listing 4.7.

Listing 4.7: XMLSchema Definition (XSD) for Connective Module

<!−− ∗∗∗ Imp l i e s ∗∗∗ −−>
<xs : element name=”Impl i e s ” type=”Impl i e s . type”/>
<xs : complexType name=”Impl i e s . type”>

<xs : group r e f=”Imp l i e s . content”/>
</xs : complexType>
<xs : group name=”Impl i e s . content”>

<xs : sequence>
<xs : element r e f=”head”/>
<xs : element r e f=”body”/>

</xs : sequence>
</xs : group>
<!−− ∗∗∗ body ∗∗∗ −−>
<xs : element name=”body” type=”body . type”/>
<xs : complexType name=”body . type”>

<xs : group r e f=”body . content”/>
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</xs : complexType>
<xs : group name=”body . content”>

<xs : cho ice>
<xs : element name=”Atom” type=”Atom . type”/>
<xs : element name=”And” type=”And−i nne r . type”/>
<xs : element name=”Or” type=”Or−i nne r . type”/>

</xs : cho ice>
</xs : group>
<!−− ∗∗∗ head ∗∗∗ −−>
<xs : element name=”head” type=”head . type”/>
<xs : complexType name=”head . type”>

<xs : group r e f=”head . content”/>
</xs : complexType>
<xs : group name=”head . content”>

<xs : cho ice>
<xs : element name=”Atom” type=”Atom . type”/>

</xs : cho ice>
</xs : group>
<!−− ∗∗∗ And ∗∗∗ −−>
<xs : element name=”And” type=”And−i nne r . type”/>
<xs : complexType name=”And−i nne r . type”>

<xs : group r e f=”And . content”/>
</xs : complexType>
<xs : group name=”And . content”>

<xs : sequence>
<xs : element name=”Atom” type=”Atom . type”/>

</xs : sequence>
</xs : group>

4.4.3 Atom Module

The atom module [17] contains elements and attributes for RuleML atoms. An atom

is a formula, which does not contain any subformulas. The elements in atom module

that are used in the representation of LAV mappings are:

Atom: This element denotes a logical atom, i.e. an expression formed from a

predicate (or relation) applied to a collection of its (logical) arguments or attributes.

Rel: This element denotes a relation, i.e. a logical predicate, of an atom (Atom).

The part of the XML Schema for atom module that defines Atom and Rel ele-

ments is shown in Listing 4.8.
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Listing 4.8: XMLSchema Definition (XSD) for Atom Module

<!−− ∗∗∗ Atom ∗∗∗ −−>
<xs : element name=”Atom” type=”Atom . type”/>

<xs : complexType name=”Atom . type”>
<xs : group r e f=”Atom. content”/>

</xs : complexType>
<xs : group name=”Atom . content”>

<xs : sequence>
<xs : element r e f=”Rel”/>
<xs : cho ice>

<xs : element r e f=”Var”/>
<xs : element r e f=”Ind”/>

</xs : cho ice>
</xs : sequence>

</xs : group>
<!−− ∗∗∗ Rel ∗∗∗ −−>
<xs : element name=”Rel” type=”Rel . type”/>
<xs : complexType name=”Rel . type ” mixed=”true”>

<xs : group r e f=”Rel . content”/>
</xs : complexType>
<xs : group name=”Rel . content”>

<xs : sequence/>
</xs : group>

4.4.4 Term Module

The term module [17] contains elements and attributes for RuleML terms. A term is

part of a predicate and refers to variables or constant. The elements in term module

that are used in the representation of LAV mappings are:

Var: This element denotes a logical variable, as in logic programming. It takes

the optional attribute @type, which specifies a term’s (user-defined) type.

Ind: This element denotes an individual constant, as in predicate logic. It takes

the optional attribute @type. The attribute @type specifies a term’s (user-defined)

type.

The schema diagram for elements representing the head and body of a view defi-

nition is given in Figure 4.6 and 4.7.
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Figure 4.6: Head of Mapping using RuleML Elements

Figure 4.7: Body of Mapping using RuleML Elements

The part of the XML Schema for term module that defines Var and Ind elements

is shown in Listing 4.9.

Listing 4.9: XMLSchema Definition (XSD) for Term Module

<!−− ∗∗∗ Var ∗∗∗ −−>
<xs : element name=”Var” type=”Var . type”/>
<xs : complexType name=”Var . type ” mixed=”true”>

<xs : group r e f=”Var . content”/>
<xs : a ttr ibuteGroup r e f=”Var . a t t l i s t ”/>

</xs : complexType>
<xs : a ttr ibuteGroup name=”Var . a t t l i s t ”>

<xs : a ttr ibuteGroup r e f=”type . a t t r i b ”/>
</xs : attr ibuteGroup>
<xs : group name=”Var . content”>

<xs : sequence/>
</xs : group>
<!−− ∗∗∗ Ind ∗∗∗ −−>
<xs : element name=”Ind” type=”Ind . type”/>
<xs : complexType name=”Ind . type ” mixed=”true”>

<xs : group r e f=”Ind . content”/>
<xs : a ttr ibuteGroup r e f=”Ind . a t t l i s t ”/>

</xs : complexType>
<xs : a ttr ibuteGroup name=”Ind . a t t l i s t ”>

<xs : a ttr ibuteGroup r e f=”type . a t t r i b ”/>
</xs : attr ibuteGroup>
<xs : group name=”Ind . content”>

<xs : sequence/>
</xs : group>
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4.4.5 Representing Mappings using RuleML

We illustrate the use of RuleML elements for representing mappings under the LAV

approach using Example 20.

Example 20 (Example 1 continued) We use the view definitions of source relations

V1 and V5. These source relations are described as views of the global schema,

consisting of Animal and Vertebrate as follows:

V1(Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (4.1)

V5(Name, Food)← Animal(Name, Class, Food), Class = ”mammal”. (4.2)

We represent the above mappings using RuleML specification as shown in Listing

4.10. 2

Listing 4.10: Representation of LAV Mappings using RuleML

1 <RuleML xmlns : r u l e=”http ://www. ru leml . org /0 .91/ xsd”
2 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s tance ”
3 x s i : schemaLocation=”http ://www. ru leml . org /0 .91/ xsd
4 f i l e : data log . xsd”>
5 <Assert>
6 <Impl i e s>
7 <head>
8 <Atom>
9 <Rel>V1</Rel>
10 <Var>Name</Var>
11 <Var>Class</Var>
12 <Var>Food</Var>
13 </Atom>
14 </head>
15 <body>
16 <And>
17 <Atom>
18 <Rel>Animal</Rel>
19 <Var>Name</Var>
20 <Var>Class</Var>
21 <Var>Food</Var>
22 </Atom>
23 <Atom>
24 <Rel>Vertebrate</Rel>
25 <Var>Name</Var>
26 </Atom>
27 </And>
28 </body>
29 </Impl i e s>
30 <Impl i e s>
31 <head>
32 <Atom>
33 <Rel>V5</Rel>
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34 <Var>Name</Var>
35 <Var>Food</Var>
36 </Atom>
37 </head>
38 <body>
39 <And>
40 <Atom>
41 <Rel>Animal</Rel>
42 <Var>Name</Var>
43 <Ind>mammal</Ind>
44 <Var>Food</Var>
45 </Atom>
46 </And>
47 </body>
48 </Impl i e s>
49 </Assert>
50 </RuleML>

Lines 1-4 show that, the representation follows the XML Schema definition of Dat-

alog sublanguage of RuleML and uses elements from http://www.ruleml.org/0.91/xsd

namespace. As per the specification of Datalog sublanguage of RuleML, the database

predicates are represented using Rel (Line 9, 18), their attributes are represented

using Var (Lines 10-12) and the built-in values using Ind (Line 43). And indicates

conjunction of predicates in the body of the view definition (Line 16). Implies de-

scribes the view definition is an implication (Line 6), and hence, contains head and

body elements. Assert opens and closes the list of view definitions (Line 5).

RuleML specifies the representation of built-in conditions as shown in Listing 4.10.

Here, the attribute at position 2 for relation Animal (which is Class), has a built-in

value represented by element Ind. The value of the built-in is shown as equal to

”mammal”. There is another way of representing the built-in value, using RuleML

specification. We show this for the condition Class = ”mammal” as follows:

<Atom>
<Rel>Class</Rel>
<Ind>mammal</Ind>

</Atom>

Here, the built-in condition is specified using an object-oriented approach using

attributes as objects (i.e. Rel). We follow the approach in Listing 4.10 as this is

more straight-forward.



Chapter 5

Optimizing the EIRA

In this chapter, we describe the theory behind our pruning approach to detect relevant

sources and query the required data from these sources, which can be used with

the logic program from Simple Specification (cf. Section 2.4 in Chapter 2). We

discuss how the pruning approach is actually implemented in VISS when querying

the metadata in Chapter 6. The specification of a subclass of legal instances of the

integration system is used to compute certain answers to monotone queries. We refer

to the specification as Simple Specification. We describe how we can prune rules

for some global predicates in the logic program obtained, based on a reduced list of

sources. We also show how sources are queried based on built-ins in the query. We

start by defining some of the terms used in this chapter.

5.1 Definitions

A source relation V is defined in terms of global relations in LAV as:

V (X)← P1(X1), P2(X2), .., Pk(Xk), Cv. (5.1)

Here, the body is a conjunction of global relations Pi(Xi), i = 1, .., k and built-in

conditions Cv. We assume that, the rules are safe, i.e. all variables occurring in the

head of the rule are also present in the body of the rule. We also assume that, if a

variable is part of a built-in condition, it also appears as part of a predicate in that

49
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rule. A join variable is one that occurs in more than one predicate in the body of the

rule. A query, Q(X̄) is given as:

Q(X̄)← P1(X1), P2(X2), .., Pn(Xn), Cq. (5.2)

Here, Pi, i = 1, .., n, are global relations and Xi, i = 1, .., n, are variables in the body

of the query. The body of the query is a conjunction of atoms on global relations.

Cq is a conjunction of built-in conditions, namely, any of =,≤,≥ and 6=. We define

source relevance for answering a query using dependency graph [24].

Definition 1 A source predicate V is relevant to obtain certain answers to a Datalog

query Q given by Equation (5.2), if there exists a mapping given by Equation (5.1)

such that, Pi is in the antecedent of the mapping and V appears in the consequent

of the mapping and Pi appears in Q.

Example 21 We consider the global relations Animal(Name, Class, Food), Habi-

tat(Name, Habitat) and the source relations V 1, V 2 in our running example given

as:

V1 (Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (5.3)

V2 (Name,Habitat)← Animal(Name,Class ,Food),Habitat(Name,Habitat). (5.4)

We consider the Datalog query:

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat).(5.5)

V 1 is the consequent of the mapping whose antecedent contains the global predicate

Animal and V 2 is the consequent of the mapping whose antecedent contains the

global predicates Animal and Habitat. Both Animal and Habitat appear in the

body of the query Ans(Name,Habitat). Using Definition 1, we get V 1 and V 2 as

required sources. 2
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Table 5.1: Optimization Steps

Ref.

Name

Description

QP (1) Retain global predicate in the query that are joined by atleast one

variable or contains a variable that appears in the head of the query.

SP

(1) Identify list of source relations whose view definitions have atleast

one global predicate in the body same as the predicates in the body

of the query.

(2) Identify view definitions whose head contains atleast one variable

that is in the head of the query or contains a variable that is one of

the join variables in the body of the query.

(3) Identify view definitions whose body (if it contains equality built-

ins) does not violate any of the equality built-ins in the query.

SQC (1) Apply the built-in conditions in the query to the appropriate vari-

ables in the source relations when querying to retrieve data from the

source.

RP
(1) Generate logic program for Simple Specification using the reduced

list of sources and retain the rules for the global predicates in the body

of the query.

(2) Prune redundant rules from the logic program from Simple Speci-

fication.

Our optimization approach starts by analyzing the query and pruning the query, if

possible. We refer to this step as Query Pruning (QP). The required view definitions

are determined by looking at the global relations in the query and checking certain

conditions. We refer to this step as Source Pruning (SP). We then generate statements
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to query source relations from the SP step and apply built-in conditions from the

query. This step is referred as Source Query Condition (SQC). The logic program

from simple specification is generated for the source relations obtained from the SP

step and rules are further pruned, if possible. This step is referred as Rules Pruning

(RP). The steps and their criteria are listed in Table 5.1. We explain each step in

detail in the subsequent sections.

5.2 Query Pruning

We show how to reduce the query itself, where possible, as a first step in our opti-

mization process. Pruning the query involves removing those global predicates from

the body of the query, that are not involved in the computation of answers to the

query.

Algorithm 1 Query Pruning

Require: Q(X̄),Vi

1: procedure QueryPruning(RelSource)
2: RelSource = 0
3: RelPred = false

4: PredHead = List of predicates in query body with var appearing in X̄

5: JoinV ar = List of variables in PredHead

6: for each predicate Pi in body of Q(X̄) do
7: for each variable Xj in Pi do
8: if Xj ∈ JoinV ar then
9: RelPred = true

10: else if Xj ∈ X̄ then
11: RelPred = true

12: end if
13: end for
14: if RelPred = false then
15: Remove Pi from body of Q(X̄)
16: end if
17: RelPred = false

18: end for
19: return RelSource

20: end procedure

Algorithm 1 verifies that both the following conditions holds true for pruning the

global predicates in the query:
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(a) The global predicate in the body of the query does not contain a join variable(s)

with a global predicate that has variables appearing in the head of the query (Lines

7-9).

(b) The global predicate in the body of the query does not contain a variable that

appears in the head of the query (Lines 10-13).

The first condition ensures that global predicates in the query program, which

share a join variable with a global predicate that provides tuples in the answer for

the query, are considered. If the first condition fails, the second condition checks if

the variables in the global predicate are in the head of the query. These conditions are

effective in queries involving cartesian products, where only a subset of the predicates

in the body of the query actually participate in providing answers.

Example 22 Suppose the mediator contains only the following mappings:

V1 (Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (5.6)

ClassV 1(Class)← ClassList(Class). (5.7)

HabitatV 1(Habitat)← Environment(Habitat). (5.8)

WaterAvail(Habitat, Avail)← Water(Habitat, Avail). (5.9)

Consider a Datalog query, Π(Q), to get the name of animals and the class, where the

animals belong:

Ans(Name, Class) ← Animal(Name, Class, Food), ClassList(Class),

Environment(Habitat),Water(Habitat, Avail).(5.10)

The global predicates Animal and ClassList are joined by the variable Class and

contain atleast one of the attributes Name or Class, which appear in the head of

the query. But, the global predicate Environment does not have a join variable with

Animal or ClassList. Also, the head of the query does not contain variable Habitat.

Hence, Environment can be pruned from the query. The global predicate Water can
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also be pruned for the same reasons, even though it contains a join variable with

Environment. So, we now have global predicates Animal and ClassList to get the

required sources.

Ans(Name, Class)←Animal(Name, Class, Food), ClassList(Class). (5.11)

Conditions, such as the predicates Water and Environment in Equation (5.10), are

not common; and it does not make much sense to use them in practice. 2

If t is a tuple obtained for the query in Equation (5.10), then the same tuple t is

obtained from Equation (5.11), after pruning the global predicates.

Consider a conjunctive query without built-ins given by:

Q(X̄) ←
∧n

i=1 Pi(Xi),
∧m

j=1Rj(Yj), where, Pi, Rj are predicates, Xi, Yj are

tuples of variables/constants and X̄ ⊆ Xi. If the predicates Rj have non-empty

extensions and do not have a join variable with any of the predicates Pi (i.e. Yj and

Xi are disjoint) and the predicates Rj do not provide tuples in the head of the query

(i.e. X̄ and Yj are disjoint), then the pruned query Q
′

(X̄) ←
∧n

i=1 Pi(Xi) produces

the same set of tuples as Q.

5.3 Source Pruning

We now detect the required source relations based on the information available in the

view definitions. Our approach does not provide a minimal set of sources but gives

a reduced set, based on certain conditions. When there are built-in conditions in the

query, we consider only the equality conditions. Identifying relevant source relations

based on operators, such as ≤,≥ and 6= in the query becomes more complex as shown

in Example 23.

Example 23 Suppose we have a condition x ≥ c1 in the query, where x is a variable

in the global relation gi and c1 is a constant. The query is given as: Q(x)← gi(x), x ≥

c1. If there is a source relation Vi, defined in terms of gi with a built-in condition

x ≥ c2 as: Vi(x) ← gi(x), x ≥ c2, where c2 is a constant. If c1 < c2, all tuples in Vi
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become relevant to the query. But, if c1 > c2, Vi may still contain some relevant tuples

to provide answers for the query. Hence, we will have to consider source relation Vi

as required in both cases. 2

For ease of description, we assume that for the same global predicate in the query and

view definition, the variable names for the global relation in the query and the variable

names for the global relation in the view definition are the same. In Algorithm 1, we

also get a list of relevant source relations when we check if the predicate in the body

of the query appears in the body of a view definition for a source relation (cf. Line 8

in Algorithm 1).
Algorithm 2 Source Pruning

Require: Q(X̄), RS

1: procedure SourcePruning(RS,RelSrc)
2: RelSrc = 0
3: JoinV ar = List of join variables in the body of Q(X̄)
4: HeadV ar = List of variables in the head of Q(X̄)
5: for each variable Xk in predicate Vi in RS do
6: if Xk ∈ HeadV ar then
7: RelSrc← Vi

8: exit loop
9: else if Xk ∈ JoinV ar then
10: RelSrc← Vi

11: exit loop
12: end if
13: end for
14: for each predicate Vi in RelSrc do
15: for each equality built-in Cqi in Q(X̄) do
16: if Cvi is true and Cvi satisfies Cqi then
17: else if Cvi is true and Cvi not satisfy Cqi then
18: Remove Vi from RelSrc

19: exit loop
20: end if
21: end for
22: end for
23: return RelSrc

24: end procedure

Algorithm 2 uses the list of sources obtained as RelSource from Algorithm 1 and

applies the following conditions to further reduce the number of source relations:

(a) If the head of a view definition contains a variable from the head of the query

or a join variable in the query, then that source is selected.
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(b) Using the equality built-ins in the body of the query, and from the list of

sources, RelSrc, obtained from (a), we check if the body of the view definition contains

a equality condition on the same variable as the query built-in. If it does, we check

if the value of the built-in violates the equality condition in the query. If this is the

case, we remove that source relation from RelSrc. The sources that do not have a

built-in condition or do not violate the equality built-in condition are retained in the

list. We illustrate these steps using the following example.

Example 24 We consider the global relations Animal(Name, Class, Food), Habi-

tat(Name, Habitat) and the source relations V 1, V 2, V 3, V 4, V 5 in our running

example and a source relation V 6(Class) whose extension is ”mammal”, ”bird”,

”amphibian”. The mappings are given as:

V1 (Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (5.12)

V2 (Name,Habitat)← Animal(Name,Class ,Food),Habitat(Name,Habitat). (5.13)

V3 (Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”mammal”. (5.14)

V4 (Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”bird”. (5.15)

V 5(Name, Food)← Animal(Name, Class, Food), Class = ”mammal”. (5.16)

V 6(Class)← Animal(Name, Class, Food). (5.17)

We consider the Datalog query:

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Class = ”mammal”. (5.18)

From Algorithm 1, we get the list of sources, V 1, V 2, V 3, V 4, V 5 and V 6, to consider

for pruning. The variables in the head of the query are Name,Habitat and the join

variable is Name. Using these, we look at the view definitions and select V 1, V 2, V 3,

V 4 and V 5. We eliminate V 6 because it does not contain the head or join variables in
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the query. Next, we check if the built-ins in the query are used in the view definition

for V 3, V 4 and V 5. But, V 4 violates the equality condition and hence, we eliminate

this relation. The reduced set of sources obtained are: V 1, V 2, V 3 and V 5. 2

In some cases, the view definitions that contain variables in the head, which are

all the variables in the head of the query is sufficient to compute the answers. In

Example 24, if we do not have the built-in Class = ”mammal”, then just V 2 is

sufficient to answer the query.

5.4 Source Query Condition

We showed how we obtain a reduced list of sources based on the conditions in the

query and view definitions. We use the sources from the SP step to retrieve data used

as facts in the logic program for computing certain answers. However, retrieving all

the data, when we require only a subset of data is inefficient. Hence, the next step in

our optimization is to apply the built-in conditions from the query to the sources to

retrieve the appropriate data.

Algorithm 3 Source Query

Require: Q(X̄), RelSrc

1: procedure SourceQuery(RelSrc, Q)
2: BltV ar = List of built− in variables in the body of Q(X̄)
3: for each predicate Vi in RelSrc do
4: for each variable Xk in predicate Vi do
5: if Xk ∈ BltV ar then
6: Concatenate data retrieval query for Vi with condition for Xk

7: end if
8: end for
9: end for
10: end procedure

First, we look at source relations that contain the built-in variables from the

query. For these source relations, we apply built-in conditions from the query for the

appropriate variables. The source relations that do not contain the built-in variables,

are queried for all the data. In this step, we consider all built-in operators, viz.
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=,≥,≤, >,< and 6= that are present in the query. We show the steps in Algorithm

3.

Example 25 We use the list of sources obtained in Example 24, viz. V 1, V 2, V 3

and V 5. The query in Equation (5.18) in Example 24, contains a built-in Class =

”mammal”. The source relations V 1 and V 3 contain variable Class. Hence, the

query statements generated for the source relations are:

Select distinct ∗ from V 1 where Class = ”mammal”

Select distinct ∗ from V 2

Select distinct ∗ from V 3 where Class = ”mammal”

Select distinct ∗ from V 5

V 3 uses the condition Class = ”mammal” even though it contains only ani-

mals that are mammals. In this case, incorporating this condition does not make a

difference in data retrieval. 2

The queries obtained in Example 25, uses the clause distinct to retrieve non-redundant

tuples from a relation.

5.5 Rule Pruning

The reduced list of sources obtained from SP step, is used to shortlist the mappings,

required to generate the Simple Specification (cf. Section 2.4 in Chapter 2). From

the list of mappings, we remove those global predicates that do not appear in the

body of the query. We then generate the logic program for the Simple Specification

(cf. Section 2.4 in Chapter 2) with some modifications as follows:

1. The facts: We use query commands with built-ins, obtained from SQC step,

for every source in RelSrc. As a result, we do not generate the logic program with

domain constants and program facts, which means listing all the data in the source

relations in the logic program. Instead, we use import commands that can be run in

DLV [52], a disjunctive Datalog system, which directly brings the required data from

the source relations into main memory, when running the logic program. Thus, we

eliminate the use of V (ā) in the Simple Specification.
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2. For every view (source) predicate V in the system with definition, V (X̄) ←

P1(X̄1), ..., Pn(X̄n), the rules:

Pj(X̄j) ← V (X̄),
∧

Xi∈(X̄j\X̄)

choicei(X̄,Xi), j = 1, ...n.

Here, instead of having two rules, one mapping to auxiliary predicate Fi, which then

maps to the choice operator, we replace the auxiliary predicate Fi with the choice

operator directly.

The RP step and the whole logic program is illustrated in Example 26.

Example 26 (Example 25 continued) We use the mappings for source relations V 1,

V 2, V 3 and V 5 that are identified as relevant for answering the query in Equation

(5.18). The mapping for V 1 contains the global relation V ertebrate in the body,

which does not appear in the body of the query. Hence, the rule corresponding to

this global relation is not considered. We generate the logic program for Simple

Specification using view definitions for V 1, V 2, V 3 and V 5 as follows:

Animal(Name, Class, Food) ← V 1(Name, Class, Food).

Animal(Name, Class, Food) ← V 2(Name,Habitat),

chosen1(Name,Habitat, Class),

chosen2(Name,Habitat, Food).

chosen1(Name,Habitat, Class) ← V 2(Name,Habitat), dom(Class),

not diffchoice1(Name,Habitat, Class).

diffchoice1(Name,Habitat, Class) ← chosen1(Name,Habitat, U),

dom(Class), U 6= Class.

chosen2(Name,Habitat, Food) ← V 2(Name,Habitat), dom(Food),

not diffchoice2(Name,Habitat, Food).

diffchoice2(Name,Habitat, Food) ← chosen2(Name,Habitat, U),

dom(Food), U 6= Food.

Habitat(Name,Habitat) ← V 2(Name,Habitat).

Animal(Name, ”mammal”, F ood) ← V 3(Name, Class, Food).

Animal(Name, ”mammal”, F ood) ← V 5(Name, Food),

chosen3(Name, Food, Class).
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chosen3(Name, Food, Class) ← V 5(Name, Food), dom(Class),

not diffchoice3(Name, Food, Class).

diffchoice3(Name, Food, Class) ← chosen3(Name, Food, U),

dom(Class), U 6= Class. 2

The dom predicates in the logic program are defined by additional rules as illustrated

in Example 27.

5.6 The Domain Predicate

The dom(a) atoms are obtained from rules that define dom predicates using the

relevant source predicates. To do this, the existential variables are identified from

the view definitions of the relevant source relations. The source predicates whose

extensions contain values for the existential variables are used for defining the dom

predicate. The source predicates are loaded with values from the relevant data sources

using import commands.

Example 27 (Example 26 continued) From the relevant source relations identified

for answering the query in Equation (5.18), V 2 and V 5 have existential variables

Class and Food in their view definitions (cf. Equation (5.13) and (5.16)). The

source relations V 1, V 3 and V 5 contain values for the attributes Class and Food.

Hence, the rules for dom predicates are defined as follows:

dom(Class)←V 1( , Class, ).

dom(Food)←V 1( , , F ood).

dom(Class)←V 3( , Class, ).

dom(Food)←V 3( , , F ood).

dom(Food)←V 5( , F ood).

The import command for a source relation loads data into the corresponding

source predicate when running the logic program in DLV. The import command for

V 1 is as follows:
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#import (animalkingdom, ”test”, ”test”, ”Select Distinct ∗ From V 1

where Class = ′mammal′”,V1, type : Q Const, Q Const,

Q Const).

The import command loads the result of the query statement against the source

relation V 1 in the datasource animalkingdom into the predicate in the logic program

(V 1 in bold). We use facts from the relevant source relations in the active domain

and this reduces the number of ground atoms in the stable models. The ” ” in the

body of the rules is used to mask the other attributes, which do not appear anywhere

else in the same rule [52]. We combine the rules for the dom predicates with the logic

program in Example 26, the query commands obtained in Example 25 and the query

in Equation (5.18) in Example 24, to compute certain answers for Equation (5.18).2

5.7 Disjunctive Queries

We consider disjunction of conjunctive queries in the presence of equality built-ins.

The query may also contain other type of built-in operators such as ≥, ≤ and 6=. The

query is given as:

Q(X̄)←

n∧

i=1

Pi(Ȳ ), Cj, Ck.

Q(X̄)←
m∧

l=1

Rl(Z̄), Cj, Ct.

Here, Cj is a conjunction of built-in conditions using equality operator and Cl, Ct

are conjunction of built-in conditions using ≥ and ≤. We consider each conjunctive

query at a time and use the query pruning (QP) and source pruning (SP) steps (cf.

Section 5.2 and 5.3).

Example 28 Consider a disjunctive query that asks for animals belonging to class
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mammal and those belonging to class bird,

Ans(Name, Food) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Class = ”mammal”. (5.19)

Ans(Name, Food) ← Animal(Name, Class, Food), Class = ”bird”. (5.20)

In this case, none of the global predicates in the query is pruned in the QP step.

Using SP step, we get V 1, V 2, V 3, V 5 as the list of required sources for Equation

(5.17) and V 1, V 2, V 4 as the list of required sources for Equation (5.18). In the SQC

step, we get the following query commands for the sources:

SELECT Distinct ∗ FROM V 1 where Class = ”mammal”.

SELECT Distinct ∗ FROM V 3 where Class = ”mammal”.

SELECT Distinct ∗ FROM V 2.

SELECT Distinct ∗ FROM V 5.

SELECT Distinct ∗ FROM V 1 where Class = ”bird”.

SELECT Distinct ∗ FROM V 4 where Class = ”bird”.

The rules for view definitions V 1, V 2, V 3, V 4, V 5 are generated using Simple Spec-

ification in the RP step. Combining and running the query commands, rules and

query program in DLV, gives certain answers for the disjunctive query. 2

When a disjunctive query is posed in terms of the global relations in VISS, the

metadata is queried to identify the relevant source relations and retrieve data from

those source relations. The import commands containing query statements, such as

the Select clauses shown in Example 28, are generated. We describe the functions in

VISS that are used to identify relevant sources and explain how they are applied for

disjunctive queries in Chapter 6 (cf. Remark 1 at the end of Section 6.3).



Chapter 6

Extracting Relevant Information using

XQuery

This chapter describes XQuery FLWOR expressions and how they are used to query

XML metadata following the pruning steps. When computing certain answers to a

query, the XML metadata is queried to get the relevant information using XQuery,

a W3C recommended query language for XML documents. After extracting relevant

information, the logic program Π(G) for Simple Specification is generated. Chapter

5 described the theory about the pruning approach. In this chapter, we describe how

we actually implement the pruning approach inVISS using XQuery.

6.1 XQuery FLWOR Expressions

We use a particular class of queries expressed in XQuery called FLWOR expressions

[28], which are of the form:

FOR <var> IN <expr>

LET <var> := <expr>

WHERE <expr>

ORDER BY <expr>

RETURN <expr>.

The term FLWOR stands for the keywords FOR, LET, WHERE, ORDER and

RETURN. The FOR clause iterates over a sequence of atomic values, such as numbers

or XML elements and returns a set of values or XML elements as specified in the

RETURN clause [28]. The FOR clause consists of one or more bound variables

63
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prefixed with $. W3C defines the binding sequence of a variable in the FOR clause as

the value of the expression associated with the variable in that clause [28]. FLWOR

expressions can be nested to describe various types of joins. An example is shown

below:

FOR $i IN VirInt/Schema/Local,

$j IN VirInt/RuleML/Assert/Implies/head

WHERE $i/Rel=$j/Rel

RETURN $i/Rel.

Here, i and j are the variables bound to the XML elements VirInt/Schema/Local

and VirInt/RuleML/Assert/Implies/head respectively and the (equi) join is based

on the value of element Rel.

LET clause contains one or more variables and each variable is associated with

an expression [28]. Unlike a FOR clause, a LET clause binds each variable to the

result of the equated expression without iteration. The variable in a FOR and LET

clause covers all subexpressions in the inner FLWOR expressions that appear after

the variable binding [28]. We show an example using LET clause below:

LET $i := VirInt/Schema/Local

RETURN $i/Rel.

The WHERE clause specifies the condition for filtering the result of the FOR

clause. The condition in the WHERE clause is evaluated once for each value or

element retrieved in the FOR clause. If the expression in the WHERE clause evaluates

to true, then the value or element is retained and its corresponding variables are used

to evaluate the result of the RETURN clause [28]. If the expression evaluates to false,

the value is discarded. The WHERE clause in a FLWOR expression is optional [28].

We show an example using WHERE clause below:

FOR $i IN VirInt/Schema/Local,

$j IN VirInt/RuleML/Assert/Implies/head

WHERE $i/Rel=$j/Rel

RETURN $i/Rel/text().

An ORDER BY clause contains one or more ordering specifications called order-

specs [28]. For each value or element in the set of values obtained after filtering in

the WHERE clause, the orderspecs are evaluated using the values in the result. The
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Function Name Description

string-join Returns a string by concatenating the strings in the arguments
and uses an optional argument as a separator.

insert-before Returns a new sequence constructed from the list of item ar-
guments, with the new value argument inserted in the position
specified by the position argument.

remove Returns a new sequence constructed from the list of item ar-
guments, with the value specified by the position argument
removed from the sequence.

tokenize Splits a string into a list of strings using the character argu-
ment specified as a separator.

replace Returns a string by replacing a pattern in a given string with
the replace argument.

concat Returns a string by concatenating the string arguments.

count Returns the count of nodes.

distinct-values Returns distinct values of nodes or atomic values.

codepoints-to-string Converts Unicode code point to string.

index-of Returns the positions of a search item within a list of items.

data Returns a sequence of atomic values corresponding to a se-
quence of items.

Following-sibling Returns a list of all nodes that have the same parent node as
the context node and appear after the context node.

Preceding-sibling Returns a list of all nodes that have the same parent node as
the context node and appear before the context node.

Table 6.1: XQuery Functions

relative order of two atomic values is determined by comparing the values of their

orderspecs, working from left to right until a pair of unequal values is encountered.

The ORDER BY clause is optional and if it is not specified, the order of the re-

sult set is determined by the FOR and LET clauses and by ordering mode [28]. In

nested FLWOR expressions, ordering can be applied at multiple levels of an element

hierarchy. We show an example using ORDER BY clause below:

FOR $i IN VirInt/Schema/Local

ORDER BY $i/Rel descending

RETURN $i/Rel/text().
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The RETURN clause specifies the projected attributes in the result. The RE-

TURN clause of a FLWOR expression is evaluated once for each value in the result

of the WHERE and ORDER BY clauses, and the output of these evaluations are

combined to form the result of the FLWOR expression [28].

XQuery supports conditional expressions using keywords IF, THEN and ELSE as

shown below:

IF <expr> THEN <expr> ELSE <expr>

The expression following IF clause is called a test expression and the result of a

conditional expression is determined based on the evaluation of the test expression

to true or false. If the test expression evaluates to true, the value of the THEN

expression is returned and if not, the value of the ELSE expression is returned [28].

The main functions in XQuery [28], that are used when querying the metadata are

shown in Table 6.1.

6.2 Identifying Relevant Sources

For a given query Π(Q), only a relevant portion of available view definitions is re-

quired. In particular, we require ones whose body contains the global predicates that

appear in Π(Q). We are not considering GICs as they are not used to compute certain

answers. The detection of relevant source relations becomes more complicated in the

presence of GICs as discussed later in Section 6.5. We use the pruning techniques

listed in Chapter 5 to detect relevant sources. We assume the query Π(Q) is already

pruned using QP step (cf. Section 5.2 in Chapter 5). We now use SP step (cf. Section

5.3 in Chapter 5) and show how relevant source relations can be determined using

queries in XQuery. For this, we use the metadata representation described in Chap-

ter 4 as input. First we identify source relations, whose view definitions contain the

global relations in Π(Q). Next, we apply the criteria in SP step (cf. Section 5.3 in

Chapter 5) to further reduce the list of relevant source relations.

Example 29 Consider the following query:



67

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Class = ”mammal”. (6.1)

From the body of the query, we get global predicates Animal, Habitat. After applying

SP, we obtain V1, V3, V5 and V2 as relevant source relations for this query. 2

Listing 6.1: Step 1:Retrieving relevant sources

1 de c l a r e func t i on l o c a l : g e tA l lSour c e ( $g as element ( )∗ ) as element ( )∗
2 {
3 f o r $ f in doc (”mappings . xml ”)/ Vir Int /RuleML/Asser t / Imp l i e s
4 where ( ( some $x in $g/ preceding−s i b l i n g : : Var/@Attr
5 s a t i s f i e s $x=$ f /head/Atom/Rel/ fo l l ow ing−s i b l i n g : : Var ) or
6 ( some $y in $g/ preceding−s i b l i n g : : Jo in /@Attr
7 s a t i s f i e s $y=$ f /head/Atom/Rel/ fo l l ow ing−s i b l i n g : : Var ) ) r e turn
8 <sources>
9 {
10 f o r $c in $f , $a in $g/Atom
11 where $a/@val = $c/body/And/Atom/Rel/ tex t ( )
12 return
13 <source so=’{ $ f /head/Atom/Rel} ’>
14 {
15 f o r $d in $ f /body/And/Atom/Rel
16 f o r $e in $d
17 return $e [ t ex t ()=$d ] / fo l l ow ing−s i b l i n g : : ∗
18 }
19 </source>
20 }
21 </sources>
22 } ;
23
24 de c l a r e func t i on l o c a l : gSrcIndx ( $e as element ( )∗ , $g as element ( )∗ )
25 as element ( )∗
26 {
27 f o r $a in $e/ source
28 where some $b in
29 d i s t i n c t−va lue s ( $g/Atom/Var [@Op=”eq ” ]/@Attr )
30 s a t i s f i e s $a/Var [ t ex t ( ) = d i s t i n c t−va lue s ( $b ) ]
31 return
32 <source s=’{$a/@so} ’>
33 {
34 f o r $c in
35 d i s t i n c t−va lue s ( $g/Atom/Var [@Op=”eq ” ]/@Attr )
36 return
37 <Indx var=’{ d i s t i n c t−va lue s ( $a/Var [ t ex t ()=$c ])} ’>
38 {
39 min ( index−o f ( $a/Var/ tex t ( ) , $c ) )
40 }
41 </Indx>
42 }
43 </source>
44 } ;
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Step 1: We describe the user-defined functions used to retrieve relevant source re-

lations for a user query. First, we obtain the list of source relations whose view

definitions have variables in the head that also appear in the head of the query or

are join variables in the body of the query (Lines 4-7 in Listing 6.1) (cf. Section 5.3

in Chapter 5 for source pruning). We define a function getAllSource to retrieve the

source relations and the values for the variables that appear in equality conditions in

the body of the view definition (Lines 1-22). Using this list, we determine the position

of the variables in the global predicate that are involved in the equality conditions.

We use function gSrcIndx to get the position of the variables (Lines 24-44, Listing

6.1).

Example 30 (Example 29 continued) We use the query in Equation (6.1) and the

view definitions in Example 1 in Chapter 1. In this case, functions getAllSource and

gSrcIndx gives the following output:

<!−− fn : g e tA l lSour c e Output −−>
<source so=”V1”>

<Var>Name</Var>
<Var>Class</Var>
<Var>Food</Var>
<Var>Name</Var>

</source>
<source so=”V3”>

<Var>Name</Var>
<Ind>mammal</Ind>
<Var>Food</Var>

</source>
<source so=”V4”>

<Var>Name</Var>
<Ind>bird</Ind>
<Var>Food</Var>

</source>
<source so=”V5”>

<Var>Name</Var>
<Ind>mammal</Ind>
<Var>Food</Var>

</source>
<source so=”V2”>

<Var>Name</Var>

<Var>Class</Var>
<Var>Food</Var>
<Var>Name</Var>
<Var>Habitat</Var>

</source>

<!−− fn : gSrcIndx Output −−>
<source s=”V1”>

<Indx var=”Class”>2</Indx>
</source>
<source s=”V3”>

<Indx var=”Class”>2</Indx>
</source>
<source s=”V4”>

<Indx var=”Class”>2</Indx>
</source>
<source s=”V5”>

<Indx var=”Class”>2</Indx>
</source>
<source s=”V2”>

<Indx var=”Class”>2</Indx>
</source>

2

Step 2: The XML output obtained from functions getAllSource and gSrcIndx,

shown in Example 30, is used as input in function gSrcComp (Lines 1-18, Listing

6.2) to check, if the variables in the equality condition in the body of the query is

also present in a equality condition in the body of the view definition. If it does,
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the function gSrcComp generates a result containing the source relation name, the

variable name and its value. The function gRelWOCond (Lines 20-30, Listing 6.2)

gives a list of source relations having view definitions whose head does not have the

variables appearing in any of the built-ins in the query.

Listing 6.2: Step 2: Retrieving relevant sources

1 de c l a r e func t i on l o c a l : gSrcComp( $ f as element ( )∗ , $g as element ( )∗ )
2 as element ( )∗
3 {
4 f o r $b in $ f / source , $c in $g
5 where $c/@s=$b/@so
6 return
7 <s r c s = ’{ $b/@so} ’>
8 { f o r $d in $b
9 return
10 f o r $e in $c/ Indx
11 return
12 <Var var=’{$e/@var } ’
13 ind=’{$d/ ch i l d : : ∗ [ p o s i t i o n ()=$e/ tex t ( ) ]
14 [ name ( ) != ”Var ” ]/ t ex t ( )} ’ >

15 </Var>
16 }
17 </src>
18 } ;
19
20 de c l a r e func t i on l o c a l : gRelWOCond( $ f as element ( )∗ ,
21 $g as element ( )∗ , $x as item ( )∗ )
22 {
23 f o r $b in $ f / source ,
24 $d in doc (”mappings . xml ”)/ Vir Int /RuleML/Asser t / Imp l i e s /head/Atom
25 where $d/Rel/ t ex t ( ) = $b/@so
26 and $d/Rel / t ex t ( ) [ not ( . = $x ) ]
27 and ( every $c in $d/Rel/ fo l l ow ing−s i b l i n g : : Var/ tex t ( )
28 s a t i s f i e s $c [ not ( . = $g/Atom/Var/@Attr ) ] )
29 return d i s t i n c t−va lue s ( $b/@so)
30 } ;

Example 31 (Example 30 continued) Using the XML result shown in Example 30

as input, the function gSrcComp gives the following output:

<!−− fn : gSrcComp output −−>
<s r c s=”V3”>

<Var var=”Class ” ind=”mammal”/>
</src>
<s r c s=”V4”>

<Var var=”Class ” ind=”bird”/>
</src>
<s r c s=”V5”>

<Var var=”Class ” ind=”mammal”/>
</src>
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The function gRelWOCond returns V 2 and V 5 as they do not contain the built-in

variable, Class in the head of the view definition. 2

Step 3: The XML output of gSrcComp shown in Example 31 is used in function

gIRelSrc (Lines 1-16 in Listing 6.3) to get the source relations, which violate any of

the equality built-ins in the query. For the query in Equation (6.1) (cf. Example 29),

the function returns V 4 as this source contains only birds, thus violating the equality

condition Class = ”mammal”. We retrieve the remaining list of source relations,

those that satisfy the equality built-ins in the query using the function gRelSrc (Lines

18-36 in Listing 6.3). The function returns V1, V2, V3 and V5, which are the

required sources for the query in Equation (6.1).

Listing 6.3: Step 3: Retrieving relevant sources

1 de c l a r e func t i on l o c a l : g IRe lSrc ( $ f as element ( )∗ , $g as element ( )∗ )
2 {
3 f o r $b in $ f /Var
4 l e t $c := $g/Atom/Var
5 where
6 ( d i s t i n c t−va lue s ( $b/@ind ) != ”” and
7 not ( s t a r t s−with ( d i s t i n c t−va lue s ( $b/@ind ) , ”ge ” ) ) and
8 not ( s t a r t s−with ( d i s t i n c t−va lue s ( $b/@ind ) , ” l e ” ) ) and
9 not ( s t a r t s−with ( d i s t i n c t−va lue s ( $b/@ind ) , ” l t ” ) ) and
10 not ( s t a r t s−with ( d i s t i n c t−va lue s ( $b/@ind ) , ” gt ” ) ) and
11 not ( s t a r t s−with ( d i s t i n c t−va lue s ( $b/@ind ) , ”ne ” ) ) and
12 d i s t i n c t−va lue s ( $b/@ind ) !=
13 d i s t i n c t−va lue s ( $c [@Op=”eq ” ] [ @Attr=$b/@var ] /@Ind ) )
14 return $b/parent : : ∗ /@s
15 } ;
16
17 de c l a r e func t i on l o c a l : gRelSrc ( $ f as item ( )∗ , $g as element ( )∗ )
18 {
19 ( f o r $b in l o c a l : g e tA l lSour c e ( $g )/ source
20 where $b/@so [ not ( . = $ f ) ]
21 return $b/@so
22 )
23 union
24 (
25 f o r $a in l o c a l : gSrcComp
26 ( l o c a l : g e tA l lSour c e ( $g ) , l o c a l : gSrcIndx (
27 l o c a l : getSrcAttr ( $g ) , $g ) )
28 where
29 d i s t i n c t−va lue s ( $a/Var/@ind ) =
30 d i s t i n c t−va lue s ( $g/Atom/Var [@Op=”eq ” ] [ @Attr=$a/Var/@var ] /@Ind )
31 return $a/@s
32 )
33 } ;
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6.3 Querying Relevant Sources

We describe how user-defined functions in XQuery are used in the SQC step (cf.

Section 5.4 in Chapter 5 for querying relevant sources). Once the relevant source

relations have been detected, they are queried to retrieve the required data. We apply

the built-ins in the query to the source relations, where applicable. For relevant source

relations, whose attributes do not appear in the built-ins in the query, all tuples are

retrieved from the source relation. We use a function gRelCmd (cf. Listing 6.4) to

generate the query commands to the source relations.

Listing 6.4: Query to generate import commands

1 de c l a r e func t i on l o c a l : gRelCmd( $ f as item ( )∗ ,
2 $g as element ( )∗ ) as element ( )∗
3 {
4 f o r $a in doc (”mappings . xml ”)/ Vir Int /Schema/Local / Source /Atom
5 l e t $c := $g
6 l e t $ j := l o c a l :gSrcWOAC()
7 where $a/Rel/ t ex t ( ) [ ( . = $ f ) ] and
8 $a/Rel/ t ex t ( ) [ not ( . = $ j ) ]
9 re turn
10 <c lause>
11 <c lause1>
12 { concat ( ’# import ( ’ , data ( $a / . . /@name) , ’ , \” ’ ,
13 data ( $a / . . / User id ) , ’\” , \” ’ , data ( $a / . . / Password ) , ’\” ,
14 \”SELECT Di s t i n c t ∗ FROM ’ , data ( $a/Rel ) )}
15 </c lause1>
16 <c lause11>
17 { i f
18 ( count ( $a/Rel/ fo l l ow ing−s i b l i n g : : Var [ t ex t ()=
19
20 $c/Atom/Var/@Attr ] / t ex t ( ) ) > 0)
21 then
22 ( ’ where ’ )
23 e l s e ( )
24 }
25 </c lause11>
26 <c lause2>
27 {
28 d i s t i n c t−va lue s (
29 f o r $x in $c/Atom/Var
30 f o r $b in $a/Rel / fo l l ow ing−s i b l i n g : : Var
31 return
32 i f ( ( count ( $b [ t ex t ()=$x/@Attr ] / t ex t ( ) ) > 0) and
33 ( $b [ t ex t ()=$x/@Attr ] / t ex t ( ) != ’ ’ ) )
34 then
35 ( i f ( $b/ tex t ()=$x [@Op=”l e ” ] /@Attr )
36 then
37 ( concat ( $b [ t ex t ()=$x [@Op=”l e ” ] /@Attr ] / t ex t ( ) ,
38 ’ <= ’
39 , d i s t i n c t−va lue s ( $x [ @Attr=$b/ tex t ( ) ]
40 [@Op=”l e ” ] /@Ind ) , ’ ’ ’ , ’ ) )
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41 e l s e i f ( $b/ tex t ()=$x [@Op=”ge ” ]/@Attr )
42 then
43 ( concat ( $b [ t ex t ()=$x [@Op=”ge ” ]/@Attr ] / t ex t ( ) , ’
44 >= ’ ’ ’ , d i s t i n c t−va lue s ( $x [ @Attr=$b/ tex t ( ) ]
45 [@Op=”ge ” ]/@Ind ) , ’ ’ ’ , ’ ) )
46 e l s e i f ( $b/ tex t ()=$x [@Op=”eq ” ]/@Attr )
47 then
48 ( concat ( $b [ t ex t ()=$x [@Op=”eq ” ]/@Attr ] / t ex t ( ) , ’
49 = ’ ’ ’ , d i s t i n c t−va lue s ( $x [ @Attr=$b/ tex t ( ) ]
50 [@Op=”eq ” ]/@Ind ) , ’ ’ ’ , ’ ) )
51 e l s e ( )
52 )
53 e l s e ( ) )
54 }
55 </c lause2>
56 <c lause3>
57 {
58 concat ( ’\” , ’ , data ( $a/Rel ) , ’ , type : ’ ,
59 s t r ing−j o i n ( i n s e r t−be fo r e ( remove ( token i z e ( r ep l a c e
60 ( s t r ing−j o i n ( $a/Rel/ fo l l ow ing−s i b l i n g : : Var , ’ ,
61 ’ ) , ’ .+? , ’ , ’Q CONST, ’ ) , ’ , ’ ) ,
62 count ( $a/Rel / fo l l ow ing−s i b l i n g : : ∗ ) ) ,
63 count ( $a/Rel / fo l l ow ing−s i b l i n g : : ∗ ) ,
64 ’Q CONST’ ) , ’ , ’ ) , ’ ) . ’ , codepo ints−to−s t r i n g (10 ) )}
65 </c lause3>
66 </c lause>
67 } ;

Listing 4.3 shows the function gRelCmd, which first extracts connection informa-

tion, i.e. hostname, databasename, userid, for the relevant sources obtained in Section

6.2 (Lines 11-15). The metadata representation of sources (cf. Section 4.1 in Chapter

4) is used as input to get this information. The query commands generated are SQL

statements that retrieves all non-redundant tuples from the source relations (Line

14). These SQL statements are concatenated with the built-in conditions from the

body of the query (Lines 26-55). The output of the function are import commands

that extract from the data sources, the facts used in the logic program.

The import commands directly retrieves the database facts and can be

run in DLV [52]. They are of the form: #import(databasename, ”username”,

”password”, ”query”, predname, typeConv), where databasename, username, password

are read from the XML metadata. query is an SQL statement that retrieves data from

the source relation, predname defines the name of the predicate that will be used,

and typeConv specifies the conversion for mapping DBMS data types to Datalog data

types for each column.
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Example 32 We obtain V 1, V 2, V 3 and V 5 as required sources for query in Equa-

tion (6.1) (cf. Example 29). The function gRelCmd uses the XML metadata in Listing

4.3 (cf. Section 4.1 in Chapter 4) as input and generates the import commands for

the source relations as follows:

#import (animalkingdom, ”test”, ”test”, ”Select Distinct ∗ From V 1

where Class = ′mammal′”, V 1, type : Q Const, Q Const,

Q Const).

#import (animalkingdom, ”test”, ”test”, ”Select Distinct ∗ From V 3

where Class = ′mammal′”, V 3, type : Q Const, Q Const,

Q Const).

#import (animalhabitat, ”test1”, ”test1”, ”Select Distinct ∗ From V 2”,

V 2, type : Q Const, Q Const).

#import (animalhabitat, ”test1”, ”test1”, ”Select Distinct ∗ From V 5”,

V 5, type : Q Const, Q Const).

dom(u).

Here, Q Const is a conversion type specifying that the column is converted to a

string with quotes. This can be used generally for all data types. 2

An extra atom dom(u), where u is a constant not appearing in any source, is generated

with the import commands in Example 32 because even though we need a finite

domain to run the logic programs, we still have to capture the potential infiniteness

of the domain and the openness of the sources [19]. In the case of conjunctive queries,

this one extra constant is sufficient to compute certain answers [19].

Remark 1 In the case of disjunctive queries, for each conjunctive query in the dis-

junction, the user-defined function gRelSrc (cf. Listing 6.3 in Section 6.2) returns the

relevant sources. The import commands for the source relations (cf. Example 28 in

Chapter 5) are generated using the gRelCmd function (cf. Listing 6.4). The relevant

source relations are used to generate the required portions of the logic program for

computing certain answers.
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6.4 Identifying Rules

We now identify the required parts of the logic program for Simple Specification (cf.

Section 2.4 in Chapter 2). We describe how we use a query in XQuery to perform

the initial part of the RP step (cf. Section 5.5 in Chapter 5). We described how to

generate import commands in the preceding section. These commands are used in

the logic program of Simple Specification instead of listing all the facts explicitly in

the program. Next, mappings are selected based on the source relations obtained in

SP step (cf. Section 5.3 in Chapter 5). A query in XQuery is presented in Listing 6.5,

which is used to extract the required mappings from the metadata representation (cf.

Section 4.3 in Chapter 4).

Listing 6.5: Querying XML and RuleML metadata using XQuery

1 f o r $n in doc (”mappings . xml ”)/ Vir Int
2 return
3 ( : L i s t a l l r u l e s : )
4 <ru l e s>
5 { f o r $x in $n/RuleML/Asser t / Imp l i e s
6 where d i s t i n c t−va lue s ( $x/body/And/Atom/Rel ) =
7 (<<L i s t o f g l o ba l r e l a t i o n s in the query>>)
8 and $x/head/Atom/Rel=(<<L i s t o f s our c e s from SP step>>)
9 return
10 <ru le>
11 ( : Descr ibe the r u l e : )
12 { f o r $d in $x
13 return
14 <head r1=’{$d/head/Atom/Rel} ’>
15 { f o r $v in $x/head
16 where $v/Atom/Rel=$d/head/Atom/Rel
17 return
18 concat ( $d/head/Atom/Rel , ’ ( ’ ,
19 s t r ing−j o i n ( $v/Atom/Var , ’ , ’ ) , ’ ) ’ )
20 }
21 </head>
22 }
23 { f o r $b in d i s t i n c t−va lue s ( $x/body/And/Atom/Rel )
24 where $b = (<<L i s t o f g l o ba l r e l a t i o n s
25 in the query>>)
26 return
27 ( : Descr ibe the body o f the r u l e : )
28 <body r1=’{$b} ’>
29 { f o r $m in $n/Schema/Global /Atom
30 where $m/Rel=$b
31 RETURN
32 concat ( $b , ’ ( ’ , s t r i ng−j o i n (
33 $m/Rel / fo l l ow ing−s i b l i n g : : Var , ’ , ’ ) , ’ ) ’ )
34 }
35 </body>
36 }
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37 ( : Descr ibe bu i l t−i n s in the r u l e : )
38 <body r1=’’>
39 { d i s t i n c t−va lue s
40 ( f o r $q in $x/body/And/Atom/Ind
41 l e t $ l as item ()∗ := index−o f ( $x/body/And/Atom/∗ , $q )
42 l e t $r := $q/ preceding−s i b l i n g : : Rel / t ex t ( )
43 f o r $y in $ l
44 f o r $s in
45 $n/Schema/Global /Atom/Rel [ t ex t ()=$r ] / . . / Var [ $y − 1 ]
46 return
47 i f ( $q != ’ ’ ) then
48 (
49 ( s t r ing−j o i n ( ( ’ ( ’ , $s , ’= ’ , $q , ’ ) , ’ ) , ’ ’ ) )
50 )
51 e l s e ( )
52 )
53 }
54 </body>
55 </ru le>
56 }
57 </ru l e s>

The query in Listing 6.5 does the following:

1. Obtain an XML output containing the mappings corresponding to the source

relations from the SP step (cf. Section 5.3 in Chapter 5) and whose body contains

the global relations in the user query (Lines 5-21).

2. From the body of the mappings, use only the global relations that appear in

the body of the query (Lines 23-35) in the XML output.

3. The built-ins in the view definitions, if present, are also generated in the XML

output (Lines 38-54).

Example 33 We obtained V 1, V 2, V 3, V 5 as required sources for the query in

Equation (6.1) (cf. Example 29). The global relations in the query are Animal and

Habitat. Using the query in Listing 6.5, we query metadata mappings in Listing 4.10

(cf. Section 4.4.5 in Chapter 4). The output obtained in XML format is shown in

Figure 6.1. 2

In the XML output in Figure 6.1, the body for V 1 does not contain V ertebrate even

though its view definition does (cf. Equation (4.1) in Example 20 in Chapter 4). This

is because, Vertebrate does not appear in the query in Equation (6.1) and hence, we

prune it when generating the program for Simple Specification . The XML result in

Figure 6.1 is processed by the Program Builder, aVISS component that generates the
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<rules>

<rule>

<head r1="V1">V1(Name,Class,Food)</head>

<body r1="Animal">Animal(Name,Class,Food)</body>

<body r1=""/>

</rule>

<rule>

<head r1="V3">V3(Name,Class,Food)</head>

<body r1="Animal">Animal(Name,Class,Food)</body>

<body r1="">(Class=mammal),</body>

</rule>

<rule>

<head r1="V5">V5(Name,Food)</head>

<body r1="Animal">Animal(Name,Class,Food)</body>

<body r1="">(Class=mammal),</body>

</rule>

<rule>

<head r1="V2">V2(Name,Habitat)</head>

<body r1="Animal">Animal(Name,Class,Food)</body>

<body r1="Habitat">Habitat(Name,Habitat)</body>

<body r1=""/>

</rule>

</rules>

Figure 6.1: Pruned Rules

Simple Specification program. We describe the components in Chapter 7 and building

the logic program in Chapter 8.

6.5 Dependency Graph

We describe an idea for determining relevant predicates in the presence of Global

Integrity Constraints (GICs) using user-defined functions in XQuery1. In the presence

of GICs, the relevant predicates for answering a query can be determined from the

relationship between the predicates in the query and the predicates in the ICs. We

analyze this with the help of a dependency graph [24]. In a directed dependency

graph, each database predicate is a node. There is an edge from a predicate Pi to Pj,

1We do not consider GICs in the mediator systemVISS described in this thesis and hence con-
sistent query answering is not implemented inVISS
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iff there exists a constraint such that Pi is the antecedent of the rule and Pj appears

in the consequent of the rule. A predicate P is required to obtain certain or consistent

answers to a Datalog query Q in the presence of GICs, if P is in a connected component

c of the dependency graph for the IC and there is a predicate P ′ appearing in Q and c

[24]. We show how the presence of GICs affect the determination of relevant sources

required for answering a query using Example 34.

Example 34 Consider the GICs IC : ∀X(P (X) → Q(X)), ∀X(Q(X) →

R(X)), ∀X(R(X) → S(X)), ∀X(T (X) → P (X)), ∀X(R(X) → W (X)). For a query

Ans(X)← R(X), apart from the global relation R in the body of the query, we have

to consider the global relations in the GICs whose antecedent is R and apply the same

process recursively for each global relation obtained in the result. Here, the relevant

global predicates required to answer the query are {R, S,W}. When we determine

the source relations required for answering the query, we have to take into account

the view definitions that contain the global predicate in the query (i.e. R) and the

global predicates based on the dependencies (i.e. S, W ). 2

Listing 6.6: Query to obtain relevant predicates based on ICs

1 de c l a r e func t i on l o c a l : r e lP r ed ( $e as element ( )∗ ) as element ( )∗
2 {
3 l e t $a := l o c a l : getPred ( $e )
4 return $a | $a/ l o c a l : r e lP r ed ( . )
5 } ;
6 d e c l a r e func t i on l o c a l : getPred ( $b as element ( )∗ ) as element ( )∗
7 {
8 f o r $n in doc (”mappings . xml ”)/ Vir Int /Schema/Global /Rulebase / Imp l i e s
9 where $n/body/Atom/Rel = $b
10 return $n/head/Atom/Rel
11 } ;

The XML metadata representation described in Chapter 4 shows Listing 4.5 for

representing GICs in Example 34. In Listing 6.6, we show the functions relPred and

getPred that uses the XML metadata representation of GICs to obtain the relevant

global predicates. The function relPred (Listing 6.6 Line 1) takes the global rela-

tion in the body of the query as argument and calls the function getPred (Line 3).

The function getPred returns the predicate consequent for the predicate antecedent

passed as argument using the XML metadata (Lines 9-11). We do this recursively

for each global relation (Line 4) to obtain the relevant global predicates for the query
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Ans(X)← R(X) based on the GICs. For the query, Ans(X)← R(X), getPred takes

the global predicate in the query, namely R, as an argument and computes the de-

pendencies from the XML metadata representation of ICs (cf. Listing 4.5 in Chapter

4) and returns the relevant global predicates {R, S,W}.



Chapter 7

Architecture of VISS

This chapter describes the general architecture ofVISS , a mediator system for inte-

grating relational data sources or sources that can be wrapped as relational. We also

present the implementation architecture ofVISS and explain each component.

7.1 General Architecture

When a Datalog query is posed to the mediatorVISS, the latter analyzes the query and

determines the source relations required to answer it. Then, the metadata is queried

for the access information of those relations and import commands are generated to

read tuples from the source relations and store them as facts in the logic program.

These facts form the extensional database used by the Simple Specification program,

which becomes the query plan. The Simple Specification program is run in a logic-

based system and the result of the program evaluation is the set of certain answers

to the Datalog query. We assume that all data sources are relational or wrapped as

relational using appropriate wrappers. We show the general architecture ofVISS in

Figure 7.1.

7.1.1 User Query

VISS computes certain answers tomonotone queries with built-ins. Monotone queries

are characterized by Datalog programs without negation. Some examples ofmonotone

queries are union (disjunctive), cartesian product and conjunctive queries. Queries

79
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Figure 7.1: General Architecture of VISS

can also be recursive. The query is posed in terms of the predicates in the global

schema.

Example 35 A user query for listing all animals that live in ”ocean” or ”forest” is

given by the disjunctive query:

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Habitat = ”ocean”.

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Habitat = ”forest”.

Ans(Name,Habitat)?

7.1.2 Management and Communication Module

The Management and Communication Module (MCM) acts as the central component

of the mediator, which invokes or calls the other components. The main functionality

of MCM is to manage the execution of other components of the mediator and initiate
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calls to the appropriate components at different stages of computation of answers.

For validating the XML metadata, the MCM invokes the Metadata Validator and if

the validation fails, MCM stops further execution and sends an error message. The

MCM also initiates calls to the Query Execution Engine for executing a query in

XQuery against the XML metadata. Once the required information, such as the

import commands and mappings are gathered, MCM uses the Program Builder to

build the Simple Specification program. MCM, then combines the import commands,

logic program for the Simple Specification and the user query and runs them, under

skeptical stable model semantics, using a Logic-based Programming System.

7.1.3 Metadata Validation

The metadata inVISS is stored in XML format, which contains custom XML elements

and RuleML elements. We described the XML Schema Definitions (XSDs) for this

metadata in Chapter 4. The Metadata Validator verifies that the XML metadata in

VISS adheres to the schema specifications (cf. Chapter 4). If the validation succeeds,

a success message is sent to MCM. If the validation fails, an error file is generated

listing the errors and a failure message is sent to MCM.

7.1.4 Metadata Store

The Metadata Store contains the XML metadata (cf. Chapter 4), and makes it avail-

able for access by other components. The metadata consists of the global schema,

local schema, access information of sources and GICs, all using custom XML ele-

ments and RuleML elements. The Metadata Store provides static, persistent storage

of metadata but it does not contain actual data from the sources. Typically, the

metadata is created and updated in the Metadata Store using a metadata interface,

which allows a designer to enter the metadata information. The metadata informa-

tion is entered in Datalog format, which is translated by the interface to XML and

RuleML.
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7.1.5 Query Execution Engine

The Metadata Store is accessed by the Query Execution Engine to determine the

relevant source relations by querying the XML metadata. The execution engine can

process queries in XQuery language. The Query Execution Engine also generates the

necessary import commands and sends the output to the MCM. The queries run by

the Query Execution Engine performs read operations on the metadata but does not

update the metadata.

7.1.6 Program Builder

The Program Builder is invoked by the MCM after the relevant sources are determined

by querying the metadata. The Program Builder builds the logic program for Simple

Specification based on the XML output obtained in the RP step (cf. Figure 6.1 in

Chapter 6). The Program Builder also prunes the redundant rules as specified in the

RP step (cf. Section 5.5 in Chapter 5), by replacing the function predicate Fi with

predicate choseni directly. The output of Program Builder is the program for Simple

Specification .

7.1.7 Logic-based Programming System

The MCM combines the logic program output of the Program Builder, the import

commands generated to query the source relations and the user query. The combined

program is run in a Logic-based Programming System (LPS) for deductive databases

that evaluates the complete program and generates certain answers to user query.

The Logic-based Programming System uses the Datalog language with negation. The

LPS also interfaces with the wrappers for the data sources to pull the required facts

into the logic program for evaluation.

7.1.8 Wrappers and Data Sources

The data retrieved from the source relations are provided to the mediator in relational

format using wrappers. The format in which the data is presented to the mediator
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may be different from the actual format of data in the data source. The wrappers

perform the required transformation to relational format that is understood by the

mediator. We do not delve into the transformation process in the wrapper. We

assume that the data sources have suitable wrappers that export the data from the

source to the mediator with the right structure.

7.2 Implementation Architecture

The VISS system is implemented in C++. VISS uses Oracle’s Berkeley DB XML

(BDBXML) [73], an open source XML database, for storing the XML metadata

related to a global schema. The implementation architecture of VISS is shown in

Figure 7.2. We describe the main tools used to implement the components of the

general architecture ofVISS .
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Figure 7.2: Implementation of VISS

7.2.1 XMLSchema Validator

InVISS , the metadata is an XML document containing custom XML elements and

RuleML elements (cf. Chapter 4). The metadata document is validated using the

XML Schema Validator, (XSV), recommended by W3C [75]. XSV checks the meta-

data with the schema definitions described in Chapter 4. The output from XSV on



84

successful validation of the metadata XML document is shown in Listing 7.1.

Listing 7.1: Sample output from XML Schema Validator in VISS

1 <xsv xmlns=”http ://www.w3 . org /2000/05/ xsv” docElt=”{None}Vir Int ”
2 in s tanceAs s e s s ed=”true ” i n s t an c eE r r o r s=”0” schemaErrors=”0”
3 ta r g e t=” f i l e :/// mappings . xml” va l i d a t i o n=”lax ”
4 </xsv>

Line 2 in Listing 7.1 shows that there are no errors after validating the metadata.

The term instanceErrors indicates errors in the overall structure of the metadata doc-

ument and schemaErrors indicates violation of the XML Schema Definitions (listed

in Chapter 4).

7.2.2 Berkeley DB XML

Oracle Berkeley DB XML 2.4.16 (BDBXML) [73] is an open source, embeddable

XML database for storing XML documents. BDBXML is a library of C++ APIs

and is supported on a very large number of platforms. BDBXML includes an XML

Document Manager and an XQuery engine. A set of application programming inter-

faces (APIs) allow querying and retrieval of data from XML documents. The main

BDBXML objects for managing XML documents are XMLManager, a high-level class

for managing container; and XMLContainer, which is used for storing XML docu-

ments. A container is a collection of XML documents and information about those

documents [73]. BDBXML uses XQilla 2.0, an open source XQuery execution engine

that conforms to the XQuery W3C standard [28]. The results of a query are obtained

in the form of an XMLResults object, a resultset containing XML elements or atomic

values, which can be iterated over to retrieve each value in the set.

VISS uses BDBXML as the Metadata Store and the metadata is stored in a

XMLContainer. The BDBXML APIs are used to call the Query Execution Engine

and other components of VISS and hence, BDBXML also acts as the Management

and Communication Module. Queries in the mediatorVISS are executed using XQilla.
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7.2.3 Metadata Interface

The Metadata Interface is implemented using the approach of POSL translator [7],

which translates POSL to RuleML. The Metadata Interface1 accepts mappings in

Datalog format as input and translates them to RuleML elements (as specified in

Chapter 4 Section 4.3). The interface first prompts the user to specify the number

of data sources as shown in Figure 7.3. The value from this user input is used to

generate the access information in XML format for the metadata.

Figure 7.3: Specifying Number of Sources

After specifying the number of data sources, the XML metadata (specifications

are described in Chapter 4) is generated as shown in Figure 7.4.

Figure 7.4: Description of Sources

The user can edit the values for Databasename, Hostname, Userid and Pass-

word elements for each source in the upper text window shown in Figure 7.4.

1This interface was implemented as part of an undergraduate honours project by A. Beauvais
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(a) Description of Sources

(b) RuleML Elements for Mappings

Figure 7.5: Metadata Interface

The interface generates the XML representation of global relations based on the

body of the view definitions in the user input text window shown in Figure 7.5 (a).

The XML representation follows the specification described in Section 4.1 in Chapter
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4. The view definitions given in Datalog format are translated to RuleML elements

(cf. Section 4.3 in Chapter 4). The head and body elements are generated for the

view definitions as shown in Figure 7.5 (b).

7.2.4 Metadata Parser

The Metadata Parser is implemented in C++ by leveraging the Xerces C++ SAX

Parser. The parser builds the program for Simple Specification . The Metadata

Parser also generates the inverse rules program [53] and the refined specification [19]

program in VISS . The construction of the logic programs is described in detail in

Chapter 8.

7.2.5 DLVDB

DLV allows for the evaluation of disjunctive Datalognot programs [32], and provides

an easy interface to external databases using ODBC drivers. The logic program

generated by the Metadata Parser, Π(G) specifying the class of legal instances is

combined with the query program in Datalog, Π(Q) and with the import commands,

which load data (the program facts) that are relevant (Cf . Chapter 6) to a user

query. The data is stored in relational DBMSs, with which DLV is able to interact

with through the wrappers. The combined program is run in DLV [51] invoked in

VISS. The result of this program evaluation is the set of certain answers to the global

query.



Chapter 8

Program Builder

This chapter describes the Program Builder component of the mediatorVISS . The

Program Builder constructs the logic program for Simple Specification, which is used

to compute certain answers to a user query. We construct Simple Specification pro-

gram using the modifications described in Section 5.5 in Chapter 5, but without the

ground facts. We also describe how the Inverse Rules [53] and Refined Specifica-

tion program [19] for specifying the class of minimal legal instances are generated in

VISS 1.

8.1 Preliminaries

The input to the Program Builder is the set of pruned rules or view definitions ob-

tained in XML format (cf. Figure 6.1 in Section 6.4 in Chapter 6). The XML result

containing the pruned rules conforms to the schema specification listed in Listing 8.1.

The XML Schema Definition shows (XSD) that elements rules and rule are complex

types containing sequence of child elements (Listing 8.1 Lines 5-11). rule is a child

element of rules and contains each of the pruned view definitions in the child ele-

ments head and body (Listing 8.1 Lines 12-23). Both the head and body elements

contain an attribute r1. r1 stores the name of the source predicate, when used in

the head element (Listing 8.1 Lines 16-17) or the name of the global predicate, when

used in the body element (Listing 8.1 Lines 27-28). Each rule element contains only

1CurrentlyVISS computes only the certain answers even though we generate the refined version
of the specification.

88
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one head element and one or more body elements.

Listing 8.1: XMLSchema Definition (XSD) for the Pruned Rules XML Output

1 <?xml v e r s i o n=”1.0” encoding=”utf−8”?>
2 <xs : schema attr ibuteFormDefau l t=”unqua l i f i e d ”
3 elementFormDefault=”q u a l i f i e d ”
4 xmlns : xs=”http ://www.w3 . org /2001/XMLSchema”>
5 <xs : element name=”r u l e s”>
6 <xs : complexType>
7 <xs : sequence>
8 <xs : element minOccurs=”0” maxOccurs=”unbounded”
9 name=”ru l e”>
10 <xs : complexType>
11 <xs : sequence>
12 <xs : element minOccurs=”0” name=”head”>
13 <xs : complexType>
14 <xs : s impleContent>
15 <xs : ex tens i on base=”xs : s t r i n g”>
16 <xs : a t t r i b u t e name=”r1” type=”xs : s t r i n g ”
17 use=”r equ i r ed ” />
18 </xs : extens ion>
19 </xs : s impleContent>
20 </xs : complexType>
21 </xs : element>
22 <xs : element minOccurs=”0” maxOccurs=”unbounded”
23 name=”body”>
24 <xs : complexType>
25 <xs : s impleContent>
26 <xs : ex tens i on base=”xs : s t r i n g”>
27 <xs : a t t r i b u t e name=”r1” type=”xs : s t r i n g ”
28 use=”opt i ona l ” />
29 </xs : extens ion>
30 </xs : s impleContent>
31 </xs : complexType>
32 </xs : element>
33 </xs : sequence>
34 </xs : complexType>
35 </xs : element>
36 </xs : sequence>
37 </xs : complexType>
38 </xs : element>
39 </xs : schema>

Example 36 We use the XML output obtained in Section 6.4 in Chapter 6. Here,

the rule element contains the head and body of the view definition for V 1. The view

definition is pruned to remove V ertebrate from the body as it does not appear in the

body of the query. The view definitions for V 2, V 3 and V 5 is also listed as these are

obtained as relevant sources for the query,

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Class = ”mammal”. (8.1)
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Listing 8.2: Pruned Rules XML Output

<r u l e s xmlns : x s i =’http : //www.w3 . org /2001/XMLSchema−ins tance ’
x s i : noNamespaceSchemaLocation=’mappingrule . xsd ’>

<ru le>
<head r1=”V1”>V1(Name, Class , Food)</head>
<body r1=”Animal”>Animal (Name, Class , Food)</body>
<body r1=””/>

</ru le>
<ru le>

<head r1=”V3”>V3(Name, Class , Food)</head>
<body r1=”Animal”>Animal (Name, Class , Food)</body>
<body r1=””>(Clas s=mammal) ,</body>

</ru le>
<ru le>

<head r1=”V5”>V5(Name, Food)</head>
<body r1=”Animal”>Animal (Name, Class , Food)</body>
<body r1=””>(Clas s=mammal) ,</body>

</ru le>
<ru le>

<head r1=”V2”>V2(Name, Habitat)</head>
<body r1=”Animal”>Animal (Name, Class , Food)</body>
<body r1=”Habitat”>Habitat (Name, Habitat)</body>
<body r1=””/>

</ru le>
</ru l e s>

The attribute r1 stores the name of the predicates or empty string (r1 = ””) in

the case of built-ins. 2

The schema diagram for the pruned rules XML output is shown in Figure 8.1.

Figure 8.1: XML Output of Rules

The Program Builder first parses the XML file in Listing 8.2 using the Xerces

C++ SAX2 (Simple API for XML) API - an open source library that provides the

capability to parse, generate, manipulate and validate XML documents. The initial

steps to setup the parser is shown in Listing 8.3.
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Listing 8.3: Initial Parser Setup

1 SAXParser∗ pa r s e r = new SAXParser ;
2 par ser−>se tVa l idat ionScheme ( ) ;
3 par ser−>setDoNamespaces ( ) ;
4 par ser−>setDoSchema ( ) ;
5 par ser−>se tVa l idat ionSchemaFul lCheck ing ( ) ;
6 try
7 {
8 VISSHandler handler ( encodingName , unRepFlags , parseOpt ) ;
9 par ser−>setDocumentHandler(&handler ) ;
10 par ser−>se tErrorHandler (&handler ) ;
11 par ser−>parse ( xmlFi le ) ;
12 }
13 catch ( const XMLException &toCatch )
14 {
15 // Display e r r o r message and stop execut ion
16 }
17 de l e t e pa r s e r ;
18 XMLPlatformUtils : : Terminate ( ) ;

The SAXParser class implements the XML parser (Listing 8.3 Line 1) and requires

a handler class, which is publicly inherited from the HandlerBase class (Listing 8.3

Line 8), for processing the XML file. We implemented a VISSHandler class whose

member variables and functions implement the guts of the Program Builder. If the

XML file (cf. Listing 8.2) does not conform to the schema (cf. Listing 8.1), the

Handler throws an error and the program fails with a message that the input is not

valid (Listing 8.3 Lines 13-16). The data in a valid XML file, such as the one shown

in Listing 8.2, is parsed and stored in an internal data structure (Listing 8.3 Line

9-11).

Listing 8.4: The ruleAtom Class Defintion

1 c l a s s ruleAtom
2 {
3 pub l i c :
4 s t r i n g p r ed i c a t e ;
5 vector<s t r ing> a t t r i b u t e s ;
6 // pr in t the r u l e . For e . g . V1(a , b , c )
7 void pr in t ( s t r i n g& outStr ) ;
8 // pr in t j u s t the a t t r i b u t e s . For e . g . a , b , c
9 void p r i n tAt t r i bu t e s ( s t r i n g& outStr ) ;
10 } ;

The basic data structure used to process the rule element (cf. Listing 8.2) is a

ruleAtom (Listing 8.4 Line 1), which has a predicate string and a list of attribute

strings (Listing 8.4 Lines 4-5). For instance, V 1(Name, Class, Food) is a ruleAtom

with a predicate V 1 and a list of attributes - Name, Class and Food. A rule, in
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turn, has one ruleAtom representing the head and a list of ruleAtoms representing

the body. The string and vector classes are defined in the C++ Standard Template

Library [74].

When the Handler reads a head or body element within a rule element (cf.

Listing 8.2), it stores the string in an internal list. A tokenize() function processes

the string into a ruleAtom. For instance, the tokenize() function would process the

string V 1(Name, Class, Food) into a vector with strings ”V 1”, ”Name”, ”Class”

and ”Food”. After reading in the head and body elements of a rule element (and

processing each into its ruleAtom), the Program Builder generates the logic program.

8.2 Building the Simple Specification Program

The text in the head and body elements of all the rule elements has already been

read from the XML file (cf. Listing 8.2). The legalInstance() function (Listing 8.5)

first prints the body atom, followed by ”:-” and then the head atom (Listing 8.5

Lines 5-7). For instance, legalInstance() inverts the view definition for V 2 and prints

Animal(Name, Class, Food) :- V 2(Name,Habitat) first. The function then checks

if each attribute in a body atom is also present in the head (Listing 8.5 Lines 8-10).

If the attribute is not present, extra rules are printed (Listing 8.5 Lines 27-41). For

example, attribute Class and Food are not present in V 2(Name,Habitat). So the

chosen predicate is introduced, one for each existential attribute (i.e. Class and

Food) not present in the (inverted) body atom.

We directly use the chosen predicate, eliminating the rule using Fi predicates as

shown in RP. Then, each of the chosen predicates is defined using additional rules

as per Simple Specification. If an existential attribute occurs more than once in the

same view definition, only one chosen predicate is used for that attribute. Hence, we

check for multiple occurrence of the existential attribute in the same view definition

(Listing 8.5 Lines 12-13). The rules for the dom predicates are generated for each

existential variable in the mappings of the relevant source relations (Listing 8.5 Lines

42-44).
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Listing 8.5: Rules Construction for Simple Specification

1
2 VISSHandler : : l e g a l I n s t a n c e ( ruleAtom∗ p head , ruleAtom∗ p body )
3 {
4 p body−>pr in t ( )
5 pr in t ” :− ”
6 p head−>pr in t ( )
7 f o r each a t t r i b u t e in p body−>a t t r i b u t e s
8 {
9 i f p body a t t r i b u t e i s NOT found in p head
10 {
11 i f a t t r i b u t e was pro ce s s ed e a r l i e r
12 get the func t i on name f o r the a t t r i b u t e
13 e l s e
14 {
15 get a new chosen name
16 s t o r e the chosen name and a t t r i b u t e name
17 }
18 pr in t the chosen name
19 s t r 1 = ”(” + p head−>p r i n tAt t r i bu t e s ( ) + ”)”
20 s t r 2 = ”(” + p head−>p r i n tAt t r i bu t e s ( )
21 + p body a t t r i b u t e + ”)”
22 pr in t ”(”
23 p head−>p r i n tAt t r i bu t e s ( )
24 pr in t p body a t t r i b u t e
25 pr in t ”)”
26 i f p body a t t r i b u t e NOT proce s s ed e a r l i e r
27 {
28 // pr in t 2 extra r u l e s
29 // r u l e 1
30 pr in t ” chosen ” + chosen s u f f i x + s t r 2 +
31 ” :− ” + p head−>p r ed i c a t e +
32 s t r 1 + ” , dom(” +
33 p body a t t r i b u t e + ”) , not d i f f c h o i c e ” +
34 chosen s u f f i x + s t r 2 + ” .”
35 // r u l e 2
36 pr in t ” d i f f c h o i c e ” + chosen s u f f i x + s t r 2 +
37 ” :− ” + ”chosen ” + chosen s u f f i x +
38 ”(” + p head−>p r i n tAt t r i bu t e s ( ) +
39 ” ,U, dom(” + p body a t t r i b u t e +
40 ” , U !=” + p body a t t r i b u t e + ” .”
41 pr in t ”dom(” + p body a t t r ibute Ex +
42 ” :− ” + p head Ev−>p r ed i c a t e Re l +
43 s t r 11 + ” .”
44 }
45 }
46 }
47 pr in t ” . ”
48 }

The string attribute Ex (Listing 8.5 Line 42) contains the existential variables in

the mappings (e.g. Class and Food in V 2). The string predicate Rel contains the

source relations (e.g. V 1, V 3 and V 5) from which values are loaded into the dom

predicate and str11 is a string containing the existential variable with the remaining
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variables (e.g. Name in V 1) masked using ” ” (Listing 8.5 Lines 43-44).

Example 37 The Simple Specification program generated with the XML file in List-

ing 8.2 as input for the legalInstance() function is:

Animal(Name, Class, Food) : − V 1(Name, Class, Food).

Animal(Name,”mammal”, F ood) : − V 3(Name, Class, Food).

Animal(Name,”mammal”, F ood) : − V 5(Name, Food),

chosen1(Name, Food, Class).

chosen1(Name, Food, Class) : − V 5(Name, Food), dom(Class),

not diffchoice1(Name, Food, Class).

diffchoice1(Name, Food, Class) : − chosen1(Name, Food, U),

dom(Class), U ! = Class.

Animal(Name, Class, Food) : − V 2(Name,Habitat),

chosen2(Name,Habitat, Class),

chosen3(Name,Habitat, Food).

chosen2(Name,Habitat, Class) : − V 2(Name,Habitat), dom(Class),

not diffchoice2(Name,Habitat, Class).

diffchoice2(Name,Habitat, Class) : − chosen2(Name,Habitat, U),

dom(Class), U ! = Class.

chosen3(Name,Habitat, Food) : − V 2(Name,Habitat), dom(Food),

not diffchoice3(Name,Habitat, Food).

diffchoice3(Name,Habitat, Food) : − chosen3(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : − V 2(Name,Habitat).

dom(Class) : − V 1( , Class, ).

dom(Food) : − V 1( , , F ood).

dom(Class) : − V 3( , Class, ).

dom(Food) : − V 3( , , F ood).

dom(Food) : − V 5( , F ood).

The value in the built-in Class = ”mammal”, is directly substituted for the

variable Class in the rule for V 3 and V 5 above. The resulting program is combined

with the query:

Ans(Name,Habitat) ← Animal(Name, Class, Food), Habitat(Name,Habitat),

Class = ”mammal”.

The import commands for retrieving facts from the source relations (cf. Example

32 in Chapter 6) is given by:
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#import(animalkingdom, ”test”, ”test”, ”Select Distinct ∗ From V 1

where Class = ′mammal′”, V 1, type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”Select Distinct ∗ From V 3

where Class = ′mammal′”, V 3, type : Q Const, Q Const, Q Const).

#import(animalhabitat, ”test1”, ”test1”, ”Select Distinct ∗ From V 2”,

V 2, type : Q Const, Q Const).

#import(animalhabitat, ”test1”, ”test1”, ”Select Distinct ∗ From V 5”,

V 5, type : Q Const, Q Const).

The facts are retrieved during runtime and directly loaded into main memory.

The combined program (lglinst.dlv) is run in DLV [52] under cautious reasoning to

get certain answers as follows:

dl.exe − silent − cautious lglinst.dlv

”dolphin”, ”ocean”

”camel”, ”desert”

”elephant”, ”savannah”

”giraffe”, ”savannah”

”lion”, ”savannah”

”deer”, ”forest”

2

8.3 Building the Refined Specification Program

The Program Builder inVISS also generates the refined specification of the program

for minimal instances (cf. Section 2.4 in Chapter 2). The specification program for

minimal instances can be used to compute consistent answers, which are true in all

repairs of the minimal legal instances2.

The Program Builder first reads the head and body of all the rules from the

XML file (cf. Listing 8.2). For each rule, a string is constructed out of the head

and all the body ruleAtoms before the refSpecs() function (for generating the refined

specification) is called. The function lowerString() (Listing 8.6 Line 2) transforms

the upper case characters in a string into lower case. The function refSpecs() is called

with p head, p body and lastRule as parameters (Listing 8.6 Lines 3-5). For each body

ruleAtom, a string called lastRule is constructed as shown in Listing 8.6. First, the

2This is scope for future work to incorporate consistent query answering inVISS .
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rule is inverted by printing the body atom, followed by ”:-” and then the head atom

(Listing 8.6 Lines 7-9).

The presence of existential variables is checked and if there are no existential

variables (i.e. all variables in the body of the rule also appear in the head of the rule),

then the inverted rule is printed as is. An extra argument t0 is added to the head of

the inverted rule as per refined specification (Listing 8.6 Lines 30-33). The predicate,

which contains the argument t0 is an obligatory atom in all the minimal instances

[19]. If existential variables are present, the Add predicate, suffixed with the source

relation name, is printed (Listing 8.6 Lines 11-15). The function refSpecsHelper() is

called to generate the extra rules for the existential variables (Listing 8.6 Lines 18-24).

Example 38 illustrates the refSpecs() function.

Listing 8.6: Rules Construction for Refined Specification

1 la s tRu l e = p body−>p r ed i c a t e + ”(” + p body−>p r i n tAt t r i bu t e s ( ) + ” ,n” +
2 lowerSt r ing ( p head−>p r ed i c a t e + ”)”
3 VISSHandler : : r e f Sp e c s ( ruleAtom∗ p head ,
4 ruleAtom∗ p body ,
5 s t r i n g l a s tRu l e )
6 {
7 s t r i n g auxRule , r e f Sp e c s S t r ;
8 r e f Sp e c s S t r = p body−>p r ed i c a t e + ”(”
9 r e f Sp e c s S t r += p body−>p r i n tAt t r i bu t e s ( ) ;
10
11 i f ( p body has a t t r i b u t e s NOT found in p head )
12 {
13 r e f Sp e c s S t r += ” ,” + lowerSt r ing ( p head−>p r ed i c a t e ) + ”)”
14 r e f Sp e c s S t r += ” :− Add”
15 p head−>pr in t
16 f o r each a t t r i b u t e a t t r [ i ] in p body−>a t t r i b u t e s
17 {
18 i f ( a t t r [ i ] NOT found in p head )
19 {
20 s t r i n g ruleEnd ;
21 extraRules = re fSpec sHe lpe r ( a t t r [ i ] , p head ,
22 r e fSpec sSt r , auxRule , ruleEnd ) ;
23 ruleEnd += la s tRu l e ;
24 }
25 }
26 r e f Sp e c s S t r += ” .\n”
27 auxRule += ” .\n”
28 }
29 e l s e
30 {
31 r e f Sp e c s S t r += ” , t0 ) :−”
32 r e f Sp e c s S t r += p head−>pr in t ( ) + ” .\n”
33 }}
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Example 38 We use view definitions for V 1 and V 2 from Listing 8.2. The rule for V 1

does not contain any existential variables and hence, following are the specifications

generated,

%Refined specifications for V1 :

Animal(Name, Class, Food, t0) : − V1(Name, Class, Food)

V ertebrate(Name, t0) : − V1(Name, Class, Food)

2

Listing 8.7: Rules Construction for Refined Spec. in the Presence of Existential
Variable

1 s t r i n g VISSHandler : : r e fSpec sHe lpe r ( s t r i n g& attr , ruleAtom∗ p head ,
2 s t r i n g& outStr , s t r i n g& auxRule ,
3 s t r i n g& ruleEnd )
4 { s t r i n g r e tS t r ;
5 i f a t t r was pro ce s s ed e a r l i e r
6 get the chosen name f o r the a t t r i b u t e
7 e l s e {
8 get a new chosen name
9 s t o r e the chosen name and a t t r i b u t e name
10 }
11 s t r i n g s t r 1 = ”(” + p head−>p r i n tAt t r i bu t e s ( ) + ” )” ;
12 s t r i n g s t r 2 = ”(” + p head−>p r i n tAt t r i bu t e s ( ) + a t t r + ” )” ;
13 outStr += ” ,” + chosen name + s t r 2 ;
14 i f a t t r NOT proce s s ed e a r l i e r
15 {
16 r e tS t r += chosen name + s t r 2 + ” :− Add” +
17 p head−>p r ed i c a t e + a t t r + s t r 1 + ” , dom(” +
18 a t t r + ”) , chosen ” + chosen s u f f i x + s t r 2 + ” .\n”
19 r e tS t r += ”chosen ” + chosen s u f f i x + s t r 2 +
20 ” :− ” + ”Add” + p head−>p r ed i c a t e + a t t r +
21 Str1 + ” , dom(” + a t t r + ”) , not d i f f c h o i c e ” +
22 chosen s u f f i x + s t r 2 + ” .\n”
23 r e tS t r += ” d i f f c h o i c e ” + chosen s u f f i x + s t r 2 +
24 ” :− ” + ” chosen ” + chosen s u f f i x + ”(” +
25 p head−>p r i n tAt t r i bu t e s ( ) + ” ,U) , dom(” +
26 a t t r + ”) , U != ” + a t t r + ” .\n”
27 r e tS t r += ”Add” + p head−>p r ed i c a t e + a t t r + s t r 1 +
28 ” :− ” + ”Add” + p head−>p r ed i c a t e + s t r 1 +
29 ” , not Aux” + p head−>p r ed i c a t e + a t t r + s t r 1 + ” .\n”
30 r e tS t r += ”Aux” + p head−>p r ed i c a t e + a t t r + s t r 1 +
31 ” :− ” + ”Var” + p head−>p r ed i c a t e + a t t r + s t r 2 + ” .\n”
32 i f ( auxRule i s empty )
33 {
34 auxRule = ”Add” + p head−>p r ed i c a t e + s t r 1 + ”
35 :− ” + p head−>p r ed i c a t e + s t r 1 + ” , not Aux” +
36 p head−>p r ed i c a t e + s t r 1 + ” .\n ” ;
37 auxRule += ”Aux” + p head−>p r ed i c a t e +
38 s t r 1 + ” :− ” + ”Var” + p head−>p r ed i c a t e + a t t r + s t r 2 ;
39 }
40 e l s e {auxRule += ” , Var” + p head−>p r ed i c a t e + a t t r + s t r 2 ;
41 }
42 ruleEnd = ”Var” + p head−>p r ed i c a t e + a t t r + s t r 2 +
43 ” :− ” ;}
44 return r e tS t r ;}



98

The refSpecsHelper() function is used to generate the extra rules when an attribute in

p body is not found in p head. The chosen predicate corresponding to each existential

variable and the two extra rules defining it are generated using the refined specification

(cf. Section 2.4 in Chapter 2) as shown in Listing 8.7 Lines 23-34. The predicate Add

suffixed with the source relation name (i.e. AddV 2) is defined by extra rules as shown

in Listing 8.7 Lines 35-58. The AddV i(X̄) is true only when the openness of V i is

not satisfied through other views [19]. Example 39 illustrates the refSpecsHelper()

function.

Example 39 (Example 38 continued) We use predicate AddV 2 to specify the open-

ness of V 2 and the rule for V 2 contains the existential variables Class and Food, all

of which are defined by extra rules as follows,

%Refined specifications for V2 :

Animal(Name, Class, Food, v2) : −AddV 2(Name,Habitat),

chosen1(Name,Habitat, Class),

chosen2(Name,Habitat, Food). (1)

AddV 2(Name,Habitat) : −V 2(Name,Habitat),

not AuxV 2(Name,Habitat). (2)

AuxV 2(Name,Habitat) : −V arV 2Class(Name,Habitat, Class),

V arV 2Food(Name,Habitat, Food). (3)

chosen1(Name,Habitat, Class) : −AddV 2Class(Name,Habitat),

dom(Class),

not diffchoice1(Name,Habitat, Class).

(4)

diffchoice1(Name,Habitat, Class) : −chosen1(Name,Habitat, U),

dom(Class), U ! = Class. (5)

AddV 2Class(Name,Habitat) : −AddV 2(Name,Habitat),

not AuxV 2Class(Name,Habitat). (6)

AuxV 2Class(Name,Habitat) : −V arV 2Class(Name,Habitat, Class). (7)

V arV 2Class(Name,Habitat, Class) : −Animal(Name, Class, Food, nv2),

Habitat(Name,Habitat, nv2). (8)

Habitat(Name,Habitat, t0) : −V 2(Name,Habitat). (9)
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chosen2(Name,Habitat, Food) : −AddV 2Food(Name,Habitat),

dom(Food),

not diffchoice2(Name,Habitat, Food). (10)

diffchoice2(Name,Habitat, Food) : −chosen2(Name,Habitat, U),

dom(Food), U ! = Food. (11)

AddV 2Food(Name,Habitat) : −AddV 2(Name,Habitat),

not AuxV 2Food(Name,Habitat). (12)

AuxV 2Food(Name,Habitat) : −V arV 2Food(Name,Habitat, Food). (13)

V arV 2Food(Name,Habitat, Food) : −Animal(Name, Class, Food, nv2),

Habitat(Name,Habitat, nv2). (14)

The predicate AddV 2 is used in place of V 2 (in the Simple Specification ) and

AddV 2 is defined by extra rules (Lines 2-3). The V 2 predicate used for defining

the choseni predicate in Simple Specification is replaced with the AddV 2Class and

AddV 2Food in Lines 6-8 and Lines 11-13 respectively. Again, we replace the function

predicate Fi used in the refined specification [19] with the choseni predicate directly,

thus eliminating redundant rules. 2

8.4 Building the Inverse Rules Program

The Inverse Rules [31] are generated only when there are no built-ins in the view

definitions. As before, the head and body of all the rules has been read from the

XML file (cf. Listing 8.2). The printInvert() function simply checks if each attribute

in each of the body atom of a rule is also present in the head (Listing 8.8 Lines 6-10).

If it is present, the attribute is simply printed as it is (Listing 8.8 Lines 10-11). If the

attribute is not present (i.e. it is an existential attribute), it is replaced by a string

fi where i = 1..n, n is the number of existential variables and the attributes of the

head (Listing 8.8 Lines 13-22). Example 40 illustrates the printInvert() function.
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Listing 8.8: Function printInvert()

1 VISSHandler : : p r i n t I nv e r t ( ruleAtom∗ p head , ruleAtom∗ p body )
2 {
3 pr in t the body p r ed i c a t e
4 pr in t ”(”
5 f o r each a t t r i b u t e in p body−>a t t r i b u t e s
6 {
7 i f ( ! f i r s t a t t r i b u t e )
8 pr in t ” ,”
9 i f p body a t t r i b u t e i s found in p head
10 pr in t the a t t r i b u t e
11 e l s e
12 {
13 i f a t t r i b u t e was pro ce s s ed e a r l i e r
14 pr in t the func t i on name and head a t t r i b u t e s
15 e l s e
16 {
17 get a new func t i on name
18 s t o r e the func t i on name and a t t r i b u t e name
19 pr in t the new func t i on name and head a t t r i b u t e s
20 }
21 }
22 pr in t ”) <−” p head−>pr in t ( )
23 }
24 }

Example 40 We use view definitions for V 1 and V 2 from Listing 8.2. The rule for

V 1 does not contain any existential variables and rule for V 2 contains Class and

Food as existential variables. There are no built-ins in the view definitions. The

Program Builder generates the Inverse Rules as follows,

Animal(Name, Class, Food) : −V 1(Name, Class, Food).

V ertebrate(Name) : −V 1(Name, Class, Food).

Animal(Name, f1(Name,Habitat), f2(Name,Habitat)) : −V 2(Name,Habitat).

Habitat(Name,Habitat) : −V 2(Name,Habitat).

2



Chapter 9

Design Rationale and Experiments

In this chapter, we present the rationale behind the design ofVISS and also experi-

mental results obtained by computing certain answers, (a) without optimization, (b)

using only the global predicates in the body of the query and (c) using the opti-

mization steps presented in this research (QP, SP, SQC and RP). We look at the

gain observed in terms of number of relevant sources considered, number of tuples

imported into the logic program, execution time and the size of the logic program.

9.1 Design Rationale of VISS

The choice of specification languages, viz. XML and RuleML in VISS, was based on

the versatility offered by them to represent the mappings, integrity constraints as well

as the access information of the data sources. We could create custom XML elements

for the mappings but RuleML already provides the required specifications. Since

RuleML is based on XML, we could represent the entire metadata in a single XML

file. More notably, the use of XML and RuleML allows us to use XQuery for querying

the metadata. The metadata representations in the mediators discussed earlier (cf.

Chapter 3) lack a standard query language. As a result, a custom Query Execution

Engine was built for these applications. The use of a logic program approach in VISS

helps provide further extensions through the use of stable models.

In VISS, the XML and RuleML metadata representation is parsed to build the

logic program using open-source parsers. The parser automatically reads the XML

101
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document and performs actions based on the tags encountered in the document. We

only need to specify what those actions should be (cf. Chapter 8) in the handler

class of the parser. VISS uses the Xerces Simple API for XML (SAX) parser, which

provides stream-oriented APIs for parsing XML. SAX is more efficient compared to

the Xerces DOM (Document Object Model) parser because it bypasses the creation

of a tree-based object model and loading it in memory [76].

A metadata representation using Datalog might seem a natural choice as we use a

logic program to compute certain answers and Datalog is a language for representing

rules. However, the Datalog representation would still require custom code to read

and process the mappings from scratch and build the logic program specification.

Also, using Datalog to represent the access information for the sources will result in

second-order logic formulas. We illustrate this in Example 41.

Example 41 The representation of the source animalkingdom using our XML

representation is as follows:

<Source name="animalkingdom">

<Type>sqlexpress</Type>

<Hostname>animalkingdom</Hostname>

<Databasename>animalkingdom</Databasename>

<Userid>test</Userid>

<Password>test</Password>

<Atom>

<Rel>V1</Rel>

<Var>Name</Var>

<Var>Class</Var>

<Var>Food</Var>

</Atom>

</Source>

Representing the structure of the local source in Datalog would result in a second-

order formula as follows:

animalkingdom (sqlexpress, animalkingdom, animalkingdom, test, test,

Atom(V 1, Name, Class, Food)).

2

The representation of access information in second-order logic, even if not used for
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any computation in this form, still presents a question of how it can be translated

into Import commands in the logic program specification.

The Berkeley DB XML (BDBXML) in VISS serves the purpose of a Metadata

Store as well as a Query Execution Engine because XQilla, the XQuery execution

engine, is already built inside BDBXML.

9.2 Experimental Setup

We describe the experiments performed to analyze the gain obtained using the opti-

mization steps in our design and implementation of VISS. We compare our approach

with using the original EIRA and not with the other pruning approaches. The exper-

iments were performed on a PC with Intel Pentium M processor of 1.6 GHz, 1 GB

RAM using a Windows XP 2002 SP3 operating system. We use four data sources and

their relations as shown in Table 9.1. The global relations defined in the mediator

are Animal, V ertebrate, Habitat, AnimalList, FoodList and ClassList. The view

definitions describing the source relations are given by:

V1 (Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (9.1)

LV1 (Name,Class ,Food)← Animal(Name,Class ,Food),Vertebrate(Name). (9.2)

V2 (Name,Habitat)← Animal(Name,Class ,Food),Habitat(Name,Habitat). (9.3)

LV2 (Name,Habitat)← Animal(Name,Class ,Food),Habitat(Name,Habitat). (9.4)

V3 (Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”mammal”. (9.5)

LV3 (Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”mammal”. (9.6)

V4 (Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”bird”. (9.7)

LV4 (Name,Class ,Food)← Animal(Name,Class ,Food),Class = ”bird”. (9.8)

V 5(Name, Food)← Animal(Name, Class, Food), Class = ”mammal”. (9.9)

LV 5(Name, Food)← Animal(Name, Class, Food), Class = ”mammal”. (9.10)

V 6(Habitat)← Animal(Name, Class, Food), Habitat(Name,Habitat). (9.11)
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LV 6(Name, Class, Food)← Animal(Name, Class, Food), Class = ”amphibian”.

(9.12)

V 7(Name, Class, Food)← Animal(Name, Class, Food), Class = ”reptile”.

(9.13)

AnimalV 1(Name, Class)← AnimalList(Name, Class). (9.14)

FoodV 1(Food)← FoodList(Food). (9.15)

ClassV 1(Class)← ClassList(Class). (9.16)

V Test1(Name)← V ertebrate(Name). (9.17)

V Test2(Name)← V ertebrate(Name). (9.18)

Table 9.1: Data Sources.

Database Source Re-
lation

Number of
Tuples

Description

animalkingdom

V1 500 List of vertebrates

LV1 5188 List of vertebrates ⊇ V1

FoodV1 300 List of common animal food

AnimalV1 300 List of animals and their
classes

ClassV1 300 List of animal classes

V3 500 List of mammals

LV3 5138 List of mammals ⊇ V3

V4 500 List of birds

LV5 5123 List of mammals ⊇ V5

animalhabitat

V2 1100 List of animals and their habi-
tat

LV2 5376 List of animals and their habi-
tat ⊇ V2

V5 100 List of mammals

V6 1300 List of common animal habi-
tats

mysqltest
LV6 5220 List of amphibians

V7 5240 List of reptiles

accesstest

LV4 5583 List of birds ⊇ V4

VTest1 100 List of vertebrates

VTest2 100 List of vertebrates
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We compute certain answers for four query test cases that are representative of

the type of queries we consider in this thesis. We do this in three scenarios. First

scenario is generating the logic program without involving any optimization steps.

The second scenario uses the global relations in the body of the query as the only

criteria for identifying the sources. The third scenario uses the optimization steps -

QP, SP, SQC and RP (cf. Chapter 5). We list the logic program in each test scenario

containing the import commands, the Simple Specification program without the dom

rules and the query program. The dom atoms in the first scenario will include all

values from the active domain and for the sake of brevity, we do not show this in the

logic program listed in all the scenarios. However, when running the logic program

using DLV, the rules for the dom predicates will have to be added to all the programs

listed in the test cases.

9.2.1 Test Case 1
A conjunctive query that asks for animal names, class, food and habitat.

Ans(Name, Class, Food,Habitat) ← Animal(Name, Class, Food),

Habitat(Name,Habitat). (9.19)

Program 9.1a lists the logic program without optimization that imports all the

data from all the sources available and using the rules for all view definitions. This,

of course, is a naive method for computing answers. The second scenario uses the

global relations in the body of the query namely Animal and Habitat and identifies

the sources from the view definitions. Only those view definitions that contain the

global relations that are in the body of the query are considered. Program 9.1b uses

a reduced number of sources but the logic program contains some redundant rules.

Program 9.1c uses the optimization step RP and prunes the rules for the function

predicate fi and replaces them with choseni directly (RP step Chapter 5 Section

5.5). Also, the equality built-ins in the view definition are directly substituted for the

variable. For example, the attribute Class is substituted with the value ”mammal”

in the rule for V 3, LV 3, V 5 and LV 5. Since it is a conjunctive query without any

equality built-ins, the sources identified in Program 9.1c are the same as for Program

9.1b.
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Program 9.1a for scenario 1:

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 1”, V 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 1”, LV 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from FoodV 1”, F oodV 1,

type : Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from AnimalV 1”, AnimalV 1,

type : Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from ClassV 1”, ClassV 1,

type : Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 3”, V 3,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 3”, LV 3,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 4”, V 4,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 5”, LV 5,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 2”, V 2,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from LV 2”, LV 2,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 5”, V 5,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 6”, V 6,

type : Q Const).

#import(mysqltest, ”test”, ”test”, ”select ∗ from LV 6”, LV 6,

type : Q Const, Q Const, Q Const).

#import(mysqltest, ”test”, ”test”, ”select ∗ from V 7”, V 7,

type : Q Const, Q Const, Q Const).

#import(accesstest, ””, ””, ”select ∗ from V Test1”, V Test1,

type : Q Const).

#import(accesstest, ””, ””, ”select ∗ from LV 4”, LV 4,

type : Q Const, Q Const, Q Const).

#import(accesstest, ””, ””, ”select ∗ from V Test2”, V Test2,

type : Q Const, Q Const).

V ertebrate(Name) : −V Test1(Name).

V ertebrate(Name) : −V Test2(Name).
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Animal(Name, Class, Food) : −V 1(Name, Class, Food).

V ertebrate(Name) : −V 1(Name, Class, Food).

Animal(Name, Class, Food) : −LV 1(Name, Class, Food).

V ertebrate(Name) : −LV 1(Name, Class, Food).

Animal(Name, Class, Food) : −V 3(Name, Class, Food).

Animal(Name, Class, Food) : −LV 3(Name, Class, Food).

Animal(Name, Class, Food) : −V 4(Name, Class, Food).

Animal(Name, Class, Food) : −LV 4(Name, Class, Food).

Animal(Name, Class, Food) : −V 5(Name, Food), f6(Name, Food, Class).

f6(Name, Food, Class) : −V 5(Name, Food), dom(Class),

chosen6(Name, Food, Class).

chosen6(Name, Food, Class) : −V 5(Name, Food), dom(Class),

not diffchoice6(Name, Food, Class).

diffchoice6(Name, Food, Class) : −chosen6(Name, Food, U),

dom(Class), U ! = Class.

Animal(Name, Class, Food) : −LV 5(Name, Food), f7(Name, Food, Class).

f7(Name, Food, Class) : −LV 5(Name, Food), dom(Class),

chosen7(Name, Food, Class).

chosen7(Name, Food, Class) : −LV 5(Name, Food), dom(Class),

not diffchoice7(Name, Food, Class).

diffchoice7(Name, Food, Class) : −chosen7(Name, Food, U), dom(Class),

U ! = Class.

Animal(Name, Class, Food) : −V 2(Name,Habitat),

f8(Name,Habitat, Class),

f9(Name,Habitat, Food).

f8(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

chosen8(Name,Habitat, Class).

chosen8(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

not diffchoice8(Name,Habitat, Class).

diffchoice8(Name,Habitat, Class) : −chosen8(Name,Habitat, U),

dom(Class), U ! = Class.

f9(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

chosen9(Name,Habitat, Food).

chosen9(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

not diffchoice9(Name,Habitat, Food).

diffchoice9(Name,Habitat, Food) : −chosen9(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Animal(Name, Class, Food) : −LV 2(Name,Habitat),

f10(Name,Habitat, Class),

f11(Name,Habitat, Food).
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f10(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

chosen10(Name,Habitat, Class).

chosen10(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

not diffchoice10(Name,Habitat, Class).

diffchoice10(Name,Habitat, Class) : −chosen10(Name,Habitat, U),

dom(Class), U ! = Class.

f11(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

chosen11(Name,Habitat, Food).

chosen11(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

not diffchoice11(Name,Habitat, Food).

diffchoice11(Name,Habitat, Food) : −chosen11(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Animal(Name, Class, Food) : −V 6(Habitat), f12(Habitat, Name),

f13(Habitat, Class), f14(Habitat, Food).

f12(Habitat, Name) : −V 6(Habitat), dom(Name),

chosen12(Habitat, Name).

chosen12(Habitat, Name) : −V 6(Habitat), dom(Name),

not diffchoice12(Habitat, Name).

diffchoice12(Habitat, Name) : −chosen12(Habitat, U),

dom(Name), U ! = Name.

f13(Habitat, Class) : −V 6(Habitat), dom(Class),

chosen13(Habitat, Class).

chosen13(Habitat, Class) : −V 6(Habitat), dom(Class),

not diffchoice13(Habitat, Class).

diffchoice13(Habitat, Class) : −chosen13(Habitat, U),

dom(Class), U ! = Class.

f14(Habitat, Food) : −V 6(Habitat), dom(Food),

chosen14(Habitat, Food).

chosen14(Habitat, Food) : −V 6(Habitat), dom(Food),

not diffchoice14(Habitat, Food).

diffchoice14(Habitat, Food) : −chosen14(Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 6(Habitat), f12(Habitat, Name).

Animal(Name, Class, Food) : −LV 6(Name, Class, Food).

Animal(Name, Class, Food) : −V 7(Name, Class, Food).

AnimalList(Name, Class) : −AnimalV 1(Name, Class).

F oodList(Food) : −FoodV 1(Food).

ClassList(Class) : −ClassV 1(Class).

Ans(Name, Class, Food,Habitat) : −Habitat(Name,Habitat),

Animal(Name, Class, Food).

Ans(Name, Class, Food,Habitat)?
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Program 9.1b for scenario 2:

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 1”, V 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 1”, LV 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 3”, V 3,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 3”, LV 3,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 4”, V 4,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 5”, LV 5,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 2”, V 2,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from LV 2”, LV 2,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 5”, V 5,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 6”, V 6,

type : Q Const).

#import(mysqltest, ”test”, ”test”, ”select ∗ from LV 6”, LV 6,

type : Q Const, Q Const, Q Const).

#import(mysqltest, ”test”, ”test”, ”select ∗ from V 7”, V 7,

type : Q Const, Q Const, Q Const).

#import(accesstest, ””, ””, ”select ∗ from LV 4”, LV 4,

type : Q Const, Q Const, Q Const).

Animal(Name, Class, Food) : −V 1(Name, Class, Food).

Animal(Name, Class, Food) : −LV 1(Name, Class, Food).

Animal(Name, Class, Food) : −V 3(Name, Class, Food).

Animal(Name, Class, Food) : −LV 3(Name, Class, Food).

Animal(Name, Class, Food) : −V 4(Name, Class, Food).

Animal(Name, Class, Food) : −LV 4(Name, Class, Food).

Animal(Name, Class, Food) : −V 5(Name, Food), f6(Name, Food, Class).

f6(Name, Food, Class) : −V 5(Name, Food), dom(Class),

chosen6(Name, Food, Class).

chosen6(Name, Food, Class) : −V 5(Name, Food), dom(Class),

not diffchoice6(Name, Food, Class).

diffchoice6(Name, Food, Class) : −chosen6(Name, Food, U),

dom(Class), U ! = Class.
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Animal(Name, Class, Food) : −LV 5(Name, Food), f7(Name, Food, Class).

f7(Name, Food, Class) : −LV 5(Name, Food), dom(Class),

chosen7(Name, Food, Class).

chosen7(Name, Food, Class) : −LV 5(Name, Food), dom(Class),

not diffchoice7(Name, Food, Class).

diffchoice7(Name, Food, Class) : −chosen7(Name, Food, U), dom(Class),

U ! = Class.

Animal(Name, Class, Food) : −V 2(Name,Habitat),

f8(Name,Habitat, Class),

f9(Name,Habitat, Food).

f8(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

chosen8(Name,Habitat, Class).

chosen8(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

not diffchoice8(Name,Habitat, Class).

diffchoice8(Name,Habitat, Class) : −chosen8(Name,Habitat, U),

dom(Class), U ! = Class.

f9(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

chosen9(Name,Habitat, Food).

chosen9(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

not diffchoice9(Name,Habitat, Food).

diffchoice9(Name,Habitat, Food) : −chosen9(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Animal(Name, Class, Food) : −LV 2(Name,Habitat),

f10(Name,Habitat, Class),

f11(Name,Habitat, Food).

f10(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

chosen10(Name,Habitat, Class).

chosen10(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

not diffchoice10(Name,Habitat, Class).

diffchoice10(Name,Habitat, Class) : −chosen10(Name,Habitat, U),

dom(Class), U ! = Class.

f11(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

chosen11(Name,Habitat, Food).

chosen11(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

not diffchoice11(Name,Habitat, Food).

diffchoice11(Name,Habitat, Food) : −chosen11(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Animal(Name, Class, Food) : −V 6(Habitat), f12(Habitat, Name),

f13(Habitat, Class), f14(Habitat, Food).
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f12(Habitat, Name) : −V 6(Habitat), dom(Name),

chosen12(Habitat, Name).

chosen12(Habitat, Name) : −V 6(Habitat), dom(Name),

not diffchoice12(Habitat, Name).

diffchoice12(Habitat, Name) : −chosen12(Habitat, U),

dom(Name), U ! = Name.

f13(Habitat, Class) : −V 6(Habitat), dom(Class),

chosen13(Habitat, Class).

chosen13(Habitat, Class) : −V 6(Habitat), dom(Class),

not diffchoice13(Habitat, Class).

diffchoice13(Habitat, Class) : −chosen13(Habitat, U),

dom(Class), U ! = Class.

f14(Habitat, Food) : −V 6(Habitat), dom(Food),

chosen14(Habitat, Food).

chosen14(Habitat, Food) : −V 6(Habitat), dom(Food),

not diffchoice14(Habitat, Food).

diffchoice14(Habitat, Food) : −chosen14(Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 6(Habitat), f12(Habitat, Name).

Animal(Name, Class, Food) : −LV 6(Name, Class, Food).

Animal(Name, Class, Food) : −V 7(Name, Class, Food).

Ans(Name, Class, Food,Habitat) : −Habitat(Name,Habitat),

Animal(Name, Class, Food).

Ans(Name, Class, Food,Habitat)?

Program 9.1c for scenario 3:

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 1”, V 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 1”, LV 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 3”, V 3,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 3”, LV 3,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 4”, V 4,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 5”, LV 5,

type : Q Const, Q Const).
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#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 2”, V 2,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from LV 2”, LV 2,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 5”, V 5,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 6”, V 6,

type : Q Const).

#import(mysqltest, ”test”, ”test”, ”select ∗ from LV 6”, LV 6,

type : Q Const, Q Const, Q Const).

#import(mysqltest, ”test”, ”test”, ”select ∗ from V 7”, V 7,

type : Q Const, Q Const, Q Const).

#import(accesstest, ””, ””, ”select ∗ from LV 4”, LV 4,

type : Q Const, Q Const, Q Const).

Animal(Name, Class, Food) : −V 1(Name, Class, Food).

Animal(Name, Class, Food) : −LV 1(Name, Class, Food).

Animal(Name, ”mammal”, F ood) : −V 3(Name, Class, Food).

Animal(Name, ”mammal”, F ood) : −LV 3(Name, Class, Food).

Animal(Name, ”bird”, F ood) : −V 4(Name, Class, Food).

Animal(Name, ”bird”, F ood) : −LV 4(Name, Class, Food).

Animal(Name, ”mammal”, F ood) : −V 5(Name, Food),

chosen6(Name, Food, Class).

chosen6(Name, Food, Class) : −V 5(Name, Food), dom(Class),

not diffchoice6(Name, Food, Class).

diffchoice6(Name, Food, Class) : −chosen6(Name, Food, U),

dom(Class), U ! = Class.

Animal(Name, ”mammal”, F ood) : −LV 5(Name, Food),

chosen7(Name, Food, Class).

chosen7(Name, Food, Class) : −LV 5(Name, Food), dom(Class),

not diffchoice7(Name, Food, Class).

diffchoice7(Name, Food, Class) : −chosen7(Name, Food, U), dom(Class),

U ! = Class.

Animal(Name, Class, Food) : −V 2(Name,Habitat),

chosen8(Name,Habitat, Class),

chosen9(Name,Habitat, Food).

chosen8(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

not diffchoice8(Name,Habitat, Class).

diffchoice8(Name,Habitat, Class) : −chosen8(Name,Habitat, U),

dom(Class), U ! = Class.

chosen9(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

not diffchoice9(Name,Habitat, Food).
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diffchoice9(Name,Habitat, Food) : −chosen9(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Animal(Name, Class, Food) : −LV 2(Name,Habitat),

chosen10(Name,Habitat, Class),

chosen11(Name,Habitat, Food).

chosen10(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

not diffchoice10(Name,Habitat, Class).

diffchoice10(Name,Habitat, Class) : −chosen10(Name,Habitat, U),

dom(Class), U ! = Class.

chosen11(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

not diffchoice11(Name,Habitat, Food).

diffchoice11(Name,Habitat, Food) : −chosen11(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Animal(Name, Class, Food) : −V 6(Habitat), chosen12(Habitat, Name),

chosen13(Habitat, Class),

chosen14(Habitat, Food).

chosen12(Habitat, Name) : −V 6(Habitat), dom(Name),

not diffchoice12(Habitat, Name).

diffchoice12(Habitat, Name) : −chosen12(Habitat, U),

dom(Name), U ! = Name.

chosen13(Habitat, Class) : −V 6(Habitat), dom(Class),

not diffchoice13(Habitat, Class).

diffchoice13(Habitat, Class) : −chosen13(Habitat, U),

dom(Class), U ! = Class.

chosen14(Habitat, Food) : −V 6(Habitat), dom(Food),

not diffchoice14(Habitat, Food).

diffchoice14(Habitat, Food) : −chosen14(Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 6(Habitat), chosen12(Habitat, Name).

Animal(Name, ”amphibian”, F ood) : −LV 6(Name, Class, Food).

Animal(Name, ”reptile”, F ood) : −V 7(Name, Class, Food).

Ans(Name, Class, Food,Habitat) : −Habitat(Name,Habitat),

Animal(Name, Class, Food).

Ans(Name, Class, Food,Habitat)?
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9.2.2 Test Case 2

A conjunctive query with built-ins that asks for name, class, food and habitat of

animals that belong to class amphibians and those that eat insects.

Ans(Name, Class, Food,Habitat) ← Animal(Name, Class, Food),

Habitat(Name,Habitat), F ood = ”insects”

Class = ”amphibian”. (9.20)

The logic programs for scenario 1 and 2 remains the same as test case 1. This is

because scenario 1 considers everything irrespective of the query. Scenario 2 again

considers the global relations Animal and Habitat but not the built-ins in the query.
Program 9.2c for scenario 3:

#import(animalkingdom, ”sa”, ”gj”, ”Select Distinct ∗ From V 1 where

Class =′ amphibian′ and Food =′ insects′”,

V 1, type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”sa”, ”gj”, ”Select Distinct ∗ From LV 1 where

Class =′ amphibian′ and Food =′ insects′”,

LV 1, type : Q Const, Q Const, Q Const).

#import(mysqltest, ”root”, ”gj”, ”Select Distinct ∗ From LV 6 where

Class =′ amphibian′ and Food =′ insects′”,

LV 6, type : Q Const, Q Const, Q Const).

#import(animalhabitat, ”root”, ”gj”, ”Select Distinct ∗ From V 2”,

V 2, type : Q Const, Q Const).

#import(animalhabitat, ”root”, ”gj”, ”Select Distinct ∗ From LV 2”,

LV 2, type : Q Const, Q Const).

#import(animalhabitat, ”root”, ”gj”, ”Select Distinct ∗ From V 6”,

V 6, type : Q Const).

Animal(Name, Class, Food) : −V 1(Name, Class, Food).

Animal(Name, Class, Food) : −LV 1(Name, Class, Food).

Animal(Name, Class, Food) : −V 2(Name,Habitat),

chosen8(Name,Habitat, Class),

chosen9(Name,Habitat, Food).

chosen8(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

not diffchoice8(Name,Habitat, Class).

diffchoice8(Name,Habitat, Class) : −chosen8(Name,Habitat, U),

dom(Class), U ! = Class.
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chosen9(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

not diffchoice9(Name,Habitat, Food).

diffchoice9(Name,Habitat, Food) : −chosen9(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Animal(Name, Class, Food) : −LV 2(Name,Habitat),

chosen10(Name,Habitat, Class),

chosen11(Name,Habitat, Food).

chosen10(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

not diffchoice10(Name,Habitat, Class).

diffchoice10(Name,Habitat, Class) : −chosen10(Name,Habitat, U),

dom(Class), U ! = Class.

chosen11(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

not diffchoice11(Name,Habitat, Food).

diffchoice11(Name,Habitat, Food) : −chosen11(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Animal(Name, Class, Food) : −V 6(Habitat), chosen12(Habitat, Name),

chosen13(Habitat, Class),

chosen14(Habitat, Food).

chosen12(Habitat, Name) : −V 6(Habitat), dom(Name),

not diffchoice12(Habitat, Name).

diffchoice12(Habitat, Name) : −chosen12(Habitat, U),

dom(Name), U ! = Name.

chosen13(Habitat, Class) : −V 6(Habitat), dom(Class),

not diffchoice13(Habitat, Class).

diffchoice13(Habitat, Class) : −chosen13(Habitat, U),

dom(Class), U ! = Class.

chosen14(Habitat, Food) : −V 6(Habitat), dom(Food),

not diffchoice14(Habitat, Food).

diffchoice14(Habitat, Food) : −chosen14(Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 6(Habitat), chosen12(Habitat, Name).

Animal(Name, ”amphibian”, F ood) : −LV 6(Name, Class, Food).

Ans(Name, Class, Food,Habitat) : −Habitat(Name,Habitat),

Animal(Name, Class, Food),

Class = ”amphibian”, F ood = ”insects”.

Ans(Name, Class, Food,Habitat)?
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9.2.3 Test Case 3

A disjunctive query with built-ins that asks for name, class and habitat of animals

that belong to class amphibians or class reptiles.

Ans(Name, Class,Habitat) ← Animal(Name, Class, Food),

Habitat(Name,Habitat),

Class = ”amphibian”.

Ans(Name, Class,Habitat) ← Animal(Name, Class, Food),

Habitat(Name,Habitat),

Class = ”reptile”. (9.21)

In this case also, the logic programs for scenario 1 and 2 remains the same as test

case 1. Scenario 1 considers everything irrespective of the query. Scenario 2 again

considers the global relations Animal and Habitat but not the built-ins in the query.
Program 9.3c for scenario 3:

#import(animalkingdom, ”sa”, ”gj”, ”Select Distinct ∗ From V 1 where

Class =′ amphibian′ and Food =′ insects′”,

V 1, type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”sa”, ”gj”, ”Select Distinct ∗ From LV 1 where

Class =′ amphibian′ and Food =′ insects′”,

LV 1, type : Q Const, Q Const, Q Const).

#import(mysqltest, ”root”, ”gj”, ”Select Distinct ∗ From LV 6 where

Class =′ amphibian′ and Food =′ insects′”,

LV 6, type : Q Const, Q Const, Q Const).

#import(animalhabitat, ”root”, ”gj”, ”Select Distinct ∗ From V 2”,

V 2, type : Q Const, Q Const).

#import(animalhabitat, ”root”, ”gj”, ”Select Distinct ∗ From LV 2”,

LV 2, type : Q Const, Q Const).

#import(animalhabitat, ”root”, ”gj”, ”Select Distinct ∗ From V 6”,

V 6, type : Q Const).

#import(animalkingdom, ”sa”, ”gj”, ”Select Distinct ∗ From V 1 where

Class =′ reptile′”,

V 1, type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”sa”, ”gj”, ”Select Distinct ∗ From LV 1 where

Class =′ reptile′”,

LV 1, type : Q Const, Q Const, Q Const).
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#import(mysqltest, ”root”, ”gj”, ”Select Distinct ∗ FROM V 7 where

Class =′ reptile′”,

V 7, type : Q Const, Q Const, Q Const).

Animal(Name, Class, Food) : −V 1(Name, Class, Food).

Animal(Name, Class, Food) : −LV 1(Name, Class, Food).

Animal(Name, Class, Food) : −V 2(Name,Habitat),

chosen8(Name,Habitat, Class),

chosen9(Name,Habitat, Food).

chosen8(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

not diffchoice8(Name,Habitat, Class).

diffchoice8(Name,Habitat, Class) : −chosen8(Name,Habitat, U),

dom(Class), U ! = Class.

chosen9(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

not diffchoice9(Name,Habitat, Food).

diffchoice9(Name,Habitat, Food) : −chosen9(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Animal(Name, Class, Food) : −LV 2(Name,Habitat),

chosen10(Name,Habitat, Class),

chosen11(Name,Habitat, Food).

chosen10(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

not diffchoice10(Name,Habitat, Class).

diffchoice10(Name,Habitat, Class) : −chosen10(Name,Habitat, U),

dom(Class), U ! = Class.

chosen11(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

not diffchoice11(Name,Habitat, Food).

diffchoice11(Name,Habitat, Food) : −chosen11(Name,Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Animal(Name, Class, Food) : −V 6(Habitat), chosen12(Habitat, Name),

chosen13(Habitat, Class),

chosen14(Habitat, Food).

chosen12(Habitat, Name) : −V 6(Habitat), dom(Name),

not diffchoice12(Habitat, Name).

diffchoice12(Habitat, Name) : −chosen12(Habitat, U),

dom(Name), U ! = Name.

chosen13(Habitat, Class) : −V 6(Habitat), dom(Class),

not diffchoice13(Habitat, Class).

diffchoice13(Habitat, Class) : −chosen13(Habitat, U),

dom(Class), U ! = Class.
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chosen14(Habitat, Food) : −V 6(Habitat), dom(Food),

not diffchoice14(Habitat, Food).

diffchoice14(Habitat, Food) : −chosen14(Habitat, U),

dom(Food), U ! = Food.

Habitat(Name,Habitat) : −V 6(Habitat), chosen12(Habitat, Name).

Animal(Name, ”amphibian”, F ood) : −LV 6(Name, Class, Food).

Animal(Name, ”reptile”, F ood) : −V 7(Name, Class, Food).

Ans(Name, Class,Habitat) : −Habitat(Name,Habitat),

Animal(Name, Class, Food),

Class = ”amphibian”, F ood = ”insects”.

Ans(Name, Class,Habitat) : −Habitat(Name,Habitat),

Animal(Name, Class, Food),

Class = ”reptile”.

Ans(Name, Class,Habitat)?

9.2.4 Test Case 4

A cartesian product query that asks for name and habitat of animals.

Ans(Name,Habitat) ← Habitat(Name,Habitat), ClassList(Class),

F oodList(Food), V ertebrate(Name). (9.22)

The logic program for scenario 1 remains the same as test case 1. Scenario 2 con-

siders all the global relations in the body of the query namely V ertebrate, ClassList,

FoodList and Habitat.
Program 9.4b for scenario 2:

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 1”, V 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 1”, LV 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from FoodV 1”, F oodV 1,

type : Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from ClassV 1”, ClassV 1,

type : Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 2”, V 2,

type : Q Const, Q Const).
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#import(animalhabitat, ”test”, ”test”, ”select ∗ from LV 2”, LV 2,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 6”, V 6,

type : Q Const).

#import(accesstest, ””, ””, ”select ∗ from V Test1”, V Test1,

type : Q Const).

#import(accesstest, ””, ””, ”select ∗ from V Test2”, V Test2,

type : Q Const, Q Const).

V ertebrate(Name) : −V Test1(Name).

V ertebrate(Name) : −V Test2(Name).

V ertebrate(Name) : −V 1(Name, Class, Food).

V ertebrate(Name) : −LV 1(Name, Class, Food).

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Habitat(Name,Habitat) : −V 6(Habitat), f12(Habitat, Name).

f12(Habitat, Name) : −V 6(Habitat), dom(Name),

chosen12(Habitat, Name).

chosen12(Habitat, Name) : −V 6(Habitat), dom(Name),

not diffchoice12(Habitat, Name).

diffchoice12(Habitat, Name) : −chosen12(Habitat, U),

dom(Name), U ! = Name.

FoodList(Food) : −FoodV 1(Food).

ClassList(Class) : −ClassV 1(Class).

Ans(Name,Habitat) : −Habitat(Name,Habitat),

V ertebrate(Name), F oodList(Food),

ClassList(Class).

Ans(Name,Habitat)?

Program 9.4c for scenario 3:

#import(animalkingdom, ”test”, ”test”, ”select ∗ from V 1”, V 1,

type : Q Const, Q Const, Q Const).

#import(animalkingdom, ”test”, ”test”, ”select ∗ from LV 1”, LV 1,

type : Q Const, Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 2”, V 2,

type : Q Const, Q Const).

#import(animalhabitat, ”test”, ”test”, ”select ∗ from LV 2”, LV 2,

type : Q Const, Q Const).
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#import(animalhabitat, ”test”, ”test”, ”select ∗ from V 6”, V 6,

type : Q Const).

#import(accesstest, ””, ””, ”select ∗ from V Test1”, V Test1,

type : Q Const).

#import(accesstest, ””, ””, ”select ∗ from V Test2”, V Test2,

type : Q Const, Q Const).

V ertebrate(Name) : −V Test1(Name).

V ertebrate(Name) : −V Test2(Name).

V ertebrate(Name) : −V 1(Name, Class, Food).

V ertebrate(Name) : −LV 1(Name, Class, Food).

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Habitat(Name,Habitat) : −V 6(Habitat), chosen12(Habitat, Name).

chosen12(Habitat, Name) : −V 6(Habitat), dom(Name),

not diffchoice12(Habitat, Name).

diffchoice12(Habitat, Name) : −chosen12(Habitat, U),

dom(Name), U ! = Name.

Ans(Name,Habitat) : −Habitat(Name,Habitat),

V ertebrate(Name).

Ans(Name,Habitat)?

9.3 Experimental Results

We discuss the results obtained for the test cases in the three scenarios.

Test Case 1: The gain obtained in scenario 3, is in terms of number of rules

used in the logic program and a small improvement in execution time.

Test Case 2: In scenario 3, we see improvement because we use the SP, SQC

and RP steps and get a reduced set of sources, imported tuples and rules in the logic

program.

Test Case 3: In scenario 3, again we see improvement because we use the SP,

SQC and RP steps and get a reduced set of sources, tuples and rules for both parts of

the disjunctive query (one asking for amphibians and the other asking for reptiles).

Test Case 4: In scenario 3, again, we see some optimization. We first prune the

query using QP step and consider only the global relations Habitat and V ertebrate.
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We use the following criteria for each query to compare our results,

(a) Number of source relations identified.

(b) Number of tuples imported into the logic program.

(c) Execution time.

(d) Number of Rules generated by the Simple Specification program (without dom

atoms).

The results obtained for the test cases are shown in Table 9.2.

Table 9.2: Experimental Results.

Test
Case

Scenario Number of
Source Re-
lations

Imported
Tuples

Execution
Time

Number of
Rules

1

1 18 41968 35.8s 50

2 13 40868 19.6s 43

3 13 40868 17.4s 34

2

1 18 41968 33.5s 50

2 13 40868 19.4s 43

3 6 6395 8.6s 23

3

1 18 41968 34.7s 50

2 13 40868 19.8s 43

3 7 12526 9.8s 24

4

1 18 41968 30.6s 50

2 9 14264 8.5s 12

3 7 13664 7.1s 9

From the results, we see performance improvements in every test case listed in

Table 9.2. This is especially significant in the case of queries that have built-ins

involving the equality operator. We also analyze the cost associated with having

equality built-ins in the query. Figure 9.1 shows the execution time for different

number of equality built-ins in the query. The execution time increases linearly as

the number of equality built-ins in the query.
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Figure 9.1: Execution time Vs No. Of Equality Built-ins.



Chapter 10

Conclusions

In this thesis, we showed a metadata representation that is used to specify the entire

metadata under the LAV approach. The metadata included the structure of global

schema, local schema and their access information, integrity constraints and LAV

mappings. The metadata representation used a combination of custom XML elements

and RuleML elements. The queries on the XML representation employed the query

language, XQuery to extract the required information.

We also showed pruning techniques that is used in conjunction with Extended

Inverse Rules Algorithm (EIRA) for computing certain answers. Generally, there

will be many sources available to a mediator and the mediator will contain many

mappings. A query answering algorithm requires an optimization step to identify

those source relations that are required for answering a query. In this respect, we

addressed some of the open research issues discussed in [15], such as optimizing the

interaction of the logic programming system with the underlying databases.

We showed how we optimize at the query level, source level and the rules. In the

case of EIRA, our pruning approach reduces the atoms in the stable models. The

specification program contains only the rules corresponding to the relevant source

relations. We also import only the relevant data, based on the built-ins in the query,

into the logic program. We also showed how a query using cartesian product can be

pruned of some global predicates. We showed a modification of Simple Specification

(that can also be applied to the refined specification) that eliminates redundant rules.

We showed how source relations that violate the equality built-ins in the query can be

123



124

pruned from the list of sources considered. We applied the source pruning technique to

conjunctive queries and also showed that it works for disjunctive queries with equality

conditions. We presented experimental results proving the optimization techniques

makes the computation of certain answers more efficient as compared to retrieving

the source data using only the global predicates from the body of the query.

We also showed how the XML representation of metadata is queried and then

parsed to generate the program for Simple Specification . We used the same parser to

generate the program for Refined Specification and Inverse Rules. We also described

the general architecture of a mediatorVISS describing the components and the imple-

mentation of the mediator using open source tools. We present some possible future

work in this research and other related work in this area.

10.1 Future Work

When representing metadata using XML, we may be forced to specify the data types

of attributes in the source relations. The representation of the data types is espe-

cially significant when we specify the mappings where similar attributes in two source

relations are of different data types. For example, the average life span of an animal

could be defined as a number data type (e.g. 25) in one database and a character

data type (e.g. 25 yrs) in another. The metadata representation may have to include

more specific information, such as the data types, to accurately describe the data.

The source pruning step currently checks the violation of equality built-ins in the

query when determining required sources. The SP step could be extended to perform

additional checks in the presence of comparison predicates such as <= and >=. For

example, consider a query for endangered species of animals whose population does

not exceed 100 (i.e. <= 100). If there is a mapping that defines a source relation

as containing animals whose current population exceed 2000 (i.e. >= 2000), then we

can eliminate this relation for computing answer to the query on endangered species.

However, this becomes more complex when there are combinations of comparison

predicates in the same query. It would also be interesting to extend and verify the
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pruning techniques in the presence of aggregation and grouping functions in queries.

VISS generates the refined specifications of the minimal instances, which in the

presence of global integrity constraints can be used for computing consistent answers.

A similar approach is used in the Consistency Extractor System [25], which works

on single and possibly inconsistent database. When global integrity constraints are

present, the specifications of the class of legal instances has to include the global

relations and their dependencies, that are transitively connected to the relations in

the query and the integrity constraints. We showed how ICs are specified in the XML

metadata and described an idea of obtaining the relevant predicates from the query

and ICs using user-defined functions in XQuery. Apart from the ICs specified in the

XML metadata, ICs can also be specified along with the user query. These ICs will be

in the language of the user query and will have to be taken into account for computing

consistent answers.

10.2 Comparison to Related Work

We mention existing work in the area of query answering and mediator systems.

Queries with comparison predicates have been studied in [71] [47]. [5] discusses queries

with aggregations in the presence of functional dependencies. Queries with disjunctive

views are analyzed in [4]. We presented metadata representations in other mediator

systems and existing approaches for detecting relevant sources that are used in Bucket

and Minicon algorithms. [25] provides optimization techniques using Magic Sets in

repair programs for computing consistent answers. The pruning methods in [25]

detect required portions of the logic program based on program constraints (ICs)

specified with the user query. [3] discuss optimization methods that use query result

caching mechanism to use results from previous execution of queries.

The design issues in data integration systems have been studied in [10] [12] [63].

Mediator systems such as Garlic [42], Disco [67], TSIMMIS [35], Silkroute [33] and

Xperanto [26] use the Global as View approach. Data integration applications such

as e-xmlmedia [36] uses XPath, a language for querying elements in XML documents,



126

to describe a data source. The mediator uses an XPath guide, which is a list of all

paths that can be queried in a data source. The data sources are provided to the

mediator as XML documents. [61] presents a mediator architecture using XQuery for

metadata mappings under the GAV approach.

10.3 Concluding Remarks

Our metadata representation provided a basis for specifying data source access infor-

mation, integrity constraints and mappings all within a single XML document stored

in the mediator. Thus, querying involves accessing a single metadata store for re-

trieving all the required information. Additionally, our pruning techniques provide

optimization by localizing computations to the relevant parts of the user query, data

sources, data and mapping rules. This makes the computation of certain answers

efficient in the presence of large number of data sources that contain large amounts of

data. VISS provides an infrastructure for virtually integrating multiple data sources

according to the LAV approach. Concrete data integration system is specified in

terms of metadata using an XML/RuleML representation.
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Appendix A: More Experiments

We list experimental results for more query types in this section. We use a black-box

approach where we run queries of certain types and compute cost in terms of number

of source relations used and number of rules in the logic program excluding the dom

rules and query program. We show efficiency of our approach when compared to the

original EIRA and not with other approaches. There are currently no benchmark

standards for testing data integration systems and so we use test data from various

domains (such as movies, animals, conferences) to do our experiments. We use the

datasources in Chapter 9 and the following:
Datasource: MovieDB

MovieV 1(T itle, Y ear,Director) ← Movie(T itle, Y ear,Director),

American(Director), Y ear >= 1960.

MovieV 6(T itle, Y ear) ← Movie(T itle, Y ear,Director),

American(Director), Y ear >= 1960,

Director = ”Spielberg”.

MovieV 3(T itle, Y ear) ← Movie(T itle, Y ear,Director),

American(Director), Y ear >= 1960,

Director = ”Scorcese”.

MovieV 5(T itle, Y ear,Director) ← Movie(T itle, Y ear,Director),

American(Director).

Datasource: IMDB

MovieV 2(T itle, Review) ← Movie(T itle, Y ear,Director),

Review(T itle, Review), T itle = ”signs”,

Y ear >= 1990.

MovieV 4(T itle, Review) ← Movie(T itle, Y ear,Director),

Review(T itle, Review), T itle = ”avatar”,

Y ear >= 1990.

ReviewV 2(T itle, Review) ← Review(T itle, Review).

Datasource: ConferenceDB

AAAIDB(T itle) ← AAAIPapers(T itle).

Datasource: PaperDB

CitationDB(T itle1, T itle2) ← Cites(T itle1, T itle2).

AwardDB(T itle) ← AwardPaper(T itle).
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Test Case A1: Query with Comparison Operators and Equal-
ity Built-ins

Ans(T itle, Y ear, Review) : − Movie(T itle, Y ear,Director), Review(T itle, Review),

Y ear >= ”1995”, Director == ”T imBurton”.

Ans(T itle, Y ear, Review)?

Program using VISS:

#import(moviedb, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 1

where Director =′ T imBurton′ and

Y ear >=′ 1995′”,MovieV 1,

type : Q CONST,Q CONST,Q CONST ).

#import(moviedb, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 5

where Director =′ T imBurton′ and

Y ear >=′ 1995′”,MovieV 5,

type : Q CONST,Q CONST,Q CONST ).

#import(imdb, ”root”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 4”,

MovieV 4, type : Q CONST,Q CONST ).

#import(imdb, ”root”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 2”,

MovieV 2, type : Q CONST,Q CONST ).

#import(imdb, ”root”, ”gj”, ”SELECT Distinct ∗ FROM ReviewV 2”,

ReviewV 2, type : Q CONST,Q CONST ).

Movie(T itle, Y ear,Director) : −MovieV 1(T itle, Y ear,Director).

Movie(T itle, Y ear,Director) : −MovieV 2(T itle, Review),

chosen1(T itle, Review, Y ear),

chosen2(T itle, Review,Director).

chosen1(T itle, Review, Y ear) : −MovieV 2(T itle, Review), dom(Y ear),

not diffchoice1(T itle, Review, Y ear).

diffchoice1(T itle, Review, Y ear) : −chosen1(T itle, Review, U), dom(Y ear),

U ! = Y ear.

chosen2(T itle, Review,Director) : −MovieV 2(T itle, Review), dom(Director),

not diffchoice2(T itle, Review,Director).

diffchoice2(T itle, Review,Director) : −chosen2(T itle, Review, U), dom(Director),

U ! = Director.

Movie(T itle, Y ear,Director) : −MovieV 4(T itle, Review),

chosen3(T itle, Review, Y ear),

chosen4(T itle, Review,Director).

chosen3(T itle, Review, Y ear) : −MovieV 4(T itle, Review), dom(Y ear),

not diffchoice3(T itle, Review, Y ear).
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diffchoice3(T itle, Review, Y ear) : −chosen3(T itle, Review, U), dom(Y ear),

U ! = Y ear.

chosen4(T itle, Review,Director) : −MovieV 4(T itle, Review), dom(Director),

not diffchoice4(T itle, Review,Director).

diffchoice4(T itle, Review,Director) : −chosen4(T itle, Review, U), dom(Director),

U ! = Director.

Movie(T itle, Y ear,Director) : −MovieV 5(T itle, Y ear,Director).

Review(T itle, Review) : −ReviewV 2(T itle, Review).

Test Case A2: Query with Comparison Operators and No

Equality Built-ins

Ans(T itle, Y ear, Review) : − Movie(T itle, Y ear,Director), Review(T itle, Review),

Y ear <= ”1995”.

Ans(T itle, Y ear, Review)?

Program using VISS:

#import(moviedb, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 1

where Y ear <= 1995′”,MovieV 1,

type : Q CONST,Q CONST,Q CONST ).

#import(moviedb, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 3

where Y ear <= 1995′”,MovieV 3,

type : Q CONST,Q CONST ).

#import(moviedb, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 6

where Y ear <= 1995′”,MovieV 6,

type : Q CONST,Q CONST ).

#import(moviedb, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 5

where Y ear <= 1995′”,MovieV 5,

type : Q CONST,Q CONST,Q CONST ).

#import(imdb, ”root”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 4”,

MovieV 4, type : Q CONST,Q CONST ).

#import(imdb, ”root”, ”gj”, ”SELECT Distinct ∗ FROM MovieV 2”,

MovieV 2, type : Q CONST,Q CONST ).

#import(imdb, ”root”, ”gj”, ”SELECT Distinct ∗ FROM ReviewV 2”,

ReviewV 2, type : Q CONST,Q CONST ).

Movie(T itle, Y ear,Director) : −MovieV 1(T itle, Y ear,Director).

Movie(T itle, Y ear,Director) : −MovieV 3(T itle, Y ear),

chosen1(T itle, Y ear,Director).

chosen1(T itle, Y ear,Director) : −MovieV 3(T itle, Y ear), dom(Director),

not diffchoice1(T itle, Y ear,Director).



139

diffchoice1(T itle, Y ear,Director) : −chosen1(T itle, Y ear, U), dom(Director),

U ! = Director.

Movie(T itle, Y ear,Director) : −MovieV 3(T itle, Y ear),

chosen2(T itle, Y ear,Director).

chosen2(T itle, Y ear,Director) : −MovieV 3(T itle, Y ear), dom(Director),

not diffchoice2(T itle, Y ear,Director).

diffchoice2(T itle, Y ear,Director) : −chosen2(T itle, Y ear, U), dom(Director),

U ! = Director.

Movie(T itle, Y ear,Director) : −MovieV 2(T itle, Review),

chosen3(T itle, Review, Y ear),

chosen4(T itle, Review,Director).

chosen3(T itle, Review, Y ear) : −MovieV 2(T itle, Review), dom(Y ear),

not diffchoice3(T itle, Review, Y ear).

diffchoice3(T itle, Review, Y ear) : −chosen3(T itle, Review, U), dom(Y ear),

U ! = Y ear.

chosen4(T itle, Review,Director) : −MovieV 2(T itle, Review), dom(Director),

not diffchoice4(T itle, Review,Director).

diffchoice4(T itle, Review,Director) : −chosen4(T itle, Review, U), dom(Director),

U ! = Director.

Review(T itle, Review) : −MovieV 2(T itle, Review).

Movie(T itle, Y ear,Director) : −MovieV 4(T itle, Review),

chosen5(T itle, Review, Y ear),

chosen6(T itle, Review,Director).

chosen5(T itle, Review, Y ear) : −MovieV 4(T itle, Review), dom(Y ear),

not diffchoice5(T itle, Review, Y ear).

diffchoice5(T itle, Review, Y ear) : −chosen5(T itle, Review, U), dom(Y ear),

U ! = Y ear.

chosen6(T itle, Review,Director) : −MovieV 4(T itle, Review), dom(Director),

not diffchoice6(T itle, Review,Director).

diffchoice6(T itle, Review,Director) : −chosen6(T itle, Review, U), dom(Director),

U ! = Director.

Review(T itle, Review) : −MovieV 4(T itle, Review).

Movie(T itle, Y ear,Director) : −MovieV 5(T itle, Y ear,Director).

Review(T itle, Review) : −ReviewV 2(T itle, Review).

Movie(T itle, Y ear,Director) : −MovieV 6(T itle, Y ear),

chosen7(T itle, Y ear,Director).

chosen7(T itle, Y ear,Director) : −MovieV 6(T itle, Y ear), dom(Director),

not diffchoice7(T itle, Y ear,Director).

diffchoice7(T itle, Y ear,Director) : −chosen7(T itle, Y ear, U), dom(Director),

U ! = Director.
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Test Case A3: Recursive Query with Equality Built-ins

Papers(T itle) : − AAAIpapers(T itle), T itle == ”1”.

Papers(T itle2) : − Papers(T itle1), Cites(T itle1, T itle2).

Ans(T itle) : − Papers(T itle), AwardPaper(T itle).

Ans(T itle)?

Program using VISS:

#import(paperdb, ”root”, ”gj”, ”SELECT Distinct ∗ FROM AwardDB

where T itle =′ 1′”, AwardDB, type : Q CONST ).

#import(conferencedb, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM AaaiDB

where T itle =′ 1′”, AaaiDB, type : Q CONST ).

#import(paperdb, ”root”, ”gj”, ”SELECT Distinct ∗ FROM CitationDB”,

CitationDB, type : Q CONST,Q CONST ).

AAAIpapers(T itle) : −AaaiDB(T itle).

Cites(T itle1, T itle2) : −CitationDB(T itle1, T itle2).

AwardPaper(T itle) : −AwardDB(T itle).

Test Case A4: Query with No Existential Variables

Ans(Name) : − V ertebrate(Name).

Ans(Name)?

Program using VISS:

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 1”,

V 1, type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 1”,

LV 1, type : Q CONST,Q CONST,Q CONST ).

V ertebrate(Name) : −V 1(Name, Class, Food).

V ertebrate(Name) : −LV 1(Name, Class, Food).

Test Case A5: Query with Inequality Built-in

Ans(Name,Habitat) : − Animal(Name, Class, Food), Habitat(Name,Habitat),

Habitat ! = ”ocean”.

Ans(Name,Habitat)?
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Program using VISS:

#import(animalhabitat, ”root”, ”gj”, ”SELECTDistinct ∗ FROMV 2

whereHabitat! =′ ocean′”, V 2,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECTDistinct ∗ FROMLV 2

whereHabitat! =′ ocean′”, LV 2,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECTDistinct ∗ FROMV 6

whereHabitat! =′ ocean′”, V 6,

type : Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECTDistinct ∗ FROMV 1”, V 1,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECTDistinct ∗ FROMLV 1”, LV 1,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECTDistinct ∗ FROMV 3”, V 3,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECTDistinct ∗ FROMLV 3”, LV 3,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECTDistinct ∗ FROMV 4”, V 4,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECTDistinct ∗ FROMLV 5”, LV 5,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECTDistinct ∗ FROMV 5”, V 5,

type : Q CONST,Q CONST ).

#import(mysqltest, ”root”, ”gj”, ”SELECTDistinct ∗ FROMLV 6”, LV 6,

type : Q CONST,Q CONST,Q CONST ).

#import(mysqltest, ”root”, ”gj”, ”SELECTDistinct ∗ FROMLV 7”, LV 7,

type : Q CONST,Q CONST,Q CONST ).

#import(accesstest, ””, ””, ”SELECTDistinct ∗ FROMLV 4”, LV 4,

type : Q CONST,Q CONST,Q CONST ).

Animal(Name, Class, Food) : −V 1(Name, Class, Food).

Animal(Name, Class, Food) : −LV 1(Name, Class, Food).

Animal(Name, Class, Food) : −V 3(Name, Class, Food).

Animal(Name, Class, Food) : −LV 3(Name, Class, Food).

Animal(Name, Class, Food) : −V 4(Name, Class, Food).

Animal(Name, Class, Food) : −LV 4(Name, Class, Food).

Animal(Name, Class, Food) : −V 5(Name, Food), chosen1(Name, Food, Class).

chosen1(Name, Food, Class) : −V 5(Name, Food), dom(Class),

not diffchoice1(Name, Food, Class).
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diffchoice1(Name, Food, Class) : −chosen1(Name, Food, U), dom(Class),

U ! = Class.

Animal(Name, Class, Food) : −LV 5(Name, Food),

chosen2(Name, Food, Class).

chosen2(Name, Food, Class) : −LV 5(Name, Food), dom(Class),

not diffchoice2(Name, Food, Class).

diffchoice2(Name, Food, Class) : −chosen2(Name, Food, U), dom(Class),

U ! = Class.

Animal(Name, Class, Food) : −V 2(Name,Habitat),

chosen3(Name,Habitat, Class),

chosen4(Name,Habitat, Food).

chosen3(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

not diffchoice3(Name,Habitat, Class).

diffchoice3(Name,Habitat, Class) : −chosen3(Name,Habitat, U), dom(Class),

U ! = Class.

chosen4(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

not diffchoice4(Name,Habitat, Food).

diffchoice4(Name,Habitat, Food) : −chosen4(Name,Habitat, U), dom(Food),

U ! = Food.

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Animal(Name, Class, Food) : −LV 2(Name,Habitat),

chosen5(Name,Habitat, Class),

chosen6(Name,Habitat, Food).

chosen5(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

not diffchoice5(Name,Habitat, Class).

diffchoice5(Name,Habitat, Class) : −chosen5(Name,Habitat, U), dom(Class),

U ! = Class.

chosen6(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

not diffchoice6(Name,Habitat, Food).

diffchoice6(Name,Habitat, Food) : −chosen6(Name,Habitat, U), dom(Food),

U ! = Food.

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Animal(Name, Class, Food) : −V 6(Habitat), chosen7(Habitat, Name),

chosen8(Habitat, Class),

chosen9(Habitat, Food).

chosen7(Habitat, Name) : −V 6(Habitat), dom(Name),

not diffchoice7(Habitat, Name).

diffchoice7(Habitat, Name) : −chosen7(Habitat, U), dom(Name),

U ! = Name.
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chosen8(Habitat, Class) : −V 6(Habitat), dom(Class),

not diffchoice8(Habitat, Class).

diffchoice8(Habitat, Class) : −chosen8(Habitat, U), dom(Class),

U ! = Class.

chosen9(Habitat, Food) : −V 6(Habitat), dom(Food),

not diffchoice9(Habitat, Food).

diffchoice9(Habitat, Food) : −chosen9(Habitat, U), dom(Food),

U ! = Food.

Habitat(Name,Habitat) : −V 6(Habitat), chosen7(Habitat, Name).

Animal(Name, Class, Food) : −LV 6(Name, Class, Food).

Animal(Name, Class, Food) : −LV 7(Name, Class, Food).

Test Case A6: Disjunctive Query with Equality Built-ins

Ans(Name, Food) : − Animal(Name, Class, Food), Habitat(Name,Habitat),

Class == ”amphibian”, F ood == ”insect”.

Ans(Name, Food) : − Animal(Name, Class, Food), Class == ”bird”.

Ans(Name, Food) : − Animal(Name, Class, Food), Class == ”reptile”.

Ans(Name, Food) : − Animal(Name, Class, Food), Class == ”mammal”,

F ood == ”plant”.

Ans(Name, Food) : − Animal(Name, Class, Food), Habitat(Name,Habitat),

Habitat == ”ocean”, F ood == ”fish”.

Ans(Name, Food) : − Animal(Name, Class, Food), Habitat(Name,Habitat),

Habitat == ”desert”.

Ans(Name, Food) : − Animal(Name, Class, Food), Habitat(Name,Habitat),

Habitat == ”savannah”.

Ans(Name, Food)?

Program using VISS:

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 1

where Class =′ amphibian′ and Food =′ insect′”,

V 1, type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 1

where Class =′ amphibian′ and Food =′ insect′”,

LV 1, type : Q CONST,Q CONST,Q CONST ).

#import(mysqltest, ”root”, ”gj”,”SELECT Distinct ∗ FROM LV 6

where Class =′ amphibian′ and Food =′ insect′”,

LV 6, type : Q CONST,Q CONST,Q CONST ).
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#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM V 2”,

V 2, type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 2”,

LV 2, type : Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 1

where Class =′ bird′”,

V 1, type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 1

where Class =′ bird′”,

LV 1, type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 4

where Class =′ bird′”, V 4,

type : Q CONST,Q CONST,Q CONST ).

#import(accesstest, ””, ””, ”SELECT Distinct ∗ FROM LV 4

where Class =′ bird′”, LV 4,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 1

where Class =′ reptile′”, V 1,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 1

where Class =′ reptile′”, LV 1,

type : Q CONST,Q CONST,Q CONST ).

#import(mysqltest, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 7

where Class =′ reptile′”, LV 7,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 1

where Class =′ mammal′ and Food =′ plant′”,

V 1, type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 1

where Class =′ mammal′ and Food =′ plant′”,

LV 1, type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 3

where Class =′ mammal′ and Food =′ plant′”,

V 3, type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 3

where Class =′ mammal′ and Food =′ plant′”,

LV 3, type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 5

where Food =′ plant′”, LV 5,

type : Q CONST,Q CONST ).
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#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM V 5

where Food =′ plant′”, V 5,

type : Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 1

where Food =′ fish′”, V 1,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 1

where Food =′ fish′”, LV 1,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 3

where Food =′ fish′”, V 3,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 3

where Food =′ fish′”, LV 3,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 4

where Food =′ fish′”, V 4,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 5

where Food =′ fish′”, LV 5,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM V 2

where Habitat =′ ocean′”, V 2,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 2

where Habitat =′ ocean′”, LV 2,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM V 5

where Food =′ fish′”, V 5,

type : Q CONST,Q CONST ).

#import(mysqltest, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 6

where Food =′ fish′”, LV 6,

type : Q CONST,Q CONST,Q CONST ).

#import(mysqltest, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 7

where Food =′ fish′”, LV 7,

type : Q CONST,Q CONST,Q CONST ).

#import(accesstest, ””, ””, ”SELECT Distinct ∗ FROM LV 4

where Food =′ fish′”, LV 4,

type : Q CONST,Q CONST,Q CONST ).
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#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM V 2

where Habitat =′ desert′”, V 2,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 2

where Habitat =′ desert′”, LV 2,

type : Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 1”, V 1,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 1”, LV 1,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 3”, V 3,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 3”, LV 3,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM V 4”, V 4,

type : Q CONST,Q CONST,Q CONST ).

#import(animalkingdom, ”sa”, ”gj”, ”SELECT Distinct ∗ FROM LV 5”, LV 5,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM V 5”, V 5,

type : Q CONST,Q CONST ).

#import(mysqltest, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 6”, LV 6,

type : Q CONST,Q CONST,Q CONST ).

#import(mysqltest, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 7”, LV 7,

type : Q CONST,Q CONST,Q CONST ).

#import(accesstest, ””, ””, ”SELECT Distinct ∗ FROM LV 4”, LV 4,

type : Q CONST,Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM V 2

where Habitat =′ savannah′”, V 2,

type : Q CONST,Q CONST ).

#import(animalhabitat, ”root”, ”gj”, ”SELECT Distinct ∗ FROM LV 2

where Habitat =′ savannah′”, LV 2,

type : Q CONST,Q CONST ).

Animal(Name, Class, Food) : −V 1(Name, Class, Food).

Animal(Name, Class, Food) : −LV 1(Name, Class, Food).

Animal(Name, Class, Food) : −V 3(Name, Class, Food).

Animal(Name, Class, Food) : −LV 3(Name, Class, Food).

Animal(Name, Class, Food) : −V 4(Name, Class, Food).

Animal(Name, Class, Food) : −LV 4(Name, Class, Food).

Animal(Name, Class, Food) : −V 5(Name, Food),

chosen1(Name, Food, Class).
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chosen1(Name, Food, Class) : −V 5(Name, Food), dom(Class),

not diffchoice1(Name, Food, Class).

diffchoice1(Name, Food, Class) : −chosen1(Name, Food, U), dom(Class),

U ! = Class.

Animal(Name, Class, Food) : −LV 5(Name, Food),

chosen2(Name, Food, Class).

chosen2(Name, Food, Class) : −LV 5(Name, Food), dom(Class),

not diffchoice2(Name, Food, Class).

diffchoice2(Name, Food, Class) : −chosen2(Name, Food, U), dom(Class),

U ! = Class.

Animal(Name, Class, Food) : −V 2(Name,Habitat),

chosen3(Name,Habitat, Class),

chosen4(Name,Habitat, Food).

chosen3(Name,Habitat, Class) : −V 2(Name,Habitat), dom(Class),

not diffchoice3(Name,Habitat, Class).

diffchoice3(Name,Habitat, Class) : −chosen3(Name,Habitat, U), dom(Class),

U ! = Class.

chosen4(Name,Habitat, Food) : −V 2(Name,Habitat), dom(Food),

not diffchoice4(Name,Habitat, Food).

diffchoice4(Name,Habitat, Food) : −chosen4(Name,Habitat, U), dom(Food),

U ! = Food.

Habitat(Name,Habitat) : −V 2(Name,Habitat).

Animal(Name, Class, Food) : −LV 2(Name,Habitat),

chosen5(Name,Habitat, Class),

chosen6(Name,Habitat, Food).

chosen5(Name,Habitat, Class) : −LV 2(Name,Habitat), dom(Class),

not diffchoice5(Name,Habitat, Class).

diffchoice5(Name,Habitat, Class) : −chosen5(Name,Habitat, U), dom(Class),

U ! = Class.

chosen6(Name,Habitat, Food) : −LV 2(Name,Habitat), dom(Food),

not diffchoice6(Name,Habitat, Food).

diffchoice6(Name,Habitat, Food) : −chosen6(Name,Habitat, U), dom(Food),

U ! = Food.

Habitat(Name,Habitat) : −LV 2(Name,Habitat).

Animal(Name, Class, Food) : −LV 6(Name, Class, Food).

Animal(Name, Class, Food) : −LV 7(Name, Class, Food).


