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Abstract

There may be sensitive information in a relational database that we want to

keep hidden from a user of group thereof. The sensitive data is characterized as the

contents of a view. Whenever the user poses queries about these secrecy views, the

set of answers either becomes empty or contains tuples with only null values. This is

achieved through updates of the given instance. Since the database is not expected

to be physically changed to produce this result, it is only virtually and minimally

updated, and those changes are reflected in the view contents. Virtual updates are

based on the use of null values as used in the SQL standard. The different ways to

update the underlying database are specified as the models of logic programs with

stable model semantics. The programs become the basis for the computation of the

secret answers to queries, i.e. those that do not reveal the sensitive information.

More precisely, secret answers can be computed by evaluating queries against the

programs, e.g. using the disjunctive datalog system (DLV). An optimization approach

is developed for evaluating queries, in such way only relevant data facts and program

rules are involved in query evaluation.
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Chapter 1

Introduction

Database management systems allow for massive storage of data, which can be

easily and efficiently accessed and manipulated. However, at the same time, the

problems of data privacy are increasingly important. For example, for commercial or

legal reasons, administrators of sensitive information may not want or be allowed to

release certain portions of the data. It becomes crucial to address database privacy

issues.

In this scenario, authorization is required. More precisely, certain users can have

access to only certain portions of a database. Hopefully, what a particular user (or

class of them) is allowed or not allowed to access should be specified in a declarative

manner. Currently, authorization mechanisms in commercial database management

systems are at the level of columns, the whole relations, or on views. But there

are many situations that demand a very fine-grained level, such as at the level of

individual tuples or cells. For example, imagine a company’s database that included

information about an employee’s health. If that employee has a disease, this must be

kept as a secret. Otherwise, this health information could be publicly released.

A possible way to solve tuple-based access control is to create views for each user,

or class of them. Those views contain only selected tuples of a database, those it

allows a user (or class of them) to access. However, this approach is not practical

since there may be a large number of users. Most of information systems in practice

ignore tuple-based access control at the database level, and delegate this problem

to the application level. In other words, application programs are used to ensure

1
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appropriate access rather than databases. Although widely used, this approach has

serval disadvantages. For example, lots of source code has to be changed if any policy

is changed. In addition, by putting access control into the application, you need to

duplicate the access logics in each application that accesses the database, which will

increase the cost and complexity of development. Therefore, it is better to address

access control at the database level.

Some recent papers [37, 44] approach fine-grained access control in the database

in terms of authorization views. View-based data privacy usually approaches the

problem by specifying which views a user is allowed to access. For example, when

the database receives a query from that user, it checks if the query can be answered

using those views alone. More precisely, if the query can be rewritten in terms of

the views [37]. If no complete rewriting is possible, the query is rejected. In [44] the

problem about the existence of a conditional rewriting is investigated, i.e. relative to

an instance at hand.

Our approach to the data protection problem is based on specifications of what

users are not allowed to access through query answers, which is quite natural. Data

owners usually have a more clear picture of the data that is sensitive rather than

about the data that can be publicly released. Dealing with this problem as “the

complement” of the problem formulated in terms of authorization views is not natural,

and not necessarily easy, especially considering that complements of database views

would be involved [27, 28].

According to our approach, the information to be protected is declared as a view, a

secrecy view, or a collection of them. Each user or class of them may have associated

a set of secrecy views. When a user poses a query on the database, the system

will virtually update some of the attributes values in terms of a fixed set of secrecy

views. In each of the resulting updated instances, the extension of secrecy views

either becomes empty or contains tuples showing only null values. Then, the original
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query is posed to the updated instances, and is answered as usual. In this way, the

system will return answers to the query that do not reveal the secret data. In this

work, we consider updates that modify attribute values assigning null values.

Example 1.1. Consider the following relational database D:

Marks StudentID CourseID Mark

001 01 56

001 02 90

002 02 70

The following secrecy view Vs on the database specifies that a student with her course

mark must be kept secret when the mark is less than 60:

Vs(sid , cid ,mark)←Marks(sid , cid ,mark),mark < 60.1

Now, a user of the database wants to see students’ marks, using the following

query:

Q(sid , cid ,mark)←Mark(sid , cid ,mark). (1.1)

Through this query the user can obtain the first record Mark(001,01,56), which is

sensitive information. A way to solve this problem consists in virtually updating the

base relation in terms of view definitions, in such a way that the secret information,

i.e. the extension of the secrecy view, can not be revealed to the user. Here, in order

to protect the tuple Mark(001,01,56), the new instance D′ is obtained by virtually

updating the original instance, changing the attribute value 56 to null. The virtually

updated instance is D′:

1We use Datalog notation for view definitions and queries.
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Marks StudentID CourseID Mark

001 01 null

001 02 90

002 02 70

Now, by posing the query

Q1(sid , cid ,mark)←Mark(sid , cid ,mark),mark < 60,

which corresponds to the secrecy view definition, to the “updated” database D′, the

user gets an empty answer, because the comparison of null with any value will be

evaluated as unknown. Similarly, query (1.1) will get the first tuple with null in-

stead of 56. The user cannot obtain the mark 56 by combining any answers obtained

through other queries on D′. ◻

Hiding sensitive information is one of the concerns. Another one is about still

providing as much information as possible to the user. In consequence, the vir-

tual update has to be minimal in some sense, while still doing its job of protecting

data. In the previous example, we might consider virtually deleting the whole tuple

Marks(001,05,56), to protect secret information, but we may lose some useful in-

formation, like the student ID and the course ID. Furthermore, the user should not

be able to guess the protected information by combing information obtained from

different queries.

As illustrated above, null values will be used to virtually update the database

instance. As expected, null values have received attention from the database commu-

nity [43, 41, 24]. Null values may have several interpretations, e.g. as a replacement

for a real value that is non-existent, missing, unknown, inapplicable, etc. Several for-

mal semantics have been proposed for them. Furthermore, it is possible to consider

different, coexisting null values. In this work, we will use a single null value, denoted
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as above and in the rest of this thesis, by null. Furthermore, we will treat null as the

NULL in SQL relational databases. Since the SQL standard does not provide a pre-

cise, formal semantics for NULL, we will adopt here the formal, logical reconstruction

of SQL nulls proposed in [12]. It captures the semantics of the SQL NULL that are

relevant for our work on privacy, namely integrity constraint satisfaction and query

answering. This makes our approach to secrecy compatible with and implementable

on top of commercial DBMSs.

1.1 Problem Statement and Contributions

The goal of this research is to develop methods to retrieve answers for first-order

conjunctive queries that do not reveal any secret data from relational databases. In

most practical cases, databases always contain null values. So, we will put special

interest on databases with null values. The key features of our research are the

following:

1. The notion of secrecy views is introduced. Basically, the sensitive information

is protected via a fixed set of secrecy views. It is associated to a particular user

or class of them. We have restricted ourselves mainly to the case of conjunctive

secrecy views. The following is an example of a conjunctive secrecy view:

Vs(sid , cid ,mark)←Marks(sid , cid ,mark),mark < 60.

Here, the secrecy view is specified using a Datalog rule. In general, we will use

Datalog notation for views and queries.

2. In this thesis, we introduce null-based virtual updates on an instance, to keep

the secrecy view extensions secret. The semantics of secrecy in the presence of

null values that we provide is model-theoretic, in the sense that the possible

admissible instances after the update, the so-called secrecy instances, are char-

acterized and specified. On a secrecy instance, the extensions of the secrecy
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views contain only tuples with null or become empty. Furthermore, the secrecy

instances do not depart from the original instance by more than what is needed

to protect the secret data. So, they minimally differ in a precise sense from the

original instance.

3. The semantics of secret answers to a query is presented. Those answers are

invariant under the class of secrecy instances. More precisely, a ground tuple t̄

to a first order query Q(x̄) is a secret answer from instance D, if it is an answer

to Q(x̄) in every possible secrecy instance for D.

4. In this thesis, we also show that our null-based semantics can be captured in

terms of disjunctive logic programs with extra annotation constants, by estab-

lishing a correspondence between the secrecy instances of a relational database

and the stable models of the program. The logic program can be used to specify

the secrecy instances of the original database and to obtain secret answers. The

basic idea behind the logic programming-based approach is that, since we need

to reason simultaneously with all the secrecy instances of a database, we have to

succinctly specify the class of secrecy instances. Then, different reasoning tasks

could be performed, in particular, computation of secret answers to queries. We

also show how to obtain a reduced secrecy view and a subset of sources for a

query.

5. We also develop optimization techniques to reduce the amount of data involved

in the computation of secret answers to queries, in such a way that only a subset

of database facts and program rules are involved in query evaluation.

6. We discuss several additional issues in relation to our approach to privacy.

There are some interesting connections between this work and consistent query

answering [5, 8]. The secrecy instances can be seen as repairs of the original
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instance that enforce semantic constraints on a given instance. These repairs

minimally differ from the given instance under a repair semantics that is based

on attribute updates with null. In this sense, secret query answering becomes

a form of consistent query answering (CQA).

7. In addition, IBM InfoSphere Master Data Management Server (MDM) provides

a mechanism, named Suspect Duplicate Processing, to keep a single view of the

customer information. Our privacy approach could make use of this mechanism

to identify or detect duplicates for improving data quality.

This thesis is structured as follows. Chapter 2 introduces basic definitions and

concepts needed in the later chapters. Chapter 3 discusses how null values are treated

in the different DBMSs. Chapter 4 presents a precise semantics for secrecy instances

and secret answers. Chapter 5 describes the specification of secrecy instances via

logic programs and how to use them to compute secret answers to first-order con-

junctive queries. Chapter 6 provides experimental results on various scenarios of

user queries. Chapter 7 discuses several additional issues with respect to the previ-

ously introduced semantics, including connection with CQA and duplicate detection.

Chapter 8 presents some conclusions and future work.



Chapter 2

Preliminaries

In this chapter we recall basic concepts of relational databases. We also intro-

duce the database repairs and null-value semantics presented in [11], which is the

underlying semantics that will be used in the rest of this work.

2.1 Databases and Integrity Constraints

In the context of relational databases, we assume that we have a fixed relational

schema Σ = (U ,R,B), where U is the possibly infinite database domain, such that

null ∈ U , R is a fixed set of database predicates say, R = {R1,R2,R3, . . .}, where each

relation R has an a finite, ordered set of attributes AR; and B is a fixed set of built-

in predicates, like comparison predicates, e.g.: >,<,=. R[i] denotes the attribute in

position i of predicate R ∈ R. For A ⊆ AR, R[A] denotes predicate R projected on

the attributes in A.

The schema determines a language L(Σ) of first-order predicate logic. A database

instance D compatible with Σ can be seen as a finite collection of ground atoms (or

tuples) of the form R(c1, ..., cn), where R ∈ R and the c1, ..., cn are constants in U .

Built-in predicates have a fixed extension in every database instance.

A query is a first-order formula over language L(Σ). In this research we restrict

ourselves to the class of conjunctive queries.

Definition 1. A conjunctive query Q(x̄) (CQ) is of the form:

∃ȳ(
n

⋀
i=1
Ri(x̄i, ȳi) ∧ φ), (2.1)

8
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where Ri ∈ R, φ is a conjunction of built-ins whose variables appear in the Ris, and

x̄ = ⋃i x̄i which are the free variables of the query. If the query does not have free

variables, i.e. x̄ is the empty set, it is called a boolean query. ◻

Conjunctive queries can also be written as Datalog rules. The following is Datalog

notation for the query (2.1):

Ans(x̄)← R1(x̄1, ȳ1), . . . ,Rn(x̄n, ȳn), φ, (2.2)

where Ans is an intensional relation symbol, and the head Ans(x̄) represents the

results of the query Q(x̄).

Definition 2. Given a database instance D without null, a tuple of constants t̄ is an

answer to a query Q(x̄) of the form (2.1) in D iff D ⊧ Q(t̄), i.e. Q(x̄) becomes true

in D when the variables are replaced by the corresponding constants in t̄. If Q is a

sentence (boolean query), then yes is an answer iff D ⊧ Q. Otherwise, the answer is

no. ◻

Example 2.1. Consider the database D = {P (1,1),Q(1)}. The query Q1 ∶ P (1,1)

has yes as an answer. Query Q2(x) ∶ ∃y(P (x, y) ∧Q(y)) has 1 has an answer. ◻

With the purpose of answering first-order queries in a database with null, the

notion of query answering will be modified (cf. Section 2.2).

Integrity Constraints (ICs) have been considered in the relational databases for adding

semantics, and ensuring accuracy and consistency of data. The most common type

of constraints are functional dependencies and inclusion dependencies.

A functional dependency [4] (FD) over a database schema Σ is an expression of

the form R ∶ X → Y , where R ∈ R and X, Y are sets of attributes associated to R.
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A relation D over Σ satisfies X → Y , denoted by D ⊧ X → Y , if for any two tuples

that have the same values in the attributes in X, also have the same values in the

attributes in Y . A set of attributes X is a candidate key of a relation R if for every

attribute Y in R, it holds that R ∶X → Y , and no subset of X has this property. One

of the candidate keys can be chosen as the primary key (PK).

An inclusion dependency [4] (IND) over a database schema Σ is an expression of

the form R[X] ⊆ S[Y ], where R,S are (possibly identical) relation names in Σ, and

X,Y are sets of attributes from R and S, respectively. An instance D of Σ satisfies

R[X] ⊆ S[Y ], denoted by D ⊧ R[X] ⊆ S[Y ], if for each tuple r̄ in D(R)1, there exists

a tuple s̄ in D(S), such that s̄[Y ] = r̄[X]. An inclusion dependency is said to be full

if X = AR, and partial if X ⫋ AR. A foreign key constraint is an inclusion dependency

S[Y ] ⊆ R[X], where X is the primary key of R. More generally,

Definition 3. [12] An integrity constraints is a sentence of the form:

∀x̄(
n

⋀
i=1
Pi(x̄i)→ ∃z̄(

m

⋁
j=1
Qj(ȳj, z̄j) ∨ φ)), (2.3)

where Pi,Qj ∈ R, x̄ = ⋃mi=1 x̄i, z̄ = ⋃nj=1 z̄i, ȳi ⊆ x̄, x̄⋂ z̄ = ∅, z̄i⋂ z̄j = ∅ for i /= j.

Here, φ is a disjunction of built-in predicates from B, whose variables appear in the

antecedent of the implication. We will assume that there exists a propositional atom

false ∈ B that is always false in a database. ◻

Definition 4. [12] A universal integrity constraint (UIC) is an sentence in L(Σ) of

the form:

∀x̄(
n

⋀
i=1
Ri(x̄i) Ð→ (

m

⋁
j=1
Qj(ȳj) ∨ φ)). (2.4)

That is a formula of the form (2.3), without existential quantifiers. ◻

1D(R) denotes the extension of predicate R ∈R in an instance D.
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Definition 5. [12] A referential integrity constraint (RIC) is a sentence in L(Σ) of

the form:

∀x̄(P (x̄)→ ∃z̄ Q(ȳ, z̄)). (2.5)

That is a formula of the form (2.3), withm = n = 1, without a φ, ȳ ⊆ x̄, and P,Q ∈R. ◻

The class of ICs of the form (2.3) contains most of the ICs commonly found in

database practice. Functional dependencies can be expressed by several implications

of the form (2.4), each of them with a single equality in the consequent. Partial

inclusion dependencies are RICs, and full inclusion dependencies are UICs. A denial

constraint can be expressed as ∀x̄(⋀ni=1Ri(x̄i)→ false).

Example 2.2. Consider a database schema Σ = {Employee(EId ,Name,Dept),

Dept(DId ,Name)}. The following are ICs:

(a) The functional dependency (FD) Employee ∶ EId → Name, expressed in L(Σ)

by ∀eid∀n1∀n2 (Employee(eid ,n1 ) ∧Employee(eid ,n2 ) → n1 = n2 ).

(b) The inclusion dependency (IND) Employee[Dept] ⊆ Dept[DeptID], expressed

by ∀eid∀n∀dept(Employee(eid ,n,dept)→ ∃dnDept(dept ,dn)). ◻

We consider a fixed finite set IC of ICs of the form (2.3). A database D, possibly

with null values, is consistent with respect to IC if it satisfies the given set IC; oth-

erwise, we say D is inconsistent. The semantics of constraint satisfaction in presence

of null values we consider is the one defined in [12, 11]. In order to present it, we

need to introduce some concepts.

Definition 6. [12] For an IC ψ ∈ L(Σ) and a term t (i.e. a variable or a domain

constant), posR(ψ, t) is the set of positions in predicate R ∈ R where t appears in ψ.
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The set of relevant attributes for an IC ψ of the form (2.3) is:

A(ψ) = {R[i] ∣ x is a variable present at least twice in V(ψ), and i ∈ posR(ψ,x)} ∪

{R[i] ∣ c is a constant in ψ and i ∈ posR(ψ, c)},

where R[i] denotes a position in relation R. ◻

The relevant attributes include the attributes needed to check the satisfaction of

the constraints, e.g. the attributes in joins, in built-ins, etc.

Definition 7. [12] Given a set of attributes A, and a predicate R ∈R, we denote by

RA the predicate R restricted to (or projected onto) the attributes in A. DA denotes

the database D with all its database atoms projected onto the attributes in A, i.e.

DA = {RA(ΠA(t̄)) ∣ R(t̄) ∈ D}, where ΠA(t̄) is the projection on A of tuple t̄. DA

has the same underlying domain U as D. ◻

Example 2.3. Consider a IC ψ of the form (2.3): ∀x(P (x) → ∃zQ(x, z)), and the

following database instance:

P A

a

null

Q A B

a 1

b 2

Here x appears twice in ψ, therefore A(ψ) = {P [1],Q[1]}. The value in the attribute

B is not relevant to check satisfaction of the constraint ψ. This makes sense, since

we just want values in the attribute A of P also to appear in the attribute A of Q,

which is equivalent to checking if ∀x(PA(ψ)(x) → QA(ψ)(x)) is satisfied by DA(ψ),

where DA(ψ) is:

PA(ψ) A

a

null

QA(ψ) A

a

b
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◻

In a commercial SQL DBMS, a constraint is satisfied if any of the relevant at-

tributes has a null value or the constraint is satisfied in the traditional way. More

formally,

Definition 8. [12] A constraint ψ of the form (2.3) is satisfied in the database instance

D, denoted D ⊧
N
ψ, iff DA(ψ) ⊧ ψN , where ψN is

∀x̄(
m

⋀
i=1
R
A(ψ)
i (x̄i) → ( ⋁

vj∈(A(ψ)∩x̄)
vj = null ∨ ∃z̄(

n

⋁
j=1
Q
A(ψ)
j (ȳj, z̄j) ∨ φ))), (2.6)

where x̄ = ∪mi=1x̄i, and z̄ = ∪nj=1z̄j. Here, DA(ψ) ⊧ ψN refers to the classical first-order

satisfaction, where null is treated as any other constant in the domain. ◻

We can see from Definition 8 that there are basically three cases for an integrity

constraint of the form (2.3) satisfaction: (a) If null is in any of the relevant attributes

in the antecedent, then the constraint is satisfied; (b) At least one of the conjunctive

clauses has to be true. Theses clauses can be checked by the second disjunction in the

consequent of formula (2.6), treating null as any other constant; (c) If the built-in

formula φ is satisfied, then the constraint is satisfied.

Example 2.4. (example 2.3 continued) In order to check if D ⊧N ψ, we need to

check DA(ψ) ⊧ ψN , with ψN : ∀x(PA(ψ)(x)→ x = null∨QA(ψ)(x)). For x = a, it holds

that DA(ψ) ⊧ PA(ψ)(a). Since a is not a null value, we need to check if D ⊧ QA(ψ)(a),

which is true in this case. Now, for x = null, DA(ψ) ⊧ PA(ψ)(null), and null = null,

so the constraint is satisfied. ◻
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2.1.1 The IsNull Predicate

There is a very important constraint widely used in DBMSs: the NOT NULL

constraint (NNC), which prevents certain attributes from taking the value null.

Definition 9. [12] A NOT NULL-constraint (NNC) is a denial constraint of the form:

∀x̄(P (x̄) ∧ IsNull(xi)→ false), (2.7)

where xi ∈ x̄ is in the position of the attribute that can not take null values. Here,

we introduce a special predicate IsNull(⋅), with IsNull(c) true iff c is null, instead

of using the built-in comparison atom c = null, because in traditional DBMSs this

equality would be always evaluated as unknown. ◻

Notice that a NNC is not of the form (2.3), because it contains the special predicate

IsNull.

Definition 10. [11] A NNC ψ of the form (2.7), is satisfied by a database D with

null, denoted D ⊧N ψ, iff

D ⊧ ∀x((P (x̄) ∧ xi = null)→ false), (2.8)

with null treated as any other constant. ◻

Example 2.5. Consider the NNC ψ ∶ ∀xy(P (x, y) ∧ IsNull(x) → false). This con-

straint is satisfied if D ⊧ ∀xy(P (x, y) ∧ x = null → false). ◻

2.1.2 Primary Keys

In [11], they also propose a precise formalization in first-order logic of the notions

of primary key and unique key satisfaction in databases that conform to the SQL

standard SQL-2003.
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Definition 11. [11] Given a predicate R(x1, . . . , xn) and its primary key {R[1], . . . ,

R[m]}2, the primary key can be logically expressed as the following set of formulas:

∀x̄ȳ(R(x1, . . . , xm, xm+1, . . . , xn) ∧R(x1, . . . , xm, ym+1, . . . , yn)→ xj = yj),

for j =m + 1, . . . , n.

∀x̄ȳ(R(x1, . . . , xm, xm+1, . . . , xn) ∧R(x1, . . . , xm, ym+1, . . . , yn) ∧ IsNull(xj)

→ IsNull(yj)), for j =m + 1, . . . , n.

∀x̄ȳ(R(x1, . . . , xm, xm+1, . . . , xn) ∧ IsNull(xj)→ false), for j = 1, . . . ,m.

The third set of rules, are NNCs for all the attributes in the key. A unique key can

be logically expressed by using only the first two set of rules. ◻

Example 2.6. Consider a schema with relations R(X,Y ), with primary key (PK)

R[1]. The following database instance D violates the PK:

R X Y

a b

a null

By Definition 11, the PK can be written as ∀xyz(R(x, y)∧R(x, z)→ y = z), ∀xyz(R(x, y)∧

R(x, z) ∧ IsNull(y)→ IsNull(z)), and ∀xy(R(x, y) ∧ IsNull(x)→ false).

In order to check if D satisfies the PK, we need to check the following three formulas:

D ⊧ ∀xyz(R(x, y) ∧R(x, z)→ x = null ∨ y = null ∨ z = null ∨ y = z). (2.9)

D ⊧ ∀xyz(R(x, y) ∧R(x, z) ∧ y = null → x = null ∨ z = null). (2.10)

D ⊧ ∀xyz(R(x, y) ∧ x = null → false). (2.11)

For x = a, y = null, and z = b, the antecedent of the rule is satisfied since R(a, b) ∈ D

and R(a,null) ∈D. For these values the consequent is not satisfied, because z = null

is false. Therefore, Formula (2.10) does not hold. Thus, the database instance D is

2Without loss of generality we will assume the primary key to be the first m attributes of R.
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inconsistent. ◻

2.2 Query Answering in Databases with Null Values

In order to answer first-order queries in databases with null values, we will use the

null query answering semantics introduced in [11]. It extends the semantics of IC

satisfaction we just presented.

We assume that all the qualifiers in a first-order query are over different vari-

ables. For example, ∀xP (x, y) ∧ ∀xQ(x) can be rewritten as the equivalent query

∀xP (x, y) ∧ ∀zQ(z). The queries may contain the special predicate IsNull, which

captures the SQL query with IS NULL and IS NOT NULL expressions in first-order

logic.

Example 2.7. Consider a table P (X,Y ), and the SQL query Q:

SELECT P.X

FROM P

WHERE Y IS NULL

This query Q can be written in first-order logic as ∃y(P (x, y) ∧ IsNull(y)). ◻

Definition 12. [11] The set of restricted relevant variables of a first-order query φ

are: VR(φ) = {x ∣ x is present at least twice in φ, except for the variables in the IsNull

predicate } ◻

Example 2.8. For query Q: ∃y(P (x, y, z)∧Q(y)∧ IsNull(y)), VR(Q) = {y}, since y

is used twice in Q. ◻
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Definition 13. [11] A variable assignment function s, denoted by s[x∣a], is a function

from the set of variables to the underlying database domain U , by setting s(x) to

take the value a. A term assignment function s̄ is defined as follows: (a) If term t is a

variable x, then s̄(t) = s(x). (b) If term t is a constant c or null, then s̄(t) = c. Given

a formula ϕ, ϕ[s] denotes the formula obtained from ϕ by replacing its free variables

by its value according to s. ◻

Given a variable assignment function s, we check if D satisfies ϕ[s] by assuming

that the quantifiers of restricted relevant variables over (U ∖ {null}) and of non-

relevant variables over U . Formally:

Definition 14. [11] Let ϕ be a first-order formula, and s be a variable assignment

function and B = {<,>,=, false}. We define, by induction on ϕ, when D satisfies ϕ

with assignment s with respect to the null-value semantics, denoted D ⊧qN ϕ[s]. Then,

D ⊧qN ϕ[s] when ϕ is of one of the following forms:

1. t1 ◇ tn for ◇ ∈ {<,>,=}, s̄(t1) /= null, s̄(t2) /= null, and D ⊧ t1 ◇ tn.

2. R(t1, . . . , tn), with R ∈R and R(s̄(t1), . . . , s̄(tn)) ∈D.

3. ¬α, and D /⊧q
N
α[s̄].

4. (α ∨ β), and D ⊧qN α[s̄] or D ⊧qN β[s̄].

5. (α ∧ β), and D ⊧qN α[s̄] and D ⊧qN β[s̄].

6. (∀y)(α), and one of the following holds:

(a) y ∈ VR(α), and for all a in (U ∖ {null}), D ⊧qN α[s̄[y∣a]].

(b) y /∈ VR(α), and for all a in U , D ⊧qN α[s̄[y∣a]].

7. (∃y)(α), and one of the following holds:
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(a) y ∈ VR(α), and there exists an a in (U ∖ {null}) with D ⊧qN α[s̄[y∣a]].

(b) y /∈ VR(α), and there exists an a in U with D ⊧qN α[s̄[y∣a]].

For all database instance D, D /⊧q
N
false. ◻

Definition 15. [11] A variable assignment s is null-valid with respect to ϕ if for every

relevant variable x in ϕ, s(x) /= null. ◻

Definition 16. [11] (a) A tuple (t1, . . . , tn) with values in U is an answer from a

database D under the null query answering semantics to a FO query Q with free

variables (x1, . . . , xn) iff there exists a null-valid assignment s for Q, such that

s(xi) = ti, for i = 1, . . . , n, and D ⊧qN Q[s]. (b) AnsN(Q,D) denotes the set of

answers to Q obtained from database D under the semantics in (a). (c) If Q is a

sentence (boolean query), the answer under the null query answering semantics is yes

iff D ⊧qN Q and no otherwise. ◻

Example 2.9. Consider D = {P (1,1,1), P (2,null,null), P (null,3,3), Q(null),

Q(1), Q(3)}, and the query Q: ∃yz(P (x, y, z) ∧Q(y) ∧ y > 2).

For this query, the restricted relevant attribute is y, and the only free variable

is x. s1(x) = null is an answer to the query posed to D. In fact, the formula

∃yz(P (x, y, z) ∧Q(y) ∧ y > 2) is true in D, since there is a value for y which is not

null and a value for z that make the formula true. Namely, y = 3, z = 3. So, it holds

that D ⊧qN Q[null].

An assignment s2(x) = 2 is not an answer to the query. The formula ∃yz(P (x, y, z)∧

Q(y)∧ y > 2) is not true in D, since the only value for y that makes the formula true

is null.
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Now, s3(x) = 1 is not an answer to the query sine there is not a value for y which

is not null that make y > 2. In all, AnsN(Q,D) = {null}. ◻

In [11], it is shown that this null query answering semantics coincides with the

classical first-order semantics for queries and databases without null values [12].

On the other hand, conjunctive queries can be syntactically transformed into new

FO formulas for which the evaluation can be done by treating null as any other

constant.

Definition 17. A query of the form (2.1) can be transformed into a new query

QN written as ∃ȳ(⋀ni=1Ri(x̄i, ȳi) ∧φ ∧⋀v∈VR(Q) v ≠ null), where VR(Q) are restricted

relevant variables (cf. Definition 12). In fact, this ensures that relevant variables are

evaluated only over values in (U ∖{null}). Then, the new query QN can be evaluated

treating null as any other constant in U .

Example 2.10. (example 2.9 continued) The query Q in Example 2.9 can be rewrit-

ten as QN : ∃yz(P (x, y, z) ∧Q(y) ∧ y > 2 ∧ y ≠ null).

To check if D ⊧ QN(1), we need to check if D ⊧ ∃yz(P (1, y, z)∧Q(y)∧ y > 2∧ y ≠

null). Now, for y = 1 and z = 1, D ⊧ P (1,1,1) and D ⊧ Q(1), but y = 1 is less than

2. Therefore (1) is not an answer to the query QN .

(2) is not an answer to the query QN . Although D ⊧ P (2,null,null) and D ⊧

Q(null), y = null contradicts with y ≠ null. Therefore (2) is not an answer.

Now, (3) is an answer to the query QN , since it holds that D ⊧ (P (null,3,3) ∧

Q(3) ∧ 3 > 2 ∧ 3 ≠ null). ◻
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2.3 Database Repairs and Consistent Query Answering

Given a inconsistent database instance D with a set IC of integrity constraints,

we can restore consistency by deleting and/or inserting tuples. As a result, a new

database instance, so-called repair, has the same schema as D that satisfies the IC

and minimally differs from D under set inclusion. In order to formally define the

repairs, we need a notion of distance between the database and its repaired version.

Definition 18. [5] Let D,D′ be database instances over the same schema and

domain. The distance, ∆(D,D′), between D and D′ is the symmetric difference

∆(D,D′) = (D ∖D′) ∪ (D′ ∖D). ◻

Definition 19. [12] Let D,D′,D′′ be database instances over the same schema and

domain U . It holds that D′ ≤D D′′ iff :

(a) For every atom P (ā) ∈ ∆(D,D′), with ā ∈ (U ∖ {null}), it holds that P (ā) ∈

∆(D,D′′).

(b) For every atom P (ā, null) ∈∆(D,D′), with ā ∈ (U∖{null}), there exists a b̄ ∈ U ,

such that P (ā, b̄) ∈∆(D,D′′) and P (ā, b̄) /∈∆(D,D′). ◻

Definition 20. [12] Given a database instance D, a set IC of ICs of the form (2.3),

and NNCs of the form (2.7), a repair of D wrt IC is a database instance D′ over the

same schema of D, such that:

(a) D′ ⊧N IC,

(b) D′ is ≤D-minimal in the class of database instances that satisfy IC wrt ⊧N ,

i.e. there is no database D′′ in this class with D′′ <D D′. D′ <D D′′ means

D′ ≤D D′′, but not D′′ ≤D D′.
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The set of repairs of D wrt IC is denoted by Rep(D, IC ). ◻

Example 2.11. Consider the database instance D = {P (a)}, and the integrity

constraint IC: ∀x(P (x) → ∃zQ(x, z)). This database D is inconsistent wrt IC. Con-

sistency can be restored by deleting P (a) or inserting Q(a,null). So there are two

repairs: D1 = {} and D2 = {P (a),Q(a,null)}. Notice that the database instance

D3 = {P (a),Q(a, b)} is consistent wrt IC, but it is not a repair, we have D1 ≤D D3,

therefore D3 is not ≤D-minimal. ◻

A consistent answer to a FO query posed to a possibly inconsistent database D

wrt a set IC of ICs is defined as follows:

Definition 21. [12] Given a database D and a set IC of ICs, a ground tuple t̄ is

a consistent answer to a query Q(x̄) wrt IC in D iff for every D′ ∈ Rep(D, IC ),

D′ ⊧qN Q[t̄]. If Q is a sentence (boolean query), then yes is a consistent answer iff

D′ ⊧qN Q for every repair D′ of D. Otherwise, the consistent answer is no. ◻

In this formulation of CQA we are using a notion ⊧qN of answering first-order

queries in databases with null.

2.4 Views

As indicated above, secret data is characterized as the contents of a view. In this

research, we will restrict ourselves to a syntactic class of views.

Definition 22. A view Vs is defined by a Datalog rule of the form

Vs(x̄)← R1(x̄1), . . . ,Rn(x̄n), φ, (2.12)

with Ri ∈ R, x̄ ⊆ ⋃i x̄i, and x̄i is a tuple of variables. Formula φ is a conjunction of

built-ins atoms containing variables in Ris or domain constants. The conjunction in
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the body is denoted by B(Vs). ◻

Thus, in this thesis views are defined by conjunctive queries with built-in predi-

cates. Vs[D] denotes the extension of view Vs when computed on an instance D for

Σ. Sometimes we simply use Vs if the instance is understood from the context.

Example 2.12. Consider the database instance D = {R(a, b),R(c, d), S(b, f), S(d, g),

S(e, e)}, and the view by Vs(x) ← R(x, y), S(y, z). Here, the data in the extension

of the view Vs[D] = {(a), (c)}. Sometimes, to emphasize the predicate involved, we

write Vs[D] = {Vs(a), Vs(c)}. ◻

Our views can be expressed as L(Σ)-queries. More precisely, B(Vs) in (2.12) can

be written as the conjunctive query: ∃ȳ (R1(x̄1)∧. . .∧Rn(x̄n)∧φ), with x̄ = (⋃i x̄i)−ȳ.



Chapter 3

Null Semantics for SQL Queries and ICs

This research will address the problem of characterizing and obtaining secret answers

to queries, i.e. that do not reveal secret information as specified by secrecy views

over incomplete databases that may contain the single null value null, as NULL in

SQL relational databases. In order to obtain secret answers in different DBMSs that

(possibly only partially) follow the SQL standard that use null values in practice,

there are several issues that need to be addressed.

First, we will make use of null to protect secret information contained in secrecy

views. The idea is that the extensions of the secrecy views contain only tuples with

null or become empty. Our view evaluation corresponds to conjunctive query evalu-

ation, which will be based on the notion of the null query answering semantics (cf.

Chapter 4). We need to show how different DBMSs interpret the null query answering

semantics.

Second, we can have integrity constraints on the base schema. In this case, pri-

vacy has the extra condition of satisfying the ICs, because ICs could be violated

through the process of updating the database instance with nulls. IC satisfaction

with null values introduced in [12, 11] (cf. Section 2.1) give us a repairing strategy to

restore consistency. Therefore, we need to show how different DBMSs interpret the

IC satisfaction with null values, since we expect to adopt this semantics to restore

consistency.

As a result of this chapter, we are able to apply the notion of the null query

answering semantics in different DBMSs, and we also give some guidelines to adopt

23
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the semantics of IC satisfaction with null values proposed in [12, 11] in different

DBMSs.

In this chapter, we do not consider secrecy instances or secret answers. These

topics will be addressed in Chapter 4.

3.1 Interpretations of Null Values

A number of research [24, 26, 43, 41] has concentrated on the topic of incomplete

databases and null values in relational databases. Incomplete databases in the classic

sense that some information is represented using null values. Basically, a null is a

place-holder for an attribute whose value can not be represented by an usual constant.

Formal treatment of nulls usually include many interpretations, however, they can

can be classified in two categories [43]. These are:

(a) Unknown: the attribute’s value exists, but it is missing or unknown. For ex-

ample, last name of an employee is missing because every employee has a last

name or the salary of employee John is unknown.

(b) Inapplicable: the attribute’s value is inapplicable or does not exist, i.e. salary

for an employee, who just enters the company, is not valid during the first month.

The null for salary is not applicable for at least one month. If an employee has

no middle name, a special domain value null could be used to represent the

middle name.

A formal treatment of null values under “unknown” interpretation was first pro-

posed by Codd [17] and is defined by the usual true and false, and also the additional

value unknown, which is used for null. In Codd’s approach, a comparison expression,

such as X > 100, evaluates to true or false in the usual way if X is not null. How-

ever, if X is null, then this expression evaluates to unknown. The truth tables for

the negation, conjunction, and disjunction in three-valued logic (3VL) have also been



25

addressed. Table 3.1 is the truth table for conjunction (And) while Table 3.2 is the

true table for disjunction (Or). 3VL for negation (Not) is defined in the true table

shown in Table 3.3.

Table 3.1: Truth Table for Conjunction

AND True False Unknown
True True False Unknown
False False False False

Unknown Unknown False Unknown

Table 3.2: Truth Table for Disjunction

OR True False Unknown
True True True True
False True False Unknown

Unknown True Unknown Unknown

Table 3.3: Truth Table for Negation

P Not P
True False
False True

Unknown Unknown

3VL was adopted in the SQL 2003 standard (SQL-2003) [1, 2]. In general, when a

given query is evaluated, only those combinations of tuples that evaluate the logical

expression of the query to true are selected as answers. In addition, SQL-2003 suggests

the use of Is Null predicate when comparing values in a equality comparison against

null. For example, a Is Null predicate tests whether one or more columns have null

values. This predicate returns true if every value of attributes is null, otherwise it

returns false.

The implemented semantics for query answering as specified in the SQL standard

follows this three-valued logic, however it has been criticized in the database literature
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for its shaky logical basis. Some tuples will not be returned as answers to some

tautological queries [43]. For example if we ask for all the employees with salary >

2000 or salary ≤ 2000, any employee whose salary is null will not be the answer. That

is, if the expression p is unknown, then ¬p is unknown as well, which in turn means

p ∨ ¬p is unknown instead to true.

In addition, both inapplicable and unknown values are represented by null values.

The SQL standard and DBMSs won’t be able to distinguish them. Logically cleaner

versions of null value semantics have been proposed by the research community, i.e.

four-valued logic was proposed [22] to distinguish applicable and inapplicable data.

But they have not been adopted by commercial systems due to the criticisms they

have received.

The semantics introduced in [12, 11] provides a partial logical reconstruction in

first-order predicate logic of the way nulls are handled in the SQL standard. More

precisely, this semantics addresses the notion of IC satisfaction in the presence of

null (cf. Section 2.1) and query answering for a broad classes of queries in databases

with/without null values (cf. Section 2.2).

In our work, we will adopt this first-order reconstruction of null, because it cap-

tures the semantics of the SQL NULL that are relevant for our work on privacy,

namely integrity constraint satisfaction and (conjunctive) query answering (cf. Sec-

tion 4).

3.2 Null Interpretation in SQL queries

SQL query answering is the implemented semantics currently used in DBMSs for

query answering, which is not an extension of the null query answering semantics. In

order to check whether the null query answering semantics conforms to the SQL query

answering in DBMSs, we basically compare answers of conjunctive queries given by

DBMSs with the result of the null query answering semantics.
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A first-order conjunctive query Q(x̄) of the form (2.1) can be always expressed as

a SQL query QSQL as follows:

SELECT x′1, . . . , x
′
m

FROM R1, . . . ,Rn

WHERE Ri.v = Rj.v, AND. . .AND Rl.u = Rk.u, AND φSQL

Here, x̄ = {x1, . . . , xm}, x′i is an attribute associated with variable xi in Q(x̄), the

conditions in the WHERE clause represent the joins, and φSQL replaces each variable x

in φ by its x′ version.

We use the following running example to illustrate how the null query answer-

ing semantics is interpreted in DBMSs. This is done by creating tables and running

queries in major commercial database management systems. In particular, we com-

pare answers obtained by the null query answering semantics with those obtained by

SQL query answering in Oracle 11g, IBM DB2 9.7 Enterprize Edition, Microsoft SQL

Server 2008. In the following, we will use the abbreviations Oracle, DB2, and SQL

Server to refer to above DBMSs.

Example 3.1. The employee and department data in Tables 3.4 and 3.5 will be

used serval times throughout the rest of this chapter. Imagine a company database

D storing information for employees and departments as shows in the following two

tables. The attributes Dept and Salary in the Employee table may take null values.

Also the attributes Name in the Dept table are allowed to contain null values.

Table 3.4: Employee Table

Eno Name Dept Salary
100 Mike 1 40,000
101 Mary 1 35,000
102 Tim 1 null
103 John 2 42,000
104 Anna null 45,000
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Table 3.5: Dept Table

Deptno Name
1 HR
2 IT
3 Sales
5 Marketing

◻

The following example shows whether SQL query answering coincides with the null

query answering semantics for a conjunctive query that contains joins and built-ins.

Example 3.2. Consider the conjunctive query Q ∶ ∃xzwu(Employee(x, y, z,w) ∧

Dept(z, u) ∧ u = “IT”)). It asks for the names of all employees who work at IT

department. According to the null query answering semantics as presented in Section

2.2, AnsN (Q,D) = {(John)}. There are two ways to evaluate this query in DBMSs.

First, this query Q can be expressed as the following SQL query QSQL, which is

evaluated in DBMSs as usual:

SELECT Employee.Name

FROM Dept, Employee

WHERE Dept = Deptno

AND

Dept.Name=“IT”

This type of queries is very common in database praxis. If the query QSQL is executed

in three DBMSs as usual, all of them return the tuple {(John)}. Therefore, we can see

that the answers to a query of this kind obtained from both the null query answering

semantics and SQL DBMSs coincide. In fact, they all implement 3VL for the boolean

operator And as we showed above.

Furthermore, query Q can be transformed into a new SQL query QSQLN which can
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be evaluated treating null as any other constant but making sure that variables in

joins do not take the value null. This transformation is done by first rewriting query

Q into a new query QN ∶ ∃xzwu(Employee(x, y, z,w) ∧ Dept(z, u) ∧ u = “IT” ∧ z ≠

null∧u ≠ null), according to Definition 17 in Chapter 2. Next, this query is expressed

in SQL using SQL notation. The following is the new transformed SQL query QSQLN :

SELECT Employee.Name

FROM Dept, Employee

WHERE Dept = Deptno AND Dept.Name=‘IT’

AND

Dept ≠ ’Null’ AND Deptno ≠ ’Null’

AND Dept.Name ≠ ’Null’

For the purpose of evaluation of query QSQLN on DBMSs treating null as any other

constant, we modified the company database D by updating SQL NULL with the con-

stant Null. We run this SQL query in our testing DBMSs, every DBMS returns the

tuple (John), as we expected. ◻

The following example shows whether SQL query answering coincides with the null

query answering semantics for a conjunctive query that is open, and has built-ins.

Example 3.3. Consider the query Q: ∃xzw(Employee(x, y, z,w)∧w < 42000), that

asks for the names of employees whose salary is less than 42,000. According to the

null query answering semantics in Section 2.2, AnsN (Q,D) = {(Mike), (Mary)}.

Again, queryQ can be written as the following SQL queryQSQL, and then evaluate

QSQL in DBMSs as usual:

SELECT Name

FROM Employee

WHERE Salary < 42000
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The set of tuples {(Mike), (Mary)} are returned by running the query QSQL in our

three DBMSs. Notice that (Tim) is not an answer to the SQL query. In this case,

the answers given by SQL DBMSs and the null query answering semantics coincides,

which means comparison null with any value will be evaluated as unknown in both

commercial DBMSs and null querying answering semantics.

Similarly, we can transform query Q into a new SQL query QSQLN for which eval-

uation can be done by treating null as any other constant.

SELECT Name

FROM Employee

WHERE Salary < 42000 AND

AND

Salary ≠ ’Null’

The set of tuples {(Mike), (Mary)} are returned by running the query QSQLN in our

three DBMSs. ◻

As indicated above, there is a very important predicate Is Null to test certain at-

tributes from taking the value null.

Example 3.4. Consider the following conjunctive query Q with a Is Null predicate:

∃xzw(Employee(x, y, z,w) ∧ IsNull(z)), and the corresponding SQL query QSQL:

SELECT Name

FROM Employee

WHERE Dept IS Null

For the null query answering semantics (cf. Section 2.2), it holds that AnsN (Q,D) =

{(Anna)}. A tuple containing null for dept will be the shown in the answer of the

SQL query QSQL. As for this case, (Anna) is the answer in all three DBMSs. If we

insert tuple (105,Smith, ,34,000) into Employee table by using the following SQL
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statement:

INSERT INTO Employee

VALUES (105,‘Smith’,’ ’,34000)

DB2 and SQL Server return the tuple (Anna), while Oracle returns the set of tuples

{(Anna), (Smith)}. In SQL-2003 and the null query answering semantics, null is not

the same as an empty character string, i.e. a string of blank characters. However,

Oracle treats a string value with a length of zero as null. ◻

In the above examples, we are showing that, the null query answering semantics

fully captures the way null values handled on DB2 and SQL Server for first-order

conjunctive queries. However, for Oracle, since null means both “unknown ” as

well as the zero-length empty string, answers to conjunctive queries in Oracle may

be different from the null query answering semantics. Therefore, we need to treat

the empty string as null in database in order to capture the semantics of null in

Oracle. For example, the database instance D = {P (1,′ ′),Q(null)} is equivalent to

D = {P (1,null),Q(null)} in Oracle.

3.3 IC Satisfaction in Databases with Null Values

In this section, we start with an overview of the semantics of IC satisfaction in

the SQL standard SQL-2003. Then, we compare the semantics of IC satisfaction with

null values provided in [12, 11] and major commercial database management systems

that all follow SQL-2003. Here, we focus on the most important ICs available in ma-

jor commercial databases, such as unique, primary key, and foreign key constraints.

We therefore provide some starting points towards modifying the semantics for sat-

isfaction of constraints in databases with null values in order to unify the semantics

currently used in different DBMSs.
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3.3.1 Semantics of Unique Constraints

According to SQL-2003, a unique constraint UNIQUE(x1, . . . , xn) for a relation

R ∈R is satisfied iff there are no two rows t1, t2 in R such that the values of all their

attributes xi have the same non-null values. More formally [40],

∀t1t2 ∈ R ∶ (
n

⋀
i=1
(t1.xi /= null ∧ t2.xi /= null)→

n

⋁
i=1
(t1.xi /= t2.xi)) (3.1)

Example 3.5. Consider a database with the table Person, where there is a unique

constraint on both Name and Phone together, denoted by UNIQUE(Name,Phone). The

following database instance is accepted as a consistent state in SQL-2003.

Person Name Phone Age

Mary 000 − 1000 10

Mary 000 − 1001 20

null 000 − 1000 30

This is because null in Name attribute is not relevant to check IC satisfaction. More

precisely, for these values in Name or Phone which are null make the antecedent of

Formula (3.1) false. Therefore the whole formula is true. ◻

Example 3.6. To simplify the presentation, we further assume that the name of

department has to be unique. The table of definition in Example 3.1 was extended

by adding the following unique constraint:

ALTER TABLE Dept

ADD CONSTRAINT name Unique UNIQUE(Name) ◻
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As discussed in Section 2.1.2, the name Unique can be written as a set of rules ac-

cording to the semantics proposed in [11]:

∀xyz(Dept(y, x) ∧Dept(z, x) ∧ IsNull(y)→ IsNull(z)),

∀xyz(Dept(y, x) ∧Dept(z, x)→ y = z).

In order to check if the company database D satisfies the name Unique, by Definition

8, we need to check the following formulas:

D ⊧ ∀xyz(Dept(y, x) ∧Dept(z, x) ∧ y = null → x = null ∨ z = null). (3.2)

D ⊧ ∀xyz(Dept(y, x) ∧Dept(z, x)→ x = null ∨ y = null ∨ z = null ∨ y = z). (3.3)

DB2 disallows the unique constraint name Unique, since DB2 does not support unique

constraints on columns that contain null values, while both Oracle and SQL Server

allow it. The following insertion is accepted by Oracle, SQL server, and the semantics

in [11]:

INSERT INTO Dept

VALUES(6, NULL)

However, if we try to insert another null value into Name in the Dept table, the

insertion will be rejected by SQL Server due to violation of the unique constraint

name Unique. Basically, in SQL Server, if a unique constraint is defined upon a

column containing null, only one null value will be allowed in that column, while in

Oracle and [11] a unique constraint allows more than one null values. Therefore, the

semantics of a unique constraint defined in Oracle is less restrictive. More formally,

UNIQUE(x1, . . . , xn) for a relation R holds in DB2 iff the following holds [40]:

∀t ∈ R ∶ (
n

⋀
i=1
t.xi /= null) ∧ ∀t1t2 ∈ R ∶ (

n

⋁
i=1
t1.xi /= t2.xi). (3.4)

UNIQUE(x1, . . . , xn) for a relation R holds in SQL Server iff the following holds:

∀t1t2 ∈ R ∶ (
n

⋁
i=1
t1.xi /= t2.xi)1. (3.5)

1Here, null is treated as a database constant value.
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UNIQUE(x1, . . . , xn) for a relation R holds in Oracle iff the following holds [40]:

∀t1t2 ∈ R ∶ (
n

⋁
i=1
(t1.xi /= null ∨ t2.xi /= null)→

n

⋁
i=1
t1.xi /= t2.xi). (3.6)

3.3.2 Semantics of Primary Key Constraints

In SQL-2003, a primary key constraint is a combination of a unique constraint and

one or more not null constraints. A primary key constraint PRIMARY KEY(x1, ...,xn)

for a relation R ∈R is satisfied iff the following formula holds [40]:

∀t ∈ R ∶ (
n

⋀
i=1
t.xi /= null) ∧ ∀t1t2 ∈ R ∶ (

n

⋁
i=1
t1.xi /= t2.xi) (3.7)

In DB2, SQL Server, Oracle, and [11] the definition of a primary key implicitly defines

not null constraints on the corresponding uniqueness columns which coincides with the

semantics of a primary key proposed in SQL-2003, as shown in the following example:

Example 3.7. (example 3.6 continued) The table of definition in Example 3.6 was

extended by adding the following primary key:

ALTER TABLE Dept

ADD CONSTRAINT deptno PK PRIMARY KEY(Deptno) ◻

According to [11], the primary key can be written as ∀xyz(Dept(x, y)∧Dept(x, z)→

y = z), ∀xyz(Dept(x, y)∧Dept(x, z)∧IsNull(y)→ IsNull(z), and the NNC ∀xyz(Dept

(x, y) ∧ IsNull(x)→ false).

In order to check if the company database D satisfies the deptno PK, we need to

check the following formulas (cf. Section 2.1.2):

D ⊧ ∀xyz(Dept(x, y) ∧Dept(x, z) ∧ y = null → x = null ∨ z = null). (3.8)

D ⊧ ∀xyz(Dept(x, y) ∧Dept(x, z)→ x = null ∨ y = null ∨ z = null ∨ y = z). (3.9)

D ⊧ ∀xyz(Dept(x, y) ∧ x = null → false). (3.10)
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The following insertion is rejected due to a violation of the primary key deptno PK

in DB2, Oracle and SQL Server.

INSERT INTO Dept

VALUES(NULL,’Consulting’)

The deptno PK will be violate the primary key semantics proposed in [11] if there is tu-

ple (null, consulting) in theDept table. This is because the tupleDept(null, consulting)

will not be satisfied Formula (3.10).

3.3.3 Semantics of Foreign Key Constraints

Referential constraints permit the comparison of values from different columns of one

or more relations. A referential constraint (or an inclusion dependency), denoted by

R[X] ⊆ S[Y ] (cf. Section 2.1), is satisfied, if every value of X in R that refers to a

value of the corresponding attribute in Y in the relation S.2 Here, R is the referencing

table and S is the referenced table. In the case of referential constraints, SQL-2003

suggests three different semantics, namely simple, partial, and full, respectively.

If it is simple-match semantics [2] for each row t1 of the referencing table R, either

at least one of the values of the referencing columns in R shall be a null value, or the

value of each referencing column in R shall be equal to the value of the corresponding

referenced column in some row of the referenced table S.

If partial-match semantics [2] is specified, for each row t1 of the referencing table

R, there shall be some row t2 of the referenced table S such that the value of each

referencing column in t1 is either null or is equal to the value of the corresponding

referenced column in t2.

If full-match semantics [2] is specified, for each row t1 of the referencing table

R, either the value of every referencing column shall be a null value, or the value of

every referencing column in t1 shall not be null and there shall be some row t2 of the

2Referential constraints could be defined on the same table.
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referenced table such that the value of each referencing column in t1 is equal to the

value of the corresponding referenced column in t2.

Example 3.8. Consider a referenial constraint ψ: R(X,Y ) ⊆ S(X,Y ) and the

database D = {R(null, a), S(a, a)}. (a) D satisfies ψ wrt simple match, since there is

a null value in the referencing table R. (b) D does not satisfy ψ wrt partial match,

since there is no tuple R(a, a) or R(null, null) in R. (c) D does not satisfy ψ wrt full

match, since any of null values can not be in the referencing table R. ◻

Foreign key is a special case of a referential constraint. It requires the primary

key on the referenced table.

Example 3.9. In order to check the semantics of foreign keys, our company database

was extended by assuming the a employee’s department must be a department of the

company. The table definition of Example 3.7 was extended by:

ALTER TABLE Employee

ADD CONSTRAINT fk FOREIGN KEY(Dept)

REFERENCES Dept(Deptno) ◻

In [11], the fk can be written as ψ ∶ ∀xyzw(Employee(x, y, z,w) → ∃uDept(z, u)).

Variable z is relevant to check the constraint, therefore the set of relevant attributes is

A(ψ) = {Employee[3],Dept[1]}. To check the fk, by Definition 8, we need to check

D ⊧ ∀z(EmployeeA(z) → z = null ∨ DeptA(z)), where EmployeeA and DeptA are

the predicates projected onto the relevant attributes. In this example, the company

database D satisfies the foreign key constraint fk.

A possible way to check satisfaction of an integrity constraint in DBMSs is by

means of violation view [23, 38]. If the integrity constraint is satisfied, then violation



37

view is empty, otherwise it contains the set of tuples that violates the constraint.

Example 3.10. (example 3.9 continued) For the foreign key in Example 3.9, the

following query Q defines the violation view for databases with null values, and is

used to check the satisfaction of fk:

SELECT Dept

FROM Employee

WHERE NOT EXISTS (SELECT * FROM

Dept

WHERE Deptno=Dept)

AND Dept IS NOT NULL

By running this query Q in three DBMSs, result of query Q is empty in every DBMS.

Therefore, in all DBMSs, null values in referencing columns do not violate foreign key

constraints. ◻

In this section, we focused on unique, primary, and foreign key constraints satisfac-

tion in the presence of null supported by DB2, Oracle, SQL Server, and the semantics

proposed [11]. We give the results of observations from the above examples:

� Unique key: This type of integrity constraint is supported by all testing systems

and the semantics in [11]. Notice that Oracle and the semantics in [11] support

multiple null values in the unique key column whereas SQL Server allows only

one null value in the unique key column. In SQL Server, this is contradiction of

null comparison of 3VL in SQL-2003, this is because, null = null returns true

instead of unknown.

� Primary key: All testing systems and the semantics in [11] support the primary

key constraint which coincides with semantics of the primary key proposed in
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SQL-2003.

� Foreign key: All testing systems and the semantics in [11] implement only

the simple-match semantics for foreign key constraints suggested in SQL-2003,

which allows to contain null values in referencing columns. They do not support

the partial-match and full-match semantics suggested in SQL-2003 [12, 40].

In [11], they present a repair semantics to restore consistency in the context of

incomplete databases, which is based on the notion of IC satisfaction proposed in

[11]. In our privacy work, we will make use of this semantics to obtain consistent

and secret answers on the top of different DBMSs, therefore this semantics should be

compatible with the way null values are treated in DBMSs. Above investigations give

us some starting points on modifying this semantics in order to unify the semantics

currently used in different DBMSs.



Chapter 4

A Semantics for Privacy with Uncertain Data

The privacy problem, as illustrated in Chapter 1, will be solved by performing a

minimal set of virtual changes on the database instances, which captures the ideas

of: (a) Having a class of virtual secrecy instances for a database that protects secret

data as defined by the secrecy views; (b) Minimizing the distance between a secrecy

instance and the given database instance, and this minimization takes into account

the occurrence of null values. (c) Computing answers to a query that do not reveal

any secret information.

In this chapter, we start in Section 4.1 with the semantics of secrecy in the presence

of null, and we also characterize a class of secrecy instances. Then we introduce the

precise definition of secret answers to first-order conjunctive queries in Section 4.2.

In this research we restrict ourselves to conjunctive queries. An extension of our

semantics for queries containing negation is left for future work.

4.1 Secrecy Instances of Incomplete Databases

In this work we will make use of null to protect secret information. As described

in Section 3.2, the semantics of null will (essentially) correspond to the way nulls are

handled by DBMSs that follow the SQL standard. The idea is that the extensions of

the secrecy views will contain only tuples with null or will become empty. Our view

evaluation problem corresponds to conjunctive query evaluation, which will be based

on the notion of the null query answering introduced in Section 2.2.

39
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Example 4.1. (example 2.9 continued) Consider the following instance D:

P X Y Z

1 1 1

2 null null

null 3 3

Q Y

null

1

3

and the secrecy view Vs(x) ← P (x, y, z),Q(y), y > 2. This secrecy view can be ex-

pressed as the first-order query:

QVs(x) ∶ ∃yz(P (x, y, z) ∧Q(y) ∧ y > 2),

which is the same query as in Example 2.9.

Under the semantics of secrecy in the presence of null, we expect that the exten-

sions of the secrecy views contain tuples only with null or become empty. This implies

that the values in attribute X associated with variable x in QVs are null, or the values

in Y associated with variable y in QVs are null, or the negation of the comparison

is true. These three cases correspond to the three assignments in Example 2.9. No-

tice that the attributes X and Y play an important role for the semantics of secrecy.◻

The above example shows that the occurrence of null in some attributes are crucial

to gain the view extensions. In the following, we introduce the notion of null-special

attributes (NSA) for a secrecy view to capture the position null in attributes, i.e.

those that associate with variables involved in joins, built-ins, and the head of the

view. This is because the position null in joins and built-ins will make the view

extensions empty, while the position null in the head will make the view extensions

contain tuples only with null.

Definition 23. For a Datalog rule of the form (2.12) and a term t (i.e. a variable

or constant), let posR(Vs, t) be the set of positions in predicate R ∈R where t appears.◻
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Example 4.2. Consider a secrecy view: Vs(x, z) ← P (x, y),Q(y, z). For a variable

y, posR(Vs, y) = {2,1}, which means that y appears in the second position in P and

in the first position in Q. The notion of posR in Definition 23 is essentially the same

as the one presented in Chapter 2 Definition 6. ◻

Definition 24. The set of combination attributes for a secrecy view Vs in the form

of (2.12) is: C(Vs) = {R[i] ∣ x is a variable appearing at least twice in the body of

(2.12), and i ∈ posR(Vs, x)}. ◻

Here, R[i] denotes a position (or the correspondent attribute) in relation R. In

fact, combination attributes of a secrecy view Vs are those involved in joins or built-in

predicates, and they also correspond to the restricted relevant variables (cf. Definition

12) of the associated query QVs .

Example 4.3. (example 4.2 continued) The secrecy view in Example 4.2 can be

expressed as the first-order query:

∃y(P (x, y) ∧Q(y, z)). (4.1)

Since y appears twice in the body of the secrecy view, by Definition 24, C(Vs) =

{P [2],Q[1]}. According to Definition 12, the restricted relevant variable of query

(4.1) is y. We can see that the restricted relevant variable y corresponds to combina-

tion attributes of the secrecy view. ◻

Definition 25. The set of secrecy attributes for a secrecy view Vs as in (2.12) is:

S(Vs) = {R[i] ∣ x is a variable in the head of (2.12), and i ∈ posR(Vs, x)}. ◻
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Here, secrecy attributes of a secrecy view Vs are those appearing in the head of

Vs’s definition. They correspond to the free variables in the associated query QVs .

Example 4.4. (example 4.3 continued) Since x and z appear in the head of the se-

crecy view in Example 4.2, by Definition 25, S(Vs) = {P [1],Q[2]}. The free variables

of query (4.1) are x and z, which correspond to secrecy attributes of the associated

secrecy view. ◻

Definition 26. The set of null-special attributes for a secrecy view Vs are those (as-

sociated to positions) in the set N (Vs) = C(Vs) ∪ S(Vs). ◻

Example 4.5. (example 4.1 continued) Consider the same secrecy view in Example

4.1: Vs(x) ← P (x, y, z),Q(y), y > 2. Since y appears three times in the body, by

Definition 24, C(Vs) = {R[2], S[1]}. Since x appears in the head, S(Vs) = {R[1]}.

Therefore, N (Vs) = {R[1],R[2], S[1]}. The values in attribute Z are not crucial for

gaining the view extensions, no matter whether they are null or not. This makes

sense, because we only join tuples via attribute Y , and making sure that values in

attribute Y are greater than 2. And then, we project values on attribute X. ◻

Definition 27. A database instance is admissible for a set Vs of secrecy views of

the form (2.12), denoted D ∈ Admiss(Vs), if under the ⊧qN semantics, each Vs[D] is

empty or in all its tuples only null appears. ◻

From the example above, we can see that, given a database instance D and a

secrecy view Vs of the form (2.12), D is admissible, when one of the following three

cases occurs: (a) There is a null in any of the combination attributes; (b) Values in
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the secrecy attributes are all null; (c) The negation of the built-ins is true.

Before making this claim formal, let us recall that, given a set of attributes A, and

a predicate R ∈ R, we denote by RA the predicate R projected onto the attributes

in A. DA denotes the database D with all its database atoms projected onto the

attributes in A (cf. Definition 7).

Proposition 1. Let Vs be a set of secrecy views Vs of the form (2.12). Let QVs

be their expressions as conjunctive queries of the form ∃ȳ(⋀ni=1Ri(x̄i) ∧ φ). For an

instance D, D ∈ Admiss(Vs) iff DN (Vs) ⊧ QVsN , for each Vs ∈ Vs, where Q
Vs
N is

∀x̄(
n

⋀
i=1
R
N (Vs)
i (x̄i) → ⋁

vj∈(C(Vs)∩x̄)
vj = null ∨ ⋀

uj∈(S(Vs)∩x̄)
uj = null ∨ ¬φ),

where x̄ = ⋃ni=1 x̄i. Here, DN (Vs) ⊧ QVsN refers to classical first-order satisfaction and

null is treated as any other constant. ◻

Example 4.6. (example 4.5 continued) According to the above definition, in order

to check whether the database instance D is admissible, the following must hold:

DN (Vs) ⊧ ∀xy(RN (Vs)(x, y) ∧ SN (Vs)(y)→ y = null ∨ x = null ∨ y <= 2),

with DN (Vs) given below. When checking this, null is treated as any other constant

in U .

RN (Vs) X Y

1 1

2 null

null 3

SN (Vs) Y

null

1

3

For x = 1, y = 1, the antecedent of the im-

plication is satisfied since RN (Vs)(1,1) ∈

DN , SN (Vs)(1) ∈ DN . For these val-

ues, the consequent is also satisfied,

because y = 1 < 2. For x = 2, y = null, the consequent is satisfied since y is null. For

x = null, y = 3, the antecedent is satisfied since RN (Vs)(null,3) ∈DN , SN (Vs)(3) ∈DN .

For these values, the consequent is also satisfied, because null = null is true. In this



44

example, D ⊧N QVs . Therefore, the given instance D is admissible. ◻

Proof of Proposition 1: First we proof that if D ∈ Admiss(Vs), then each Vs[D]

is empty or in all its tuples only null appears under the ⊧qN semantics. Here, Vs is of

the form (2.12), and D ⊧N QVs implies that DN (Vs) ⊧ QVsN , where Q
Vs
N :

∀x̄(
n

⋀
i=1
R
N (Vs)
i (x̄i) → ⋁

vj∈(C(Vs)∩x̄)
vj = null ∨ ⋀

uj∈(S(Vs)∩x̄)
uj = null ∨ ¬φ). (4.2)

By contradiction, we assume that there exists an assignment c̄ = (c1, ..., cn) for free

variables x̄ = (x1, ..., xn) in QVs1, such that the following three statements hold:

1. If xi ∈ VR(QVs), then ci ∈ (U ∖ {null}), otherwise, ci ∈ U .

2. There exists at least one i ∈ (1, . . . , n), such that ci ≠ null.

3. D ⊧qN QVs[s̄[x̄∣c̄]].

D ⊧qN QVs[s̄[x̄∣c̄]] implies that D ⊧qN ∃z̄w̄(
n

⋀
i=1
Ri(c̄i, z̄i, w̄i) ∧ φ[s̄[x̄∣c̄]]), where z̄ =

⋃ni=1 z̄i, w̄ = ⋃ni=1 w̄i, and z̄∪ w̄ = ȳ. Here, variables in z̄ are restricted relevant variables

in QVs , while no variable in w̄ is relevant. By Definition 14, for all ā ∈ (U ∖{null}) and

d̄ ∈ U , it holds that D ⊧qN ⋀
n
i=1Ri(c̄i, āi, d̄i) ∧φ. This indicates that D /⊧ ⋁

vj∈VR(QVs)
vj =

null, and D ⊧ φ. Therefore, DN (Vs) /⊧ ⋁
vj∈(C(Vs)∩x̄)

vj = null. Since all free variables x̄ in

VR(QVs) are associated with secrecy attributes in Vs, and we have that ci /= null for at

least one i ∈ (1, ..., n). Therefore, it holds that DN (Vs) /⊧ ⋀
uj∈(S(Vs)∩x̄)

uj = null. Thus,

we end up a contradiction with D ⊧N QVs .

Now, Let us prove that under the ⊧qN semantics, Vs[D] is empty or in all its tuples

only null appears, then D ⊧N QVs .

1. First, we consider that Vs[D] are tuples containing only null values. By Defi-

nition 14, there exists an assignment c̄ = (c1, ..., ci), where ⋀ni=1 ci = null for free
1As indicated in Section 2.4, Vs can be can be written as the conjunctive query: ∃ȳ (R1(x̄1) ∧

. . . ∧Rn(x̄n) ∧ φ), with x̄ = (⋃i x̄i) − ȳ.
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variables x̄ = (x1, ..., xn) in QVs . Since all free variables x̄ are associated with

secrecy attributes in Vs, it holds that DN (Vs) ⊧ ⋀
uj∈(S(Vs)∩x̄)

uj = null which makes

D ⊧N QVs true.

2. Now, Vs[D] is the empty set. By definition 15, there is no null-valid assignment

with respect to QVs , such that vj /= null for every vj ∈ QVs . This means that

there is at least one restricted relevant attribute vj, such that vj = null. There-

fore, DN (Vs) ⊧ ⋁
vj∈(C(Vs)∩x̄)

vj = null which makes D ⊧N QVs true. ◻

Virtual updates based on null will be used to obtain admissible instances starting

from a given instance D. A secrecy instance for D will be admissible and will also

minimally differ from D. The latter condition requires a suitable comparison of

database instances. As expected, this comparison will consider the presence of null

in the tuples of those instances.

Definition 28. [32] (less or equal informative constants) We define a partial order in

database domain U , denoted by ⊑, as follows: c ⊑ d iff c = d or c = null, where c, d ∈ U .◻

This partial order implies that constant c provide less or equal information than

a constant d in database. Now, we extend ⊑ as a partial order on tuples.

Definition 29. [32] (less or equal informative tuples) Let t1 = (c1, . . . , cn) and

t2 = (d1, . . . , dn) be finite sequences of constants. t1 is less or equal informative than

t2, denoted by t1 ⊑ t2 iff: ci ⊑ di for ∀i ∈ {1, . . . , n}. Also, t1 is less informative than

t2, denoted by t1 ⊏ t2 iff t1 ⊑ t2 and t1 /= t2. ◻

For example, tuple (a,null) provides less information than tuple (a, b). Then

(a,null) ö (a, b) holds.
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Definition 30. Let D,D′,D′′ be database instances over the same schema Σ and

domain U . It holds that D′ ≤D D′′ iff for every tuple t = R(ā) ∈ D′, there is a unique

tuple t′ such that t′ ∈D′′ and t′ ⊑ t. D′ <D D′′ means D′ ≤D D′′, but not D′′ ≤D D′ ◻

Here, D′ and D′′ are usually instances obtained by possible value updates on D

using null. If D′ <D D′′, we say that D′ is closer to D than D′′. We may assume

that tuples have identifiers, so the unique tuple t′ above will be denoted by µ(t).

Therefore, it is possible to correlate the original tuples with those in the null-based

updated instance. The tuples t, t′ in Definition 30 will be then correlated tuples.

Definition 31. Given a database instance D and a set Vs of views Vs of the form

(2.12), a secrecy instance Ds for D wrt Vs is an instance over the same schema, such

that: (a)Ds ∈ Admiss(Vs), and (b)Ds is ≤D-minimal in the class of database instances

that satisfy (a) and share the schema with D, i.e. there is no instance D′s in that class

with D′s <D Ds. Sec(D,Vs) denotes the set of all the secrecy instances for D wrt Vs. ◻

Example 4.7. Given the instance D = {P (1,2),R(2,1)}, and the secrecy view :

Vs(x, z)← P (x, y),R(y, z), y < 3, consider the alternative updated instances Di.

Notice that, all updated instancesD1, D2,

D3 and D4 satisfy the first condition, of

admissibility, of secrecy instance in Defi-

nition 31, that is:

i Di

1 {P (null,2),R(2,null)}

2 {P (1,null),R(2,1)}

3 {P (1,2),R(null,1)}

4 {P (1,null),R(null,1)}

D
N (Vs)
i ⊧ ∀xy(PN (Vs)(x, y)∧RN (Vs)(y, z)→ y = null ∨x = null ∧ z = null ∨ y ≥ 3), with

D
N (Vs)
i = {PN (Vs)(1,2), RN (Vs)(2,1)}. However, D4 is not a secrecy instance, because

P (1,null) ⊏ P (1,2); and then, D3 <D D4. Thus, D1, D2, and D3 are the only three
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secrecy instances of original instance D. ◻

Secrecy instances for a given instance D return uninformative answers (i.e. empty

or nulls) when asked about the secrecy view contents. Furthermore, we do not want

to trivialize too much of the original information in D. For this reason we make the

secrecy instances minimally depart from D wrt a notion of distance that privileges

taking into account the null values. In particular, these requirements enforce updates

on D that are based only changes of constants by null.

4.2 Privacy Preserving Query Answering

Our task is to compute secret answers to queries from a given database D that

contains secret information. The answers to be returned will be obtained by querying

secrecy instances of D instead of directly querying D. There may be several secrecy

instances and each of them will return trivial answers when asked about the secrecy

views. We may consider this collection of secrecy instances as representing some

sort of logical database (given through its models), and in consequence, the expected

answers are those that are true of all the chosen instances. These are usually called

certain answers [24].

Definition 32. Let Q(x̄) ∈ L(Σ) be a conjunctive query. A tuple ā of constants in

U is a secret answer to Q from D wrt to a set of secrecy views Vs iff Ds ⊧qN Q[ā] for

each Ds ∈ Sec(D,Vs). SA(Q,D,Vs) denotes the set of all secret answers. ◻

Example 4.8. (example 4.7 continued) Consider Q(x, z) ∶ ∃y(P (x, y) ∧ R(y, z) ∧

y < 3). For the alternative secrecy instances, we obtain: Q(D1) = {(null,null)},

Q(D2) = ∅, and Q(D3) = ∅. These answers can be obtained by transforming Q into a

new query QN using a methodology proposed in Definition 17. In this case, we obtain
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QN(x, z) ∶ ∃y(P (x, y) ∧ R(y, z) ∧ y < 3 ∧ y ≠ null). This query can be evaluated on

each of the secrecy instances treating null as any other constant. Finally, we obtain

SA(Q,D,{Vs}) = ∅.

Notice that, as expected, SA(QVs ,D) = ∅, where QVs is the query associated to

the secrecy view definition. ◻

Secret answers (SAs) are based on a skeptical or cautious semantics that considers

what is true of all the secrecy instances. A more relaxed alternative is a possible or

brave semantics, which considers an answer as valid if it is an answer from at least one

of the secrecy instances. For instance, in Example 4.8, the tuple P (1,2) is a secret

answer to the query P (x, y) under the brave semantics, since P (1,2) is an answer to

P (x, y) on the secrecy instance D3. Similarly, R(2,1) is a secret answer to R(x, y)

under the brave semantics.

Notice that the possible answers, that obtained from some secrecy instance, give

us more information from the original database than the cautious answers. However,

they do not help to solve the privacy problem, because from the secret answers P (1,2)

and R(2,1), the user will immediately obtain the contents of the secrecy view.

Even under the skeptical semantics, the user may try to pose queries to obtain

sensitive information, as the following example shows.

Example 4.9. Consider the new database instance D = {P (1,2), P (3,4),R(2,1),

R(3,3)}, and the secrecy view Vs(x, z)← P (x, y),R(y, z). This database D has three

secrecy instances, indicated in the following table:

i Di

1 {P (null,2), P (3,4),R(2,null),R(3,3)}

2 {P (1,null), P (3,4),R(2,1),R(3,3)}

3 {P (1,2), P (3,4),R(null,1),R(3,3)}
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The user may pose the queries Q2(x, y) ∶ P (x, y) and Q3(x, y) ∶ R(x, y) to try

to reconstruct the original database D. For the query Q2(x, y), it holds Q2(D1) =

{(null,2), (3,4)}, Q2(D2) = {(1,null), (3,4)}, and Q2(D3) = {(1,2), (3,4)}. In con-

sequence, SA(Q2,D,{Vs}) = {(3,4)}.

For the queryQ3(x, y), it holdsQ3(D1) = {(2,null), (3,3)}, Q3(D2) = {(2,1), (3,3)},

and Q3(D3) = {(null,1), (3,3)}. In consequence, SA(Q3,D,{Vs}) = {(3,3)}.

By combining the secret answers to the subqueries Q2 and Q3 of QVs , where QVs

is the query that defines the secrecy view, it is not possible for the user to obtain the

extension {(1,1)} of Vs[D]. Actually, if the user poses the queries Q2 and Q3, for

him the relations would look like the following:

P X Y

3 4

R Y Z

3 3

In this case, any other conjunctive query posed to detect the presence of initial

nulls, like ∃y(P (x, y)∧x = null), will get an empty set of secret answers, and the user

will not know anything more about the contents of the original instance. ◻

Definition 33. Let Vs be a set of secrecy views Vs of the form (2.12). The se-

crecy answer instance for Vs from D is defined by DVs = {Ri(t̄) ∣ Ri ∈ R and

t̄ ∈ SA(Ri(x̄i),D,Vs)} ◻

In Definition 33 we are building a database instance by collecting the SAs to all

the atomic queries of the form R(x̄), with R ∈ R. This instance has the same schema

as the original instance D.

Example 4.10. (example 4.9 continued) Consider the secrecy view Vs(x, z) ←

P (x, y), R(y, z). It holds: DVs = {P (3,4)}∪ {R(3,3)} = {P (3,4),R(3,3)}. ◻
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Suppose there is a set of secrecy views defined on the database D that contains

sensitive information. We expect that it is not possible for the user to obtain the ex-

tensions of the specific secrecy views by combination of secret answers to conjunctive

queries. The user will try to reconstruct the original instance that builds from the

SAs to the queries the instance D and at the end checks if there are answers in the

secrecy view evaluated in the constructed instance.

The following proposition states that by combination of SAs to queries, there is

no way for the user to find out the extensions of the secrecy views evaluated in the

original instance D.

Proposition 2. For every Vs of the form (2.12) in Vs, SA(QVs ,D,Vs) = Vs[DVs]. ◻

Proof: We know that, SA(QVs ,D,Vs) is empty or in all its tuples only null appears.

1. First, we consider SA(QVs ,D,Vs) = ∅. This means that there exists at least

one secrecy instance Ds, such that Ds /⊧qN QVs[s̄[x̄∣ā]]2. By Definition 15, there

exists at least one restricted relevant variable vj ∈ VR(QVs), and s̄(vj) = null

in Ds. We can always find one subquery Ri(x̄i) of QVs , such that vj ∈ x̄i. Let

{t̄1, .., t̄m} = SA(Ri(x̄i),D,Vs). The values in ti violated Vs and associated with

vj are null. So, by Definition 15, we can conclude that, DVs /⊧qN QVs[s̄[x̄∣ā]].

Thus, Vs[DVs] is empty.

2. Second, we consider SA(QVs ,D,Vs) contain only null tuples. This means that

for each secrecy instance Dsi ∈ Sec(D,Vs), it holds Dsi ⊧
q
N [s̄[x̄∣null]]. For

each subqueries Ri(x̄i) of QVs , let {t̄1, .., t̄m} = SA(Ri(x̄i),D,Vs). Since Dsi ⊧
q
N

[s̄[x̄∣null]], the values in ti violated Vs and associated with free variables are

2s̄ is a function from the set of variables to the underlying database domain U , such that for the
free variables (x1, ..., xn) of Q it holds s̄(xi) = ai, with ai ∈ U (cf. Definition 13).
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null. Then, we can conclude that DVs ⊧qN QVs[s̄[x̄∣null]]. Thus, Vs[DVs] in all

its tuples only null appears. ◻

Notice that we assume that the original database may be incomplete, in the sense

that some information is represented using null values. A null is used to represent

unknown or inapplicable information. In consequence, a user who obtains nulls from a

query will not know if the nulls were already there or were (virtually) introduced for

privacy purposes. However, if the user knows the definition of the secrecy views, it is

possible for him to combine SAs with the definition of the secrecy view to determine

the original contents of the view, as shown in the following example.

Example 4.11. Consider the secrecy view Vs(x) ← P (x, y), x = 1, and the database

instance D = {P (1,1)}. The D has the following secrecy instance Ds ∶

P X Y

null 1

For the query Q(x) ∶ ∃y(P (x, y) ∧ x = 1), the secrecy answer to Q(x) on D is ∅.

If the user knows there exists one tuple in the original database, by combining the

secrecy view definition, he could imply that (1) ∈ Vs[D]. ◻

In summary, for our solution to work, we are relying on the following assumptions

about an external user:

(a) He interacts with a possibly incomplete database.

(b) The interaction is via query answering.

(c) The user does not know the secrecy view definitions.
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Based on these assumptions, by Proposition 2, the user can not obtain information

about the specific secrecy views, by combination of SAs to any conjunctive queries.

Therefore, there is not leakage of sensitive information to the user.

4.3 Summary

We have introduced a semantics of secrecy that considers the possible occurrence of

null values in databases. Under this semantics, we capture a class of secrecy instances

that makes the extensions of the secrecy views either become empty or contain tuples

showing only null values. Furthermore, the secrecy instances do not depart from the

original instance by more than what is needed to protect the secret data. So, they

minimally differ in a precise sense from the original instance.

The queries can be posed against all of secrecy instances simultaneously to obtain

secret answers. They do not reveal any secret data as defined by the secrecy views.

The semantics of secret answers (cf. Definition 32) is based on the notion of the null

query answering introduced in [11].



Chapter 5

Secrecy Logic Programs

As indicated in Chapter 1, we expect the updates leading to the secrecy instances

to be virtual. Actually, the secrecy instances are more of an auxiliary notion to

define the right secrecy semantics. In general, we expect not to have to compute all

the secrecy instances, materialize them, and then cautiously query them. We would

rather stick to the original instance, and use it as it is to obtain the secret answers.

One way to approach this problem is via query rewriting. Ideally, a query Q

posed to D and expecting secret answers should be rewritten into another query Q′.

The new query would be posed to D and the usual answers returned by D should

be the secret answers to Q. We would like Q′ to be still a simple query, that can be

easily evaluated. However, the possibility of being able to do this is restricted by the

intrinsic complexity of the problem of computing secret answers, which is likely to be

higher than polynomial time in data (cf. Section 7.1). In consequence, Q′ may not

be a conjunctive query, actually not even a FO query.

An alternative is to specify the secrecy instances in a compact manner, by means

of a logical theory, and do reasoning from that theory. This will not decrease a high

intrinsic complexity, but can be much more efficient than computing all the secrecy

instances and querying them in turns. Actually, the secrecy instances for a original

database can be specified as the stable models of a disjunctive logic program.

The idea is that, given a database instance D, and a set Vs of secrecy views of the

form (2.12), the secrecy program Π(D,Vs) is constructed in such a way that there is

a one-to-one correspondence between the stable models of Π(D,Vs) and the secrecy

53



54

instances of D.

The secrecy program uses annotation constants with the intended, informal se-

mantics shown in the table below. The annotations are used to keep track of virtual

updates, i.e. of old and new data:

Annotation Atom The tuple R(ā)
bu R (ā,bu) has already been updated (old data)
au R (ā,au) is updated tuple in database (new data)
t R (ā, t) is new or old tuple
s R (ā, s) stays in the final database

Table 5.1: Annotation Constants

In a program we will find each database predicate R ∈ R together with its new

version R of it, that contains an extra argument that is used to place an annotation

constant. The idea is to use logic rules to specify and capture how a database violates

secrecy, and how the database can become secret with respect to a set Vs of secrecy

views via null-based updates.

Actually, each atom of the form R(ā) will receive one of the constants in Table 5.1.

In R (ā,bu), annotation bu means that the atom has already been updated, and au

should appear in the new, updated atom. For example, consider a tuple R(a, b) ∈D.

A new tuple R(a,null) is obtained via the update of b to null. Therefore, R (a, b,bu)

denotes the old atom before updating, while R (a,null,au) denotes the new atom

after the update.

Annotations are performed according to the following sequential steps: First, each

ground atom R(ā) from the database becomes a fact in Π(D,Vs). Next, for each se-

crecy view definition, a disjunctive rule is constructed in such a way that the body of

the rule captures the violation condition for the secrecy; and the head describes how

to restore secrecy by updating the corresponding tuples. The update is achieved by

using annotation au.
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Example 5.1. As an illustration, consider a schema with relations P (X,Y ),R(Y,Z),

and the following secrecy view

Vs(x, z)← P (x, y),R(y, z), y < 3. (5.1)

The disjunctive program rule:

(P (null, y,au) ∧R (y,null,au)) ∨ P (x,null,au) ∨R (null, z,au)

← P (x, y),R(y, z), y < 3, y ≠ null, aux(x, z), (5.2)

states that if the given database is not already a secrecy instance, then secrecy is

restored by either updating values in the combination attribute Y with nulls, or

values in the secrecy attributes X and Z with nulls, simultaneously.

In general, disjunctive logic programs do not allow for conjunctions in the head.

Therefore, the intended head rule of (5.2) generates two rules:

P (null, y,au) ∨ P (x,null,au) ∨R (null, z,au)← Body .1 (5.3)

R (y,null,au) ∨ P (x,null,au) ∨R (null, z,au)← Body . (5.4)

Furthermore, we need to restore secrecy only if the given database is not already a

secrecy instance, which happens when all the combination attributes are not null, the

secrecy attributes are not simultaneously null, and formula φ is true. For the secrecy

view (5.1), the secrecy attributes are X and Z, and the combinability attribute is Y .

We use the following auxiliary rules to capture the idea of the secrecy attributes are

not simultaneously null.

aux(x, z)← P (x, y),R(y, z), y < 3, x ≠ null. (5.5)

aux(x, z)← P (x, y),R(y, z), y < 3, z ≠ null. (5.6)

1The body of rule, denoted by Body, remains the same as the one of (5.2).
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The annotation constant t is introduced in order to solve the interaction problem

among secrecy views. Thus, it becomes highly significant in cases when the up-

dated instance may still not be secrecy according another secrecy view. For example,

P (x,null,au) is generated by using Rule (5.3), which is not secrecy with respect to

the different secrecy view Vs(x)← P (x, y). So, we need to keep updating the instance

wrt Vs(x) ← P (x, y). The aftermath is that the bodies of rules (5.3) and (5.4) have

to be modified to:

P (x, y, t),R (y, z, t), y < 3, y ≠ null, aux(x, z), (5.7)

and the program rules (5.5) and (5.6) have to be changed to:

aux(x, z)← P (x, y, t),R (y, z, t), y < 3, x ≠ null, (5.8)

aux(x, z)← P (x, y, t),R (y, z, t), y < 3, z ≠ null, (5.9)

where the atom P (x, y, t) becomes true if either P (x, y) or P (x, y,au) are true.

Similarly for the atom R (y, z, t).

Moreover, we need to collect the tuples in the database that have already been

updated and (virtually) no longer exist in the database. This is achieved by using

the following rules:

P (x, y,bu)← P (x, y, t),R (y, z, t), y < 3, y ≠ null,aux(x, z), P (null, y,au), x ≠ null.

(5.10)

R (y, z,bu)← P (x, y, t),R (y, z, t), y < 3, y ≠ null,aux(x, z),R (y,null,au), z ≠ null.

(5.11)

P (x, y,bu)← P (x, y, t),R (y, z, t), y < 3, y ≠ null,aux(x, z), P (x,null,au). (5.12)

R (y, z,bu)← P (x, y, t),R (y, z, t), y < 3, y ≠ null,aux(x, z),R (null, z,au). (5.13)

Finally, atoms with annotation constant s are the ones that become true in the

secrecy instances. This constant is used to read off the database atoms in the secrecy
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instances. So, the secrecy instances are obtained by restrictions of the models of the

program to those atoms with the s annotation by using following rules:

P (x, y, s)← P (x, y, t), not P (x, y,bu). (5.14)

R (x, y, s)← R (x, y, t), not R (x, y,bu). (5.15)

◻

Before presenting the formal and general definition of logic program, we need some

concepts. For an atom of the form R(x̄), change(R(x̄), ȳ, t), with ȳ = {y1, ..., yn} and

ȳ ⊆ x̄, represents changing each variable yi ∈ x̄ to t, with t is a variable or domain

constant. Let us recall that a secrecy view Vs is of the form:

Vs(x̄)← R1(x̄1), . . . ,Rn(x̄n), φ, (5.16)

For each Ri(x̄i) in the body of the secrecy view, if (x̄i ∩ C(Vs)) ≠ ∅, let CP(Vs) =

{change(Ri(x̄i), y,null), for each y ∈ (x̄i ∩ C(Vs))}, and if (x̄i ∩ S(Vs)) ≠ ∅, let

SP(Vs) = {change(Ri(x̄i), ȳ,null), for ȳ = (x̄i ∩ C(Vs))}. The idea behind these two

notions is to characterize the LHS of the disjunctive program rule, which is used to

restore secrecy.

Example 5.2. Consider the following secrecy view: Vs(x, z,w)← P (x, y),Q(y, z,w).

By Definition 24, C(Vs) = {P [2],Q[1]}, and S(Vs) = {P [1],Q[2],Q[3]} according

to Definition 25. CP(Vs) = {P (x,null),Q(null, z,w)}, and SP(Vs) = {P (null, y),

Q(y,null,null)}. ◻

Definition 34. Given a database instance D, a set Vs of secrecy views Vss of the

form (2.12), the secrecy program Π(D,Vs) contains the following rules:
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1. Facts: R(ā) for each atom R(ā) ∈D.

2. For every Vs of the form (2.12), let SP(Vs) = {R1(x̄1), . . . ,Ra(x̄a)}, and CP (Vs) =

{R1(x̄1), ...,Rb(x̄b)}. The rules:

(a) If S(Vs) ∩ C(Vs) /= ∅, the rule:

⋁
Rc∈CP(Vs)

(Rc (x̄c,au)← ⋀ni=1Ri (x̄i, t) ∧ φ ∧ ⋀
cl∈C(Vs)

cl /= null.

(b) If S(Vs) ∩ C(Vs) = ∅, the rule:

Rsj (x̄sj,au) ∨ ⋁
Rc∈CP(Vs)

(Rc (x̄c,au)

← ⋀ni=1Ri (x̄i, t) ∧ φ ∧ ⋀
cl∈C(Vs)

cl /= null ∧ auxVs(s̄),

with Rsj ∈ SP(Vs), and 1 ≤ j ≤ a.

Plus the auxiliary rules:

If S(Vs) is s1, ..., sk, then for 1 ⩽ i ⩽ k,

auxVs(s̄)← ⋀ni=1Ri (x̄i, t) ∧ φ ∧ si /= null, where s̄ = ⋃ si.

3. The collection rules:

Rsj (x̄sj,bu)← ⋀ni=1Ri (x̄i, t) ∧ φ ∧ auxVs(s̄) ∧ ⋀
cl∈C(Vs)

cl ≠ null ∧Rsj (x̄sj,au) ∧

⋀
sl∈(S(Vs)∩x̄sj)

sl /= null, for Rsj ∈ SP(Vs), and 1 ≤ j ≤ a.

Rck (x̄ck,bu)← ⋀ni=1Ri (x̄i, t) ∧ φ ∧ auxVs(s̄) ∧ ⋀
cl∈C(Vs)

cl /= null ∧

Rck (x̄ck,au), for Rck ∈ CP(Vs), and 1 ≤ k ≤ b.

4. For each predicate R ∈R, the annotation rules:

R (x̄, t)← R(x̄). R (x̄, t)← R (x̄,au).

5. For each predicate R ∈R, the interpretation rule:

R (x̄, s)← R (x̄, t), not R (x̄,bu). ◻

The rules in 1. establish the program facts which are the elements of the database.

The rules in 2. are the most important and express how to restore secrecy. The body
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of the rule (right-hand side) will be true if the database instance is not a secrecy

instance, and with the left-hand side captures the intended way of restoring secrecy.

The rules in 3. collect the tuples in the database that have already been updated

and (virtually) no longer exist in the database. Rules 4. capture the atoms that are

part of the database or updated atoms in the process of restoring secrecy. Rules in

5. collect the tuples that stay in the final state of the updated database.

Example 5.3. (example 4.7 continued) Consider D = {P (1,2), R(2,1)} and the se-

crecy view Vs(x, z)← P (x, y),R(y, z), y < 3. The secrecy instance program Π(D,{Vs})

is as follows:

1. P (1,2), R(2,1). (the initial database contents)

2. P (null, y,au) ∨ P (x,null,au) ∨R (null, z,au)

← P (x, y, t), R (y, z, t), y < 3, y ≠ null,aux(x, z).

R (y,null,au) ∨ P (x,null,au) ∨R (null, z,au)

← P (x, y, t), R (y, z, t), y < 3, y ≠ null,aux(x, z).

aux(x, z)← P (x, y, t), R (y, z, t), y < 3, x ≠ null.

aux(x, z)← P (x, y, t), R (y, z, t), y < 3, z ≠ null.

3. P (x, y,bu)← P (x, y, t),R (y, z, t),

y < 3, y ≠ null,aux(x, z), P (null, y,au), x ≠ null.

R (y, z,bu)← P (x, y, t),R (y, z, t),

y < 3, y ≠ null,aux(x, z),R (y,null,au), z ≠ null.

P (x, y,bu)← P (x, y, t),R (y, z, t), y < 3, y ≠ null,aux(x, z), P (x,null,au).

R (y, z,bu)← P (x, y, t),R (y, z, t), y < 3, y ≠ null,aux(x, z),R (null, z,au).

4. P (x, y, t)← P (x, y). P (x, y, t)← P (x, y,au).

R (x, y, t)← R(x, y). R (x, y, t)← R (x, y,au).

5. P (x, y, s)← P (x, y, t), not P (x, y,bu).

R (x, y, s)← R (x, y, t), not R (x, y,bu). ◻
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The secrecy instances are in one-to-one correspondence with the stable models of

program Π(D,Vs). Given a model, the associated secrecy instance is obtained by

collecting the atoms that are annotated with s.

The program can be evaluated, for example, using the DLV system that computes

the disjunctive stable models semantics. It offers a nice and effective interface to

commercial DBMSs [30].

Example 5.4. (example 5.3 continued) The program has three stable models (the

facts of the program are omitted for simplicity):

M1 = {P (1,2, t), R(2,1, t), aux(1,1), P (1,2, s), R(2,1,bu), R(null,1,au),

R(null,1, t), R(null,1, s)}.

M2 = {P (1,2, t), R(2,1, t), aux(1,1), P (1,2,bu), R(2,1, s), P (1,null,au),

P (1,null, t), P (1,null, s)}.

M3 = {P (1,2, t), R(2,1, t), aux(1,1), P (1,2,bu), R(2,1,bu), P (null,2,au),

R(2,null,au), P (null,2, t), R(2,null, t), aux(1, null), aux(null,1),

P (null,2, s), R(2,null, s)}.

The secrecy instances select the underlined atoms: D1 = {P (1,2), R(null,1)}, D2 =

{P (1,null),R(2,1)}, and D3 = {P (null,2),R(2,null)}. As expected, these are the

secrecy instances obtained in Example 4.7. ◻

If we want to obtain the secret answers to a FO conjunctive query Q written in

the language of L(Σ), it is not necessary to explicitly compute all the stable models.

Instead, the query can be posed directly to the models of the repair program, i.e. to

the secrecy instances, and answered according to the skeptical semantics. This will

return the secret answers to the query. Of course, the query has to be transformed

as a top-layer program. This transformation is done in the following way:
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1. Conjunctive query Q of the form (2.1) first has to be rewritten as the query QN

using the methodology introduced in Definition 17.

2. The new query QN is transformed into a query written as a logic program Π(Q),

which is a stratified Datalog program [33, 4]. Π(Q) contains a predicate Ans,

to collect the final query answers.

3. Each database predicate R(x̄) in Π(Q) is replaced by R(x̄, s).

4. The query program Π(Q) is combined with the secrecy program Π(D,Vs) into

a new program Π.

5. The extension of the answer predicate Ans in the intersection of all stable models

of Π contains exactly the secret answers. If Q is a boolean query, yes is a secret

answer if Ans is in the intersection of all the models. Otherwise, the secret

answer is no.

Example 5.5. (example 5.4 continued) We want the secret answers to the conjunc-

tive query Q(x, z) ∶ ∃y(P (x, y) ∧ R(y, z) ∧ y < 3). This requires first rewriting it as

the query QN obtained in Example 4.7. This new query can be evaluated against

instances with null treated as any other constant. Now, query QN can be transformed

into a query program Π(Q): Ans(x, z) ← P (x, y, s),R(y, z, s), y < 3, y ≠ null, which

has to be evaluated in combination with the program in Example 5.3, under the skep-

tical semantics. In this evaluation, null is treated as an ordinary constant. The stable

models of program Π are the stable models of Π(D,Vs) expanded by the answers to

the query:

M1 =M1 ∪ ∅,

M2 =M2 ∪ ∅,

M3 =M3 ∪ {Ans(null,null)}.
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Since secret answers are those we get from all the possible secrecy instances, the

answer to this query Q is ∅.

On the other hand, for the boolean query Q2: ∃xyz(P (x, y)∧R(y, z)), the query

program Π(Q2) is: Ans ← P (x, y, s),R(y, z, s), y ≠ null. The stable models of pro-

gram Π are the stable models of Π(D,Vs) expanded by the answers to the query:

M1 =M1 ∪ {},

M2 =M2 ∪ {},

M3 =M3 ∪ {Ans}.

The secret answer to this boolean query Q2 is no. ◻

We have successfully experimented with the DLV system for computing secret

answers with respect to above examples.

5.1 Optimizing Query Evaluation from Secrecy Programs

As indicated above, we compute secret answers by evaluating the combination

of the secrecy and query programs. These programs are constructed considering all

the database predicates and facts, which contain more information than necessary

to obtain secret answers. In fact, in most of cases, only a subset of database predi-

cates and facts are needed to compute answers to a specific query. So bringing the

whole database into DLV is inefficient. Therefore, we need to optimize the secrecy

programs by generating only those parts that are relevant for answering the query,

and importing only the relevant data facts for computing answers.

Our optimization approach starts by capturing the relevant database predicates

for a specific query. This is done by analyzing the relationship between predicates

in the secrecy view definitions and queries. Intuitively, rules in the secrecy programs

that do not involve any relevant predicate are eliminated. So the relevant predicates

are used for pruning secrecy programs. As a result, programs are smaller than the
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original ones. Next, our optimization is to apply the built-ins in the query to the

relevant database predicates to retrieve the appropriate data. In this manner, we

import only a subset of data rather than retrieving all the data. Our optimization

to the evaluation of programs make query processing more efficient. In Chapter 6 we

perform experiments to show the effectiveness.

5.1.1 Relevant Predicates

In the area of consistent query answering (CQA), an optimization technique is

presented that captures the relevant predicates [13] to compute consistent answers

from the repair programs.

Given a query, there might be a set of integrity constraints that are not relevant

to the query, i.e. their satisfaction or not does not affect the answers to the query.

In order to capture the relevant ICs, the relevant predicates are defined and detected

by analyzing the relationship between predicates in queries and ICs. This is done

by means of a dependency graph. Basically, a dependency graph for ICs represents

the dependency relationship among predicates in ICs, i.e. transitive dependencies

between predicates. From the graph, it can easily find the relevant predicates that

are needed to answer a query.

In this research we adopted the idea of the dependency graph approach introduced

in [13, 14, 15] to capture the relevant predicates for our secrecy programs. The

following is definition of the dependency graph for a set of secrecy views.

Definition 35. The dependency graph, denoted by G(Vs) for a set Vs of secrecy

views Vss of the form (2.12) is defined as follows: for each database predicate R ∈ R

appearing in Vs is a vertex, and there is an edge (Ri,Rj) between Ri and Rj iff there

exists a secrecy view Vs ∈ Vs such that both Ri and Rj appeals in the body of Vs. ◻

Example 5.6. Figure 5.1 illustrates the dependency graph G(Vs) for the set Vs of
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secrecy views: {Vs(x)← P (x, y),Q(x, y), Vs(x)← S(x, y), Vs(y)← S(x, y),R(y)}. ◻

Figure 5.1: Dependency Graph

Definition 36. The set of relevant predicates for secret answers to a query Q with

respect to a set Vs of secrecy views Vss of the form (2.12), denoted by Rel(Q,Vs),

contains the following:

(a) For each predicate R ∈ Q, R is in Rel(Q,Vs),

(b) For a predicate R′ such that there is a path between (R,R′) in the dependency

graph G(Vs), R′ ∈ Rel(Q,Vs). ◻

Proposition 3. Let Π(D,Vs,Q) be the combination of the secrecy and query pro-

grams, and Π(D,Vs,Q) ↓ Q denotes the same as program Π(D,Vs,Q) except that

the former contains only rules for each predicate R ∈ Rel(Q,Vs). It holds that

Π(D,Vs,Q) ↓ Q and Π(D,Vs,Q) retrieve the same secret answers to query Q. ◻

We now sketch the proof, which is based on the same basic idea as the proof in

[13, Proposition 5.6].

Proof of Proposition 3: Obviously, the program Π(D,Vs,Q) can be split into two

logic programs ΠR(D,Vs,Q), and ΠNR(D,Vs,Q), respectively. Let ΠR(D,Vs,Q) =

Π(D,Vs,Q) ↓ Q. The models of program Π(D,Vs,Q), denoted by SM(Π(D,Vs,Q)),
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can be obtained by ⋃M(M ∪SM(ΠNR(D,Vs,Q)), for each stable modelM of ΠR(D,

Vs,Q). Since the program ΠNR(D,Vs,Q) does not have rules whose predicates are

related with the query predicates, we can not find Ans predicate in any of stable

models of ΠNR(D,Vs,Q). The Ans predicate can be obtained only by the program

ΠR(D,Vs,Q). Therefore, all the stable models of Π(D,Vs,Q) contain the same Ans

predicate as ΠR(D,Vs,Q). Thus, Π(D,Vs,Q) ↓ Q and Π(D,Vs,Q) retrieve the same

secret answers to query Q. ◻

Example 5.7. (example 5.6 continued) Consider the query Q ∶ Ans(x) ← S(x, y, s),

and the database D = {S(1,2), R(2), P (1,1),Q(1,1)}. The set of relevant predicates

for the query Q is Rel(Q,Vs) = {S,R}. Therefore, program Π(D,Vs,Q) ↓ Q contains

the following rules:

S(1,2). R(2).

S (x, y, t)← S (x, y,au). S (x, y, t)← S(x, y).

R (x, t)← R (x,au). R (x, t)← R(x).

S (x,null,au) ∨R (null,au)← S (x, y, t),R (y, t), y ≠ null.

S (x, y,bu)← S (x, y, t),R (y, t), S (x,null,au), y ≠ null.

R (y,bu)← S (x, y, t),R (y, t),R (null,au), y ≠ null.

S (null, y,au)← S (x, y, t),auxS(x).

auxS(x)← S (x, y, t), x ≠ null.

S (x, y,bu)← S (x, y, t), S (null, y,au),auxS(x).

S (x, y, s)← S (x, y, t),not S (x, y,bu).

R (x, s)← R (x, t),not R (x,bu).

Ans(x)← S(x, y, s).

The program Π(D,Vs,Q) ↓ Q has two stable models:

M1 = {S(null,null, s),R(2, s),Ans(null)}.

M2 = {S(null,2, s),R(1, s),Ans(null)}
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Since there is Ans-atoms in common, the secret answer to this query Q is (null), as

expected. Notice that, rules and database facts that do not involve relevant predi-

cates are not generated. Thus, secret answers are obtained by running the smaller

secrecy program together with the query program in DLV system. ◻

5.1.2 Relevant Facts

In the former approach, all the database elements are imported into the logic

program as facts for computing secret answers (cf. Rule 1 in Definition 34). This is

inefficient, since we only require a subset of database facts. In this section, we show

how to obtain the appropriate data, by taking advantage of all the built-in predicates

such as =,>,< in the query. The following example will illustrate the idea.

Example 5.8. Consider the database instance D = {P (1,5), P (1,3), S(1,2)}, a set

Vs of secrecy views: {Vs(x) ← P (x, y), y < 6, Vs(x) ← S(x, y)}, and the conjunctive

query Q: Ans(x) ← P (x, y), y = 3 with a built-in predicate y = 3. According to Def-

inition 36, the revelent predicate for this query Q is P . Therefore, we do not need

to import any data for the database predicate (or relation) S. Furthermore, only

data need to be imported into the secrecy program is P (1,3) instead of P (1,5) and

P (1,3). This makes sense, since P (1,5) can never be an answer to the query Q, no

matter whether it is defined in secrecy views or not. ◻

Algorithm 1 brings built-in conditions in the query to the relevant database pred-

icates to retrieve appropriate data facts. This makes sense, since the built-ins in the

query would be used to restrict the tuples involved in the computation of the query.

Example 5.9. (example 5.8 continued) The query Q contains a built-ins y = 3. The
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Algorithm 1 Relevant Facts Algorithm

Require: Q, Rel(Q,Vs)

1: procedure RelFact(Q,Rel(Q,Vs))

2: Let BV(Q) be a set of built-in variables in the body of query Q

3: for each predicate Pi in Rel(Q,Vs) do

4: for each variable vi in Pi do

5: if vi ∈ BV(Q) then

6: Retrieve data for predicate Pi with built-ins

7: end if

8: end for

9: end for

10: end procedure

relevant predicate P contains the variable y. We get the following query statement

for the relevant predicate P to retrieve relevant data facts:

SELECT * DISTINCT

FROM P

WHERE Y=3

When evaluating secrecy and query programs in DLV, this query statement can be

used to import data facts, residing in database systems into DLV (cf. Section 6.1 for

details). ◻

5.2 Summary

In this chapter we have introduced disjunctive logic programs with stable model

semantics to specify the secrecy instances. These programs can be used to compute

secret answers.
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We also presented a methodology to secrecy programs to optimize the evaluation

of programs. Optimization is achieved in two steps. In the first step, the relevant

database predicates are captured to remove the rules (and database facts) from the

secrecy programs, as shown by Example 5.7. This is done by analyzing the relation-

ship between the database predicates in queries and secrecy views, by meanings of

dependency graph in Definition 35. As a result, we obtain reduced secrecy programs,

i.e. programs that consider the relevant predicates to compute a query. The second

step in our optimization is to apply the built-in conditions from the query to the

relevant database predicates to retrieve the appropriate data. In this manner, only

the set of data facts for the query is imported into the reasoning system.

The optimization reduces the amount of data involved in the computation of

queries. In Chapter 6, we report experimental results that show that optimized

programs are more efficient to compute secret answers for queries than the straight-

forward evaluation of programs.



Chapter 6

Experiments

In this chapter, we present experimental results about the computation of secret

answers to queries. These queries are representative of the type of queries in our

research. The experiments also show query answering with and without the opti-

mizations steps introduced in Section 5.1.

6.1 Preliminaries

Secret answers to queries can be computed by evaluating queries against the se-

crecy programs. For this purpose we use the DLV system, that implements the stable

model semantics of disjunctive logic programs [20, 30]. In this section, we will briefly

the use of the DLVDB system to compute secret answers. DLVDB [39, 31], an ex-

tension of the DLV system, that provides flexible and easy interfaces with external

commercial database management systems via ODBC (Open Database Connectivity).

Figure 6.1 illustrates the general architecture used in query evaluation. The data

is stored in a relational DBMS, in our case, IBM DB2. The input for query evaluation

includes the following: a first-order conjunctive query Q, a database instance D, and

a set Vs of secrecy views. The only output of this architecture is the set of secret

answers to the input query Q with respect to Vs. We will use the example below

to illustrate the application of the DLV system to the computation of secret query

answers.

69
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Figure 6.1: Architecture of Query Evaluation

Example 6.1. Consider the database instance D = {R(a, b), S(b),R(b, c)}, and a

secrecy view Vs: Vs(x) ← R(x, y), S(y). D contains secret information Vs(a) wrt Vs.

There are three secrecy instances:

D1 = {R(a,null),R(b, c), S(b)}.

D2 = {R(a, b),R(b, c), S(null)}.

D3 = {R(null, b),R(b, c), S(b)}.

For query Q ∶ Ans(x)← R(x, y), the secret answer is (b). ◻

First, the secrecy program Π(D,Vs) needs to be constructed wrt the given database

instance D and the set Vs of secrecy views Vs. Here, the facts of the program are not

imported from the database directly. Instead, some suitable sentences are included

into the secrecy program which can be interpreted by DLVDB.

The secrecy program contains, for each extensional predicate P , the following

import sentence:

#import(dbName,dbUser ,dbPassword ,“SELECT ∗ FROM P”,P, typeConv),

where dbName is the database name, dbPasswrod is the user password, and dbUser
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is the user of the database. P defines the name of the predicate that will be used in

the program.

Since DLVDB supports only unsigned integer and constant data types, typeConv

specifies the conversion for mapping DBMS data types to DLVDB data types for

each column. The typeConv parameter is a string with the following syntax: type:

Conv [, Conv], where type: is a string constant and Conv is one of several conversion

types:

� U Int : the column is converted to an unsigned integer;

� Const : the column is converted to a string without quotes;

� Q Const : the column is converted to a string with quotes.

The number of the entries in the conversion list has to match the number of columns

in the selected table.

Example 6.2. Assume the following table definition:

CREATE TABLE p ( X varchar(10))

We insert two tuples in the table p using the following SQL statement:

INSERT INTO p

VALUES (’a’), (’b’)

Let us now use import the table p into the DLVDB syetem. Let the file importonly.dlv

contains just a single #import statement:

#import(test,“ab2admin”,“test”,“SELECT ∗ FROM p”,P, type ∶ Q Const).

Invoking DLVDB with this file yields:

dl − silent importonly.dlv

{P (“a”), P (“b”)}
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The varchar values converted as strings with quotes, which are constants in the

DLVDB system. ◻

As a result, the database facts stored in the database dbName will be imported

into the reasoning system DLVDB, where the secrecy program is run. Now we describe

how DLVDB interacts with DBMS.

Program 1 is the secrecy program for the database instance D and the secrecy

view in Example 6.1. We assume the following database parameters:

� Database name: test

� Database user: db2admin

� Database password: test

Program 1.

#import(test ,“db2admin”,“test”, “SELECT ∗ FROM R”,

R1, type ∶ Q Const ,Q Const).

#import(test ,“db2admin”,“test”, “SELECT ∗ FROM S”,S1, type ∶ Q Const).

R (x, y, td) ∶ −R1(x, y). S (y, td) ∶ −S1(y).

R (“null”, y,au) ∨R (x,“null”,au) ∨ S (“null”,au)

∶ −R (x, y, t), S (y, t), y ≠ “null”,aux(x).

aux(x) ∶ −R (x, y, t), S (y, t), y ≠ “null”, x ≠ “null”.

R (x, y,bu) ∶ −R (x, y, t), S (y, t),R (“null”, y,au), y ≠ “null”,aux(x), x ≠ “null”.

R (x, y,bu) ∶ −R (x, y, t), S (y, t),R (x,“null”,au), y ≠ “null”,aux(x).

S (y,bu) ∶ −R (x, y, t), S (y, t), S (“null”,au), y ≠ “null”,aux(x).

R (x, y, t) ∶ −R (x, y, td). R (x, y, t) ∶ −R (x, y,au).

S (x, t) ∶ −S (y, td). S (y, t) ∶ −S (y,au).

R (x, y, s) ∶ −R (x, y, t), not R (x, y,bu).
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S (y, s) ∶ −S (y, t), not S (y,bu). ◻

Secrecy programs should be stored for other queries. This is because the secrecy

programs just depend on the given set of secrecy views and database relations, which

are independent from the particular query. Therefore, they can be used for any other

conjunctive query to compute secret answers. In fact, secrecy programs need to be

rewritten only when the database schema or secrecy views are changed.

After having the secrecy program for the given database D, the secret answers to

the query Q posed to D can be computed by running the query program in combina-

tion with the secrecy program. The query program for the query Q in Example 6.1

is the following:

Program 2. The query program for the query Q.

Ans(X) ∶ −R (X,Y, s).
Ans(X)? ◻

As a reminder, we need to emphasize here that the query to be run has to be trans-

formed into one that treats the nulls as any other constant.

Finally, the combined program, stored in a text file named ex.dlv, is run in DLVDB

under skeptical (cautious) reasoning to compute secret answers as follows:

dl.exe − silent − cautious ex.dlv

“b”

For Program 1, DLVDB returns (b) as the secret answer to user, as we expected.

Of course, we could use the optimization steps presented in this research to improve

efficiency. The next section, we will look at the execution time on computation of

secret answers to queries with and without optimization.
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6.2 Experimental Setup

Serval experiments on computation of secret answers to queries were run on DLV

system, performed by a HP PC with Inter(R) Core(TM)2 CPU and 2GB RAM using

Windows 7 operating system. The database instance was stored on the IBM DB2

Professional Database Server Edition V9.7. All the programs were run in the version

of DLVDB for Windows released on September 20th, 2007.

For the experiments we consider the database instance D, with 300 tuples for an

company database with following relations and the set of secrecy views:

� Employee(ENO ,ENAME ,SALARY ,DNO). It stores the employee number,

name, salary, and department number of employees.

� Department(DNO ,DNAME). It stores the department number, and name of

departments.

� Project(PNO ,PNAME ,AID). It stores the project’s numbers, names, and ad-

dresses.

� Address(AID ,CITY ,STATE ,COUNTRY ). It stores address information wrt

city, state and country.

The set Vs of secrecy views is given by:

Vs(dno,dname)←Department(dno,dname), dname = “operations”. (6.1)

Vs(eno, ename)←Employee(eno, ename, salary ,dno), salary < 30,000. (6.2)

Vs(pno,pname)←Project(pno,pname,aid),

Address(aid , city , state, country), city = “ott”. (6.3)

Assuming the database name company, the database user ad2admin, and the

password test, the secrecy program for the database instance D contains the rules in

Program 3.
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Program 3.

#import(company ,“db2admin”,“test”,“SELECT ∗ FROM Employee”,Emp,

type ∶ Q Const,Q Const,

Q Const,Q Const).

#import(company ,“db2admin”,“test”,“SELECT ∗ FROM Department”,Dept ,

type ∶ Q Const,Q Const).

#import(company ,“db2admin”,“test”,“SELECT ∗ FROM Project”,Proj ,

type ∶ Q Const,Q Const,Q Const).

#import(company ,“db2admin”,“test”,“SELECT ∗ FROM Address”,Addr ,

type ∶ Q Const,Q Const,

Q Const,Q Const).

Department (dno,dame, td) ∶ −Dept(dno,dname).

Department (dno,“null”,au) ∶ −Department (dno,“Operations”, t).

Department (dno,“Operations”,bu) ∶ −Department (dno,“Operations”, t),

Department (dno,“null”,au).

Department (dno,dname, t) ∶ −Department (dno,dname, td).

Department (dno,dname, t) ∶ −Department (dno,dname,au).

Department (dno,dname, s) ∶ −Department (dno,dname, t),

not Department (dno,dname,bu).

Employee (eno, ename, salary ,dno, td) ∶ −Emp(eno, ename, salary ,dno).

Employee (“null”,“null”, salary ,dno,au) ∨ Employee (eno, ename,“null”,dno,au)

∶ −Employee (eno, ename, salary ,dno, t),

salary < “30000”, salary ≠ “null”,

auxEmp(eno, ename).

auxEmp(eno, ename) ∶ −Employee (eno, ename, salary ,dno, t),

salary < “30000”, salary ≠ “null”,

eno ≠ “null”.
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auxEmp(eno, ename) ∶ −Employee (eno, ename, salary ,dno, t),

salary < “30000”, salary ≠ “null”,

ename ≠ “null”.

Employee (eno, ename, salary ,dno,bu) ∶ −Employee (eno, ename, salary ,dno, t),

salary < “30000”, salary ≠ “null”,

auxEmp(eno, ename),

Employee (eno, ename,“null”,dno,au).

Employee (eno, ename, salary ,dno,bu) ∶ −Employee (eno, ename, salary ,dno, t),

salary < “30000”, salary ≠ “null”,

auxEmp(eno, ename),

Employee (“null”,“null”, salary ,dno,au),

eno ≠ “null”, ename ≠ “null”.

Employee (eno, ename, salary ,dno, t) ∶ −Employee (eno, ename, salary ,dno, td).

Employee (eno, ename, salary ,dno, t) ∶ −Employee (eno, ename, salary ,dno,au).

Employee (eno, ename, salary ,dno, s) ∶ −Employee (eno, ename, salary ,dno, t),

not Employee (eno, ename, salary ,dno,bu).

Project (pno,pname,aid , td) ∶ −Proj (pno,pname,aid).

Address (aid , city , state, country , td) ∶ −Addr(aid , city , state, country).

Project (“null”,“null”,aid ,au) ∨ Project (pno,pname,“null”,au) ∨

Address (“null”,“ott”, state, country ,au) ∨ Address (aid ,“null”, state, country ,au)

∶ −Project (pno,pname,aid , t),

Address (aid ,“ott”, state, country , t),

aid ≠ “null”,auxProj (pno,pname).

auxProj (pno,pname) ∶ −Project (pno,pname,aid , t),

Address (aid ,“ott”, state, country , t),

aid ≠ “null”,pno ≠ “null”.

auxProj (pno,pname) ∶ −Project (pno,pname,aid , t),
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Address (aid ,“ott”, state, country , t),

aid ≠ “null”,pname ≠ “null”.

Project(pno,pname,aid ,bu) ∶ −Project (pno,pname,aid , t),

Address (aid ,“ott”, state, country , t),

aid ≠ “null”,auxProj (pno,pname).

Project (pno,pname,“null”,au)

Project (pno,pname,aid ,bu) ∶ −Project (pno,pname,aid , t),

Address (aid ,“ott”, state, country , t),

aid ≠ “null”,auxProj (pno,pname),

Project (“null”,“null”,aid ,au),

pno ≠ “null”,pname ≠ “null”.

Address (aid ,“ott”, state, country ,bu) ∶ −Project(pno,pname,aid , t),

Address(aid ,“ott”, state, country , t),

aid ≠ “null”,auxProj (pno,pname),

Address(“null”,“ott”, state, country ,au).

Address (aid ,“ott”, state, country ,bu) ∶ −Project (pno,pname,aid , t),

Address (aid ,“ott”, state, country , t)

aid ≠ “null”,auxProj (pno,pname),

Address (aid ,“null”, state, country ,au).

Project (pno,pname,aid , t) ∶ −Project (pno,pname,aid , td).

Project (pno,pname,aid , t) ∶ −Project (pno,pname,aid ,au).

Address (aid , city , state, country , t) ∶ −Addrress (aid , city , state, country , td).

Address (aid , city , state, country , t) ∶ −Addrress (aid , city , state, country ,au).

Project (pno,pname,aid , s) ∶ −Project (pno,pname,aid , t),

not Project (pno,pname,aid ,bu).

Address (aid , city , state, country , s) ∶ −Addrress (aid , city , state, country , t),

not Addrress (aid , city , state, country ,bu).
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Notice that when Program 3 is evaluated in DLV, the whole company database

stored in the DBMS will be imported into DLV, which is inefficient. Therefore, we

need to reduce as much as possible the interaction between the DBMS, where the data

resides, and the DLV system, where the secrecy program is evaluated. As indicated

above, our optimized methodology can generate programs for queries that will import

only a subset of the database. We illustrate effectiveness by running three conjunctive

queries that are representative of the type of queries in this research.

6.2.1 Test Case1

A conjunctive query Q1 that asks for employee’s number and name if his or her salary

is less than 40000:

Ans(eno,name)← Employee(eno,name, salary ,deptno), salay < 40000. (6.4)

This query is open, i.e. with free variables and built-ins.

Program 4 is the query program for query Q1. The secrecy program listed in

Program 3 together with this query program can be evaluated using the DLV system

to obtain secret answers. Of course, this is a naive method for computing answers,

which imports all the data from the database and using the rules for all secrecy view

definitions.

Program 4.

Ans(eno, ename) ∶ −Employee(eno, ename, salary ,dno, s),
salary ≠ “null”, salary < 40000. ◻

For the query Q1, the programs can be optimized by using the relevant predicates

and facts (cf. Section 5.1). Here, the relevant predicate for query Q1 wrt the set

Vs of secrecy views is Employee. According to Algorithm 1, the built-in predicate

salary < 40000 in query Q1 can be applied to the relevant predicate Employee. The
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following is the import sentence in the optimized program which brings only relevant

data facts and predicates into DLV.

#import(company ,“db2admin”,“test”,“SELECT ∗ FROM Employee

WHERE Salary < 40000”,Emp,

type ∶ Q Const ,Q Const,Q Const,Q Const). (6.5)

Program 7 in Appendix A lists all the rules of the optimized program for the query

Q1.

6.2.2 Test Case2

The second query Q2 asks for employee’s name, who works in “sales” department.

Ans(name)←Employee(eno,name, salary ,dno),

Department(dno,dname),dname = “sales”. (6.6)

This conjunctive query is open with joins and built-ins. This type of queries is widely

used in practice. The query program for Q2 shows as follows:

Program 5.

Ans(ename) ∶ −Employee(eno, ename, salary ,dno, s),
Department(dno,dname, s),dname = “sales”,
dname ≠ “null”,dno ≠ “null”.

◻

This query program plus Program 3 can compute secret answers for the conjunctive

queryQ2. Program 8 in Appendix A is the optimized program for the secrecy program

in 3, and the query program in 5. Notice that in Program 8 only the relevant portion

of the database is imported into DLV. This is, only tuples for relations Employee, and

Department are imported into DLV. The following are two import sentences will be
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used in the optimized program:

#import(company ,“db2admin”,“test”,“SELECT ∗ FROM Employee”,

type ∶ Q Const ,Q Const ,Q Const ,Q Const). (6.7)

#import(company ,“db2admin”,“test”,“SELECT ∗ FROM Department

WHERE dname = ‘sales′”,Emp, type ∶ Q Const ,Q Const). (6.8)

6.2.3 Test Case3

Consider the following boolean query Q3 ∶

Ans ← Department(dno,dname),dno = “101”,dname = “sales”. (6.9)

The query program to compute secret answers for Q3 shows as follows:

Program 6.

Ans ∶ −Department(dno, dname, s),dno = “101”,dname = “sales”,
dno ≠ “null”,dname ≠ “null”. ◻

The optimized program in 9 only imports one tuple Department(101, sales) into DLV

for this boolean query. The import sentences in the Program 9 is:

#import(company ,“db2admin”,“test”,”SELECT ∗ FROM Department

WHERE Name = ‘sales′ AND Depo = ‘101′”,

Dept , type ∶ Q Const,Q Const). (6.10)

6.3 Results

Figure 6.2, 6.3 and 6.4 illustrate the execution times of the three queries on the

database instance D.
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Figure 6.2: Execution Time for Q1 Figure 6.3: Execution Time for Q2

Figure 6.4: Execution Time for Q3

We can see that, the optimized programs are faster to compute secret answers to

queries than the straightforward evaluation of program. This is because they capture

the relevant predicates to compute query. As a result, only the rules, and database

facts, that are relevant to compute a query are kept in them. Therefore, the data

flow between the DLV system and the database is reduced.

Based on the experiments performed, we conclude that the computation of secret

answers based on logic programs is viable, especially for the a ground (or partially-

ground) query. This makes sense, built-ins in queries would be used to restrict the

tuples involved in the computation of the answers.

Optimizations on the process of retrieving answers have been widely studied in
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the literature. The magic sets (MS) method [21, 6, 34] is one of the best known

techniques for optimizing query answering over logic programs. The idea behind

magic sets is to determine sets of facts that are relevant to the query, and then use

these facts to reduce the amount of data used in query evaluation. In [13, 14], the

MS technique for repair programs for consistent query answering in DLV is applied.

In [13], experiments on the computation of consistent answers to queries using MS

technique are presented. From those experiments, it is possible to conclude that MS

technique has an excellent performance on query evaluation. It is a future work to

apply MS technique to our secrecy program to further improve efficiency.



Chapter 7

Discussion

7.1 Connection with CQA

Consider a database instance D that fails to satisfy a given set of integrity con-

straints IC . It still contains useful and correct information. The area of consistent

query answering (CQA) [8] has to do with: (a) Characterizing the information in D

that is still semantically correct wrt IC , and (b) Characterizing, and computing, in

particular, the semantically correct, i.e. consistent, answers to a query Q from D

wrt IC . The first goal is achieved by proposing a repair semantics, i.e. a class of

alternative instances to D that are consistent wrt IC and minimally depart from D.

The consistent information in D is the one that is invariant under all the repairs in

the class. This applies in particular to the consistent answers: They should hold in

every minimally repaired instance.

There are some connections between CQA and our treatment of privacy preserving

query answering. Notice that every view definition of the form (2.12) can be seen as

an integrity constraint expressed in the FO language L(Σ ∪ {Vs}):

∀x̄(Vs(x̄) ←→ ∃ȳ(R1(x̄1) ∧⋯ ∧Rn(x̄n) ∧ φ)), (7.1)

with ȳ = (∪x̄i) ∖ x̄. From this perspective, maintaining the view defined by (7.1) (i.e.

synchronized with the base relations) [23] becomes a problem of database mainte-

nance, i.e. maintenance of the consistency of the database wrt (7.1) seen as an IC.

This also works in the other direction since every IC can be associated to a violation

view, which has to stay empty for the IC to stay satisfied.

83
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Actually, we want more than to maintain the view defined in (7.1). We want it

to be empty or returning only tuples with null values. In consequence, we have to

impose the following ICs on D, which are obtained from the RHS of (7.1): If x̄ is

x1, . . . , xk, then for 1 ≤ i ≤ k,

∀x̄ȳ¬(R1(x̄1) ∧⋯ ∧Rn(x̄n) ∧ φ ∧ xi ≠ null). (7.2)

That is, from each view definition (7.1) we obtain k denial constraints, i.e. pro-

hibited conjunctions of (positive) database atoms and built-ins, which have been

investigated in CQA [16, 8]. In consequence, the secrecy instances correspond to the

repairs of D wrt the set IC of all the ICs of the form (7.2), obtained from each of

the secrecy view definitions. These repairs are defined according to the null-based

semantics introduced in Section 4.1, i.e. ≤D-minimality, which was investigated in

[12, 11]. This reduction allows us to profit from existing results for CQA.

Example 7.1. The secrecy view defined by Vs(x, z) ← P (x, y),R(y, z) gives rise to

the following denial constraints:

¬∃xyz(P (x, y) ∧R(y, z) ∧ x ≠ null),

¬∃xyz(P (x, y) ∧R(y, z) ∧ z ≠ null),

The initial instance D has to be minimally repaired in order to satisfy them. ◻

7.2 Connection with Data Cleaning

A database instance may contain several tuples in it that refer to the same exter-

nal entity that is being modeled by the database. This problem could be caused by

errors in data, by data coming from different sources that use different formats, etc.
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In this sense, the database is considered to contain duplicate data. These duplicates

could compromise secrecy, as illustrated in the following example.

Example 7.2. Consider a database D that includes the following relation Student,

with attributes Name, ID, DOB, Gender, and AvgMark (we use an extra column to

denote the tuple):

Table 7.1: Student Table

Name ID DOB Gender AvgMark
J . Smith 001 880801 M 60 t1

John Smith 001 880801 M 60 t2

Assume the following secrecy view defined on the relation Student to protect John

Smith’s average mark:

Vs(v)← Studnet(x, y, z, u, v), x = ‘John Smith ′. (7.3)

According to the secrecy semantics proposed in Chapter 4, we obtain the following

two secrecy instances:

Name ID DOB Gender AvgMark
J . Smith 001 880801 M 60

John Smith 001 880801 M null

Name ID DOB Gender AvgMark
J . Smith 001 880801 M 60

null 001 880801 M 60

Suppose the user issues the following query:

Ans(x, y, z, u, v)← Student(x, y, z, u, v). (7.4)

Query (7.4) is evaluated against the above set of secrecy instances, and it will get tu-

ples t1 = Student(J. Smith,001,880801,M,null), and t3 = Student(null, 001, 880801,
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M,null) as secret answers. Actually, two tuples t1, t3 refer to the same student. Even

though the name of t1 is not identical to the name of t3, the same student id in the

two tuples is sufficient to establish that the tuples refer to the same student. Thus,

t1 and t3 are considered as duplicates. The user can take advantage of duplicates to

infer sensitive information. In our case, he can obtain John Smith’s average mark 60

from t1, which is sensitive information. ◻

The above example shows that even if the data privacy implementation ensures that

the query result contains only authorized information, it is possible for users to gain

access to sensitive information based on duplicates, which brings the issue of duplicate

detection, and data cleaning [36].

The Suspect Duplicate Processing (SDP) feature in IBM InfoSphere Master Data

Management Server (MDM) provides a practical method of duplicate detection. We

could make use of this practical method to remove duplicates. Before presenting the

ideas, we give a brief introduction to MDM.

Master data [18] is the most valuable data that an organization owns, which

represents core information about the business, such as customers, products, and

accounts etc. Since it is highly valuable, all parts of an organization must agree on it.

In an ideal world, we expect a single place where all master data in an organization is

stored and managed. All updates should take place against this single copy of master

data, and all the users of master data should also interact with this single copy. In

this way, the organization can use the information in a consistent way.

In fact, the goal of MDM is to enable this ideal state. It provides a consistent way

of using master data entities. In particular, it has the SDP feature which provides

a mechanism to keep a single copy of customer data. SDP involves two steps to

examining data to find duplicates in the relation. The first step is to select the match

criteria and weights, and the second one is matching.
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In the rest of this section, we will illustrate how to SDP find duplicate tuples in

Student relation defined in Table 7.1. Although our illustration uses a relation about

students, in general this approach is applicable to any relational database.

Not every data element is important from the suspect duplicate processing point

of view. Therefore, data administrators of MDM need to identify the set of date ele-

ments that best help to uniquely identify the record in the relation according business

requirements. This set of data elements is known as critical data elements, which will

be used to determine a match.

Example 7.3. (example 7.2 continued) Consider the relation Student. The same

student id in the two tuples is sufficient to establish that the tuples refer to the same

student. In addition, if for two tuples the values of name, date of birth, and gender

are the same, then two tuples may be duplicates. So, a set of critical data elements

for the Student includes: ID, Name, DOB, and Gender.

After the critical data elements have been selected, weights need to be assigned

to each critical element. This makes sense, since ID should have a higher weight for

matching than DOB. Assignment of weights is based on expert domain knowledge of

the MDM data administrators. An example of a weight assignment for each critical

data element in the Student relation is shown in the following table:

Critical Data Element Weight
Gender 1

Data of Birth 2
Name 4
ID 8

Based on the weight assignment, MDM DBA needs to define the Match Relevancy

table shown in Table 7.2, in which defines a combination of critical data elements that

match, and shows what the score is for such a combination.

Basically, match relevancy describes the critical data elements between two tuples
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Table 7.2: Match Relevancy

Match Relev Name Score
1 All Elements Matched 15
2 ID,Name,DOB 14
3 ID,Name,Gender 13
4 ID,DOB,Gender 11
... ... ...

that match, and the corresponding score is used to measure the quality of the match.

The score is calculated by sum of weights of critical data elements that match. For

the two tuples in the Student table, values of ID, DOB, and Gender match. The

corresponding match relevancy score is 11 calculated by adding up the weights of ID,

DOB, and Gender, as indicated in the fourth row in Table 7.2.

Similarity, MDM DBA also needs to define the Non-Match Relevancy table shown

in Table 7.3, which follows the same pattern as the Match Relevancy table.

Table 7.3: Non-Match Relevancy

None Match Relev Name Score
1 All Elements Matched 0
2 ID,Name,DOB 1
3 ID,Name,Gender 2
4 ID,DOB,Gender 4
... ... ...

Non-Match relevancy describes the critical elements between two tuples that do

not match, and the corresponding score is calculated simply by adding up the weights

for the critical data elements that don’t match. For the tuples in the Student table,

since the values of Name do not match (values of ID, DOB and Gender match), the

non-match relevancy score is 4, as indicated in the fourth row of Table 7.3.

Finally, MDM DBA should define the Match Matrix table shown in Table 7.4,

which brings match/non-match relevancy scores for two tuples to determine duplicate.
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Table 7.4: Match Matrix
Match Relev None Match Relev Category
1 1 Duplicate
2 2 Duplicate
3 3 Duplicate
4 4 Duplicate
... ... ...

For example, the fourth row in Table 7.4 indicates that match relevancy 4 (ID,

DOB, and Gender match), and non-match relevancy 4 (Name dose not match) lead to

duplicate. Our tuples in relation Student satisfy the fourth row of the Match Matrix

table. Therefore, we can conclude that those two tuples are duplicates, and we need

to delete one tuple to eliminate duplicate. ◻

7.3 Related Work

Several models for data privacy and access control have been proposed in the

recent past [3, 29, 37, 44, 9, 10], which aims to grant a particular user or group access

to individual data items in a relation. In contrast, although the current SQL supports

access control at the level of tables or columns, it does not provide any way to specify

authorization to control which tuples can be accessed by which users.

Virtual Private Database (VPD) feature of Oracle’s 9i [3] supports fine-grained

access control by transparent query modification. The authorization policy is encoded

into PL/SQL functions defined for each relation, which are used to return where clause

predicates to be appended to the user query before it is executed. The added pred-

icates ensure that the user gets to see only those tuples in each table that he or she

is authorized to see. As noted in [19, 35], because of the lack of a formal mathe-

matical basis for VPD, it is very difficult to define policy functions corresponding to

business requirements, especially authorization policies involving joins of tables. Our
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framework provides a simple language that enables us to specify authorization policy.

Cell-level access control is described by LeFevre et al. [29]. Their work focuses

on ensuring limited data disclosure, based on the premise that data owners have

control over who is allowed to see their personal data and for what purpose. In

their work, they introduce two models of cell-level limited disclosure enforcement:

table semantics and query semantics. The implementation of such models is based on

query modification technique.

Rizvi et al. [37] present two basic approaches to enforce fine-grained access control.

The first approach is the Truman model and the second one is the Non-Truman model.

In the Truman model, the access control is defined by a collection of authorization

views for each relation in the database. Each user has associated a set of authorization

views. When a user issues a query, the query is modified transparently by replacing

each relation in the query by the corresponding authorization view associated with

the user. As Rizvi et al. [37] point out, using a Truman model, the answers to queries

may be misleading, or worse, incorrect.

Non-Truman models, by contrast, prevent misleading answers. Under the Non-

Truman model, a query that violates access control polices is simply rejected, rather

than modified. Only valid queries, i.e., queries could be rewritten using only the

authorization views, are answered.

Both approaches in [37] specify access control by means of positive authorizations,

i.e., they represent privileges granted to a user. However, the lack of a positive autho-

rization for a given user does not prevent this user from receiving this authorization

[7]. For example, the user can derive such authorization from its ancestor users. In

contrast, our work makes sure that certain users are never allowed access to sensitive

data.

In [9, 10, 42], they take a different approach to address privacy issues in incomplete
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propositional databases. The approach, Control Query Evaluation (CQE), is policy-

driven, and aims to ensure confidentiality on the basis of a logical framework. A

security policy specifies the facts that a certain user is not allowed to access. For

each query posed to the database by that user, it is checked whether the answer to

that query would allow the user to infer any sensitive information. If this is the case,

the answer is distorted by either lying or refusal or combined lying and refusal. In

[25], they extend CQE to restricted incomplete first-order logic databases. In that

case, CQE is used through a transformations from the specification language to the

corresponding propositional language.

This approach does not seem to be comparable to ours. This approach has a

very high complexity even with propositional logic. In addition, their work does not

consider the possible presence of null in the database. In contrast, we assume that

the database may contains null and null is treated as NULL in the SQL standard.

Furthermore, it is very natural to expect to obtain as many “useful” answers as

possible while still protecting sensitive information. However, there is no formal

definition for “maximum” useful answers in their work. Hence, it is impossible to

prove the approach provide the best answers. In our work, the idea of “maximum”

useful answers was captured by secrecy instances which minimizes the difference to

the original database.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work, we have developed a logical framework and a methodology to an-

swer conjunctive queries that do not reveal secret information as specified by secrecy

views. We have concentrated on the case of conjunctive secrecy views and conjunc-

tive queries, but it is possible to relax these restrictions. We have assumed that the

databases may contain nulls, and also nulls are used to protect secret information, by

virtually updating with nulls some of the attribute values. In each of the resulting

alternative virtual instances, the secrecy views either become empty or contain tu-

ples showing only null values. The queries can be posed against any of these virtual

instances or cautiously against all of them, simultaneously.

The update semantics enforces (or captures) two natural requirements. That

the updates are based on null values, and that the updated instances stay close to

the given instance. In this way, the query answers become implicitly maximally

informative, while not revealing the original contents of the secrecy views.

The null values are treated as in the SQL standard, which in our case is recon-

structed in classical logic. This logical reconstruction captures well the SQL “se-

mantics” (which in not clear or complete in the standard), at least for the case of

conjunctive queries (and some extensions thereof). This is the main reason for con-

centrating on this kind of queries and views. In this case, queries, views and ICs

can be syntactically transformed into new FO formulas for which the evaluation or

verification can be done by treating nulls as any other constant.

92
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We introduced disjunctive logic programs with stable model semantics to specify

the secrecy instances. These programs can be used to compute secret answers. We

also presented a optimization methodology, which captures the relevant database

predicates and facts to compute a specific query.

8.2 Future Work

Our work leaves several open problems that are matter of ongoing and future

research:

� Complexity issues have to be explored. For example, of deciding whether or

not a particular instance is a secrecy instance of an original instance. Also of

deciding if a tuple is a secret answer. The connection with CQA, where similar

problems have been investigated, looks very promising in this regard.

� Another problem is about query rewriting, i.e. about the possibility of rewriting

the original query into a new FO query, in such a way that the new query, when

answered by the given instance, returns the secret answers. From the connection

with CQA we can predict that this approach has limited applicability, but

whenever possible, it should be used, for its simplicity and lower complexity.

� Another dimension of the problem consists in adding ICs to the schema. If

they are known to the user and also that they are satisfied by the database,

then privacy could be compromised. Also the updates leading to the virtual

updates should take these ICs into account. In this case, the definition of

secrecy instance should have the extra condition of satisfying the ICs, because

ICs could be violated through the process of updating databases.
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Appendix A

Optimized Secrecy Programs

Program 7. Optimized Logic Program for Query Q1.

#import(company ,“db2admin”,“test”, “ SELECT ∗ FROM Employee

WHERE Salary < 40000”,Emp,
type ∶ Q Const ,Q Const,
Q Const,Q Const).

Employee (eno, ename, salary ,dno, td) ∶ − Emp(eno, ename, salary ,dno).
Employee (“null”,“null”, salary ,dno,au) ∨ Employee (eno, ename,“null”,dno,au)

∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
auxEmp(eno, ename).

auxEmp(eno, ename) ∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
eno ≠ “null”.

auxEmp(eno, ename) ∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
ename ≠ “null”.

Employee (eno, ename, salary ,dno,bu) ∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
auxEmp(eno, ename),
Employee (eno, ename,“null”,dno,au).

Employee (eno, ename, salary ,dno,bu) ∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
auxEmp(eno, ename),
Employee (“null”,“null”, salary ,dno,au),
eno ≠ “null”, ename ≠ “null”.

Employee (eno, ename, salary ,dno, t) ∶ − Employee (eno, ename, salary ,dno, td).
Employee (eno, ename, salary ,dno, t) ∶ − Employee (eno, ename, salary ,dno,au).
Employee (eno, ename, salary ,dno, s) ∶ − Employee (eno, ename, salary ,dno, t),

not Employee (eno, ename, salary ,dno,bu).
Ans(eno, ename) ∶ − Employee(eno, ename, salary ,dno, s),

salary ≠ “null”, salary < 40000.
Ans(eno, ename) ?
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Program 8. Optimized Logic Program for Query Q2.

#import(company ,“db2admin,”“test”, “ SELECT ∗ FROM Employee”,Emp).
#import(company ,“db2admin”,“test”, “ SELECT ∗ FROM Department

WHERE Dname = ‘sales′”,Dept).
Department (dno,dame, td) ∶ − Dept(dno,dname).

Department (dno,“null”,au) ∶ − Department (dno,“Operations”, t).
Department (dno,“Operations”,bu) ∶ − Department (dno,“Operations”, t),

Department (dno,“null”,au).
Department (dno,dname, t) ∶ − Department (dno,dname, td).
Department (dno,dname, t) ∶ − Department (dno,dname,au).
Department (dno,dname, s) ∶ − Department (dno,dname, t),

not Department (dno,dname,bu).
Employee (eno, ename, salary ,dno, td) ∶ − Emp(eno, ename, salary ,dno).

Employee (“null”,“null”, salary ,dno,au) ∨ Employee (eno, ename,“null”,dno,au)
∶ − Employee (eno, ename, salary ,dno, t),

salary < “30000”, salary ≠ “null”,
auxEmp(eno, ename).

auxEmp(eno, ename) ∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
eno ≠ “null”.

auxEmp(eno, ename) ∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
ename ≠ “null”.

Employee (eno, ename, salary ,dno,bu) ∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
auxEmp(eno, ename),
Employee (eno, ename,“null”,dno,au).

Employee (eno, ename, salary ,dno,bu) ∶ − Employee (eno, ename, salary ,dno, t),
salary < “30000”, salary ≠ “null”,
auxEmp(eno, ename),
Employee (“null”,“null”, salary ,dno,au),
eno ≠ “null”, ename ≠ “null”.

Employee (eno, ename, salary ,dno, t) ∶ − Employee (eno, ename, salary ,dno, td).
Employee (eno, ename, salary ,dno, t) ∶ − Employee (eno, ename, salary ,dno,au).
Employee (eno, ename, salary ,dno, s) ∶ − Employee (eno, ename, salary ,dno, t),

not Employee (eno, ename, salary ,dno,bu).
Ans(ename) ∶ − Employee(eno, ename, salary ,dno, s),

Department(dno,dname, s),
dname = “sales”,
dname ≠ “null”,dno ≠ “null”.

Ans(ename) ?
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Program 9. Optimized Logic Program for Query Q3.

#import(company ,“db2admin”,“test”, “ SELECT ∗ FROM Department

WHERE Dname = ‘sales′
AND Dno =′ 101′”,Dept ,
type ∶ Q Const,Q Const).

Department (dno,dame, td) ∶ − Dept(dno,dname).
Department (dno,“null”,au) ∶ − Department (dno,“Operations”, t).

Department (dno,“Operations”,bu) ∶ − Department (dno,“Operations”, t),
Department (dno,“null”,au).

Department (dno,dname, t) ∶ − Department (dno,dname, td).
Department (dno,dname, t) ∶ − Department (dno,dname,au).
Department (dno,dname, s) ∶ − Department (dno,dname, t),

not Department (dno,dname,bu).
Ans ∶ − Department(dno, dname, s),

dno = “101”,dname = “sales”,
dno ≠ “null”,dname ≠ “null”.

Ans ?


