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Abstract

It is widely appreciated that 3D structures may be computed from multiple
2D images of the same scene given point correspondences between images. We
review the process from a projective geometry perspective. Of greater interest,
however, is the generation of surfaces that give a compact representation of the
geometric model. Assuming we are dealing with smooth surfaces, we show that
B-spline is a good choice for this purpose and we describe how to construct it
by approximating the 3D data points. The crucial step is the parameterization
of the 3D points in a 2D domain. By studying the geometric constraints of
multiple views, we show that the original images can be used for parameteri-
zation. The implications of the B-spline surfaces for improving the quality of
texture mapping is discussed.
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1 Introduction

Reconstructing surfaces in 3-space from two-dimensional images is a central problem
in computer vision and photogrammetry. Many applications require surface recon-
struction. For example, reverse engineering of CAD models from existing objects,
virtual and augmented reality, and computer animation.

The theory of 3D structure reconstruction is now well developed for discrete points
with known correspondences and camera calibration parameters. However, most ap-
plications require a surface representation, particularly in the case where only sparse
3D points are available. Several special cases have been considered. Cross and
Zisserman [3] constructs quadric surfaces. Commercial software PhotoModeler and
ShapeCapture, which are based on photogrammetry techniques [19], construct conic
surfaces and spheres. For any non-standard surface types, piecewise linear surfaces
are used. This means a large number of polygons are needed to approximate a smooth
surface well.

Cipolla and Giblin [2] studied surface reconstruction using profiles (apparent con-
tours). The usual set up is to put the object to be constructed on a turntable and
use a fixed camera to take a series of images. The advantage of this method is that it
can deal with general smooth surfaces with no textures. The drawback is that certain
concave part of the surface cannot be recovered.

In this work we investigate the reconstruction of general free-form surfaces. By
free-form, we mean surfaces that cannot be represented by a single simple algebraic
function. Examples of free-form surfaces abound in the physical world, both natu-
ral and man-made objects; for examples human and animal bodies, sculptures, and
shapes of automobiles and airplanes.

We consider the situation where users take small number of images from arbitrary
positions. Then a number of feature points in the images are identified and matched
across the images by either user assisted or automatic tracking methods. Finally, a
3D surface representation is constructed and texture mapped. Figure 1 illustrates
this process. Our objective here is to enhance the current model building tools to
handle more general surface types.

In section 2 we discuss reconstruction of discrete points using a projective geom-
etry formulation. In section 3 we develop a method for fitting B-spline surfaces on
the reconstructed 3D points. In particular, we show that the images and correspond-
ing image points can be used for computing parameters in the fitting process. In
section 4 we discuss texture mapping techniques for smooth B-spline surfaces. We
demonstrate the improvements in the quality of texture mapping resulting from the
B-spline surface fitting. Finally, concluding remarks are given in section 5.
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(a)

(b)

Figure 1: Surface reconstruction process

2 3D point reconstruction

2.1 Background

Let X = [X Y Z 1]> be the homogeneous coordinate of a point in the 3D world
and x = [u v 1]> be the homogeneous coordinate of the corresponding image point.
Under the assumption of a pinhole camera model, the relationship between X and its
projection on the image plane is

γx = K[R t]X (1)

where γ is an non-zero scale factor, R is a rotation matrix, and t is a translation
vector. The 3× 3 matrix K contains camera intrinsic parameters

K =

 f s u0

0 αf v0

0 0 1


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where f is the focal length, α is the aspect ratio, s is the skew factor, and (u0, v0) is
the position of the principal point on the image plane. Equation 1 is often written in
a compact form x = PX, where P = K[R t] is a 3× 4 perspective projection matrix,
also known as camera matrix.

For two views, any two points x = P1X and x′ = P2X in the two images corre-
sponding to a 3D point X satisfy the bilinear (epipolar) constraint

x′>Fx = 0

where F is the 3 × 3 fundamental matrix. This matrix can be computed with 8 or
more corresponding points [7].

Let E = [t]×R, where

t× =

 0 −tz ty

tz 0 −tx

−ty tx 0


is a skew-symmetric matrix made from components of the the translation vector t.
E is called essential matrix [12]. The essential matrix is related to the fundamental
matrix by

E = K′>FK. (2)

For two images of a planar object, the corresponding points in the two images are
related by a linear form, called homography:

x′ = Hx

where H is a 3× 3 matrix. A homography matrix can be estimated using 4 or more
corresponding points [8].

2.2 Camera calibration

From equation 1 we can see that the projection of a 3D point to an image point
depends on the camera intrinsic parameters in K and the position and orientation,
R and t, of the camera, called extrinsic parameters. Once these parameters are
determined, the camera and its images are called calibrated.

A point in a calibrated image corresponds to a ray in the three-dimensional space.
Two corresponding points in two separate images define two rays that lie in the same
plane. Intersecting these two rays results in the reconstruction of a 3D point.

In this work, we carry out the task of point reconstruction in three steps. First,
we compute the intrinsic parameters of the camera. Second, we find out the rotation
matrix and the translation vector. Third, we compute the ray intersections to obtain
3D points.
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In the ideal situation, the user calibrates the camera’s intrinsic parameters using a
calibration pattern before taking the images of the scene to be reconstructed. Several
pattern-based calibration method have been proposed, for example [9, 20]. We used
a recent method suggest by Zhang [21] with a planar checkerboard pattern.

In the case that we do not have the luxury of having the user calibrate the camera
beforehand, it is still possible to compute 3D structures from the images, using a
technique known as autocalibration. In our implementation, we used a method due
to Mendonça and Cipolla [14] which we outline as follows.

A property of the essential matrix, proved by Huang and Faugras [11], states that
E has two equal singular values and the third singular value is zero; that is

E = Udiag(σ, σ, 0)V>

where U and V are orthogonal matrices. Hartley [6] first used this property for
camera calibration. Mendonça and Cipolla [14] further developed this approach and
suggested a simple method for autocalibration.

To calibrate K (assume constant intrinsic parameters in different views), we first
compute fundamental matrix Fij between each pair of images. By equation 2, the
corresponding essential matrix is

Eij = K>FijK.

Define a cost function:

C(K) =
n∑

i=1

n∑
j>i

wij

σ
(1)
ij − σ

(2)
ij

σ
(2)
ij

where σ
(1)
ij and σ

(2)
ij are the first two singular values of Eij, and wij is a weighting

factor reflecting the confidence in the accuracy of the fundamental matrix Fij. By
minimizing this cost function, we search for the parameters in K such that the pair
of two singular values are as close as possible. The function can be minimized using
the Davidon-Fletcher-Powell (DFP) method [17].

This simple autocalibration method uses only image point correspondences from
which the fundamental matrices are estimated. Comparing to the bundle adjustment
methods, it takes less time to compute because only a few parameters are involved. In
practice, we assume the skew factor is zero and the principal point is at the center of
the image. When more than two views are used, satisfactory results are obtained [18].
We usually get within 10% of the calibration parameter values obtained from using
pattern-based calibration methods.
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2.3 Motion and structure recovery

Given two views with known camera calibration matrices, we wish to compute the
relative positions and orientations of the two cameras. Assume the first camera matrix
is P1 = K1[ I 0], we want to determine the rotation matrix R and the translation
vector t in the second camera matrix P2 = K2[R t]. This can be done by factoring
the essential matrix E which can be computed from the fundamental matrix F by
equation 2. By definition, E is the product of a skew-symmetric matrix, which defines
the translation vector, and a rotation matrix. The following property of the essential
matrix states that there are only four possible factorizations of this kind [8].

Property: E = Udiag(σ, σ, 0)V> = SR, where

S = U(±Z1)U
>

R = det(UV>)UZ2V
> or R = det(UV>)UZ>

2 V>

where

Z1 =

 0 −1 0
1 0 0
0 0 0

 Z2 =

 0 1 0
−1 0 0
0 0 1

 .

The correct solution can be selected by using the fact that the reconstructed point
should be in front of both cameras.

To recover a 3D point, we intersect two rays emanating from two camera optical
centers through their corresponding image points. Write P = [M p], where M is the
3× 3 submatrix of P and p is the fourth column vector of P. The optical center is

c = −M−1p.

An image point x back projects to a ray intersecting the plane at infinity at the
point D = [(M−1x)> 0]>. Therefore, the equation for the ray defined by the image
point x is given by

X(λ) =

[
c
1

]
+ λ

[
M−1x

0

]

where λ ∈ <.

Due to noise, two corresponding rays may not lie exactly in the same plane. In
practice, the intersecting point is taken as the point that is closest to both rays [1].
If a 3D point projects to more than two views, then its 3D position is computed as
the average of all the pairwise reconstructions.
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3 B-spline surface fitting

In this section we show that it is possible to represent a smooth surface by recon-
structing only a few sparse points on it. This is achieved by fitting a B-spline surface
on the reconstructed sample points. This capability is useful to interactive model
building systems in which the user has to manually identify feature points and match
them in different images. On the other hand, reconstructions resulting from dense
stereo may contain too many points. In this case, B-spline fitting provides a compact
representation of the surface.

A B-spline surface is the tensor product function given by

S(u, v) =
n∑

i=0

m∑
j=0

Np
i (u)N q

j (v)Pi,j (3)

where Pi,j is an array of (n+1)× (m+1) control points and Np
i (u) is the ith B-spline

basis function of degree p, defined recursively as

N0
i (u) =

{
1 if ui ≤ u < ui+1

0 otherwise

Np
i (u) =

u− ui

ui+p − ui

Np−1
i (u) +

ui+p+1 − u

ui+p+1 − ui+1

Np−1
i+1 (u)

on a knot vector
U = {0, . . . , 0︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

}.

N q
j (v) is defined analogously [15].

Let Q1, . . . , QN be the reconstructed 3D points. Assume uniform knot sequences,
for any fixed degree p and q, we solve the least square problem

min
Pi,j

N∑
i=1

‖Qi − S(ui, vi)‖2

for the control points Pi,j. Here (u1, v1), . . . , (uN , vN) are the parameterization of the
data points. We discuss parameterization and least square fitting in the next two
subsections.

3.1 Parameterization

A parameterization is a one-to-one mapping between a planar domain and the data
points in 3-space. For B-spline, the planar domain is a rectangular area D = [a, b]×
[c, d]. Therefore, the process of parameterization is to find a function Φ : D → {Qi}.
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For a data point Qk we seek a pair of parameters (uk, vk) ∈ D, that is a point in the
parameter domain.

If the data points are organized in a mesh, the inverse map Φ−1 should preserve
the same mesh topology in the parameter domain. It is also desirable to minimize the
shape distortions. Many techniques for mesh parameterization have been proposed,
for examples [4, 5, 10]. In addition to surface fitting, parameterization is also essential
to many applications such as remeshing, mesh compression, and mesh smoothing.

In our case, the 3D data points are unorganized. Ma and Kruth [13] and Piegl
and Tiller [16] suggested the projection of the 3D data points to a base surface such
as a Coons patch derived from the boundaries of the surface, then the parameters of
the projected points on the Coons patch are used for fitting the B-spline surface.

Notice that the image of an object is a mapping between the points on the 3D
surface and a planar rectangular domain. It is natural to use the images for param-
eterization. The problem is that we have multiple images and we need one single
mapping. Therefore, we need to merge the images into a single one and use that as
a parameterization.

Recall from section 2.1 that the images of a planar object can be related to each
other by homographies. If we choose one image as the fixed image, other images
that share at least four points with the fixed image can be merged to it, since a
homography matrix can be computed from four corresponding points. As shown in
Figure 2, the first view and the third view can be merged into the second view by
applying the homography matrices H12 and H32 to them respectively.

In general, the scene under consideration is not planar and the homography is only
an approximation to the transformations between images. Therefore, merging images
using homography will cause distortions. But since our objective here is parameteri-
zation rather than mosaicking images for visualization, distortions are expected.

Figure 2: Homographic parameterization
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3.2 Least square fitting

Reorder the array of control points by row so that it becomes a linear list of points
P1, P2, . . . , PM , where M = (n + 1)(m + 1). A point Pi(1 ≤ i ≤ M) in the linear list
maps to the control point array Ps,t, where the subscripts s and t are computed as

s =
⌊

i

m + 1

⌋
t = i mod (m + 1).

Using the same subscript scheme, we can denote

Ni(u, v) = Ns(u)Nt(v).

Then we can rewrite equation 3 as

S(u, v) =
M∑
i=1

Ni(u, v)Pi.

For fitting a B-spline surface with given data points Q1, Q2, . . . , QN , we wish to
solve the following equations

M∑
i=1

Ni(uk, vk)Pi = Qk 1 ≤ k ≤ N. (4)

Let Px = [P1x . . . PMx]
> and Qx = [Q1x . . . QNx]

>, where Pix and Qix are the x
coordinates of Pi and Qi respectively.

Write equation 4 in a matrix form

NPx = Qx (5)

where N is a N ×M matrix of scalars

N =


N1(u1, v1) . . . NM(u1, v1)

...
. . .

...
N1(uN , vN) . . . NM(uN , vN)


where M ≥ N . The least square solution to equation 5 is

Px = (N>N)−1N>Qx.

The other two coordinates Py and Pz are solved analogously using the same
matrix N and matrix N>N.
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4 Texture mapping

One of the advantages of reconstructing surfaces from multiple images is that the
surfaces can be texture mapped naturally from the images. Coordinates of the image
points become the texture coordinates of their corresponding 3D points. A triangle in
the 3D mesh maps to a triangle in one of the images. Figure 4(a) shows an example of
a texture mapping. As we can see, since there are only a small number of 3D points,
the texture mapped model shows obvious artifacts.

As we have a smooth B-spline surface approximating the initially reconstructed
3D points, we can improve the texture mapping by mapping the images to a finer
mesh that better approximates the true surface geometry. A hierarchy of meshes with
different resolutions can be constructed by refining triangles.

For refining a triangle, we divide the longest of its edges. As shown in Figure 3, if
we want to divide the edge AC, we first compute its mid-point M , and then we project
M onto the B-spline surface. The projection finds the point N on the B-spline surface
that is closest to M . This can be done using Newton’s iteration with initial parameter
values being the mid-point coordinates of A and B in the parameter space. Finally,
the two triangles ∆(A, B, C) and ∆(A, C,D) sharing the edge AC are replaced by
four smaller triangles: ∆(A, B, N), ∆(B, C, N), ∆(N, C,D), and ∆(A, N,D).

Figure 5(c) shows the results of texture mapping on two different levels of refine-
ment. With the initial reconstruction of 37 triangles, we can see obvious artifacts.
After B-spline surface fitting and refining to 450 triangles, the texture mapping is
much improved but still shows some artifacts. Refining to 7038 triangles, no sign of
artifact is shown.

Figure 3: Dividing a triangle edge and projecting the mid edge point onto the B-spline
surface
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5 Concluding remarks

We have described a method for reconstructing free-form surfaces from multiple im-
ages. Assuming surface smoothness, we fit B-spline surfaces to the reconstructed 3D
points. In this way, complex models can be constructed using only sparse feature
points. Texture mapping is greatly improved by using a smooth surface representa-
tion. The technique of using a homography for parameterizing 3D data points is both
simple and efficient. This method is best suited for an interactive system in which
users manually select and match a small number of feature points. It is therefore a
useful extension to the current photo modeling systems.

We used projective vision techniques for camera calibration and 3D structure
reconstruction. These techniques are simple to implement and in many cases provide
fast linear solutions to the reconstruction problem. The linear solutions are sufficient
for many applications that do not demand a high accuracy. They can also be used
as initial estimations for the more accurate nonlinear iterative methods.
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(a)

(b)

Figure 4: Wooden horse example. (a) reconstruction and texture mapping (37 trian-
gles); (b) after B-spline fitting and mesh refinement (2346 triangles).
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(a)

(b)

(c)

Figure 5: Soccer ball example. (a) input images; (b) initial reconstruction and two
levels of refinements with 18, 450, and 7038 triangles; (c) texture mapping on the
original reconstruction and the two levels of refinement after B-spline fitting.
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