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Abstract. Consider a theatre consisting of m rows each containing n seats. Theatregoers enter the
theatre along aisles and pick a row which they enter along one of its two entrances so as to occupy a
seat. Assume they select their seats uniformly and independently at random among the empty ones.
A row of seats is narrow and an occupant who is already occupying a seat is blocking passage to
new incoming theatregoers. As a consequence, occupying a specific seat depends on the courtesy of
theatregoers and their willingness to get up so as to create free space that will allow passage to others.
Thus, courtesy facilitates and may well increase the overall seat occupancy of the theatre. We say a
theatregoer is courteous if (s)he will get up to let others pass. Otherwise, the theatregoer is selfish. A
set of theatregoers is courteous with probability p (or p-courteous, for short) if each theatregoer in the
set is courteous with probability p, randomly and independently. It is assumed that the behaviour of a
theatregoer does not change during the occupancy of the row. Thus, p = 1 represents the case where
all theatregoers are courteous and p = 0 when they are all selfish.
In this paper, we are interested in the following question: what is the expected number of occupied
seats as a function of the total number of seats in a theatre, n, and the probability that a theatregoer
is courteous, p? We study and analyze interesting variants of this problem reflecting behaviour of the
theatregoers as entirely selfish, and p-courteous for a row of seats with one or two entrances and as a
consequence for a theatre with m rows of seats with multiple aisles. We also consider the case where
seats in a row are chosen according to the geometric distribution and the Zipf distibrution (as opposed
to the uniform distribution) and provide bounds on the occupancy of a row (and thus the theatre) in
each case. Finally, we propose several open problems for other seating probability distributions and
theatre seating arrangements.

Key words and phrases. (p-)Courteous, Theatregoers, Theatre occupancy, Seat, Selfish, Row, Uni-
form distribution, Geometric distribution, Zipf distribution.

1 Introduction

A group of Greek tourists is vacationing on the island of Lipari and they find out that the latest
release of their favourite playwright is playing at the local theatre (see Figure 5), Ecclesiazusae by
Aristophanes, a big winner at last year’s (391 BC) Festival of Dionysus. Seating at the theatre is
open (i.e., the seats are chosen by the audience members as they enter). The question arises as to
whether they will be able to find seats. As it turns out this depends upon just how courteous the
other theatregoers are that night.

Consider a theatre with m rows containing n seats each. Theatregoers enter the theatre along
aisles, choose a row, and enter it from one of its ends, wishing to occupy a seat. They select their
seat in the row uniformly and independently at random among the empty ones. The rows of seats
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are narrow and if an already sitting theatregoer is not willing to get up then s(he) blocks passage
to the selected seat and the incoming theatregoer is forced to select a seat among unoccupied seats
between the row entrance and the theatregoer who refuses to budge. Thus, the selection and overall
occupancy of seats depends on the courtesy of sitting theatregoers, i.e., their willingness to get up
so as to create free space that will allow other theatregoers go by.

An impolite theatregoer, i.e., one that never gets up from a position s(he) already occupies, is
referred to as selfish theatregoer. Polite theatregoers (those that will get up to let someone pass) are
referred to as courteous. On a given evening we expect some fraction of the audience to be selfish
and the remainder to be courteous. We say a set of theatregoers is p-courteous if each individual
in the set is courteous with probability p and selfish with probability 1 − p. We assume that the
status of a theatregoer (i.e., selfish or courteous) is independent of the other theatregoers and it
remains the same throughout the occupancy of the row. Furthermore, theatregoers select a vacant
seat uniformly at random. They enter a row from one end and inquire (“Excuse me”), if necessary,
whether an already sitting theatregoer is courteous enough to let him/her go by and occupy the seat
selected. If a selfish theatregoer is encountered, a seat is selected at random among the available
unoccupied ones, should any exist. We are interested in the following question:

What is the expected number of seats occupied by theatregoers when all new seats are
blocked, as a function of the total number of seats and the theatregoers’ probability p of
being courteous?

We first study the problem on a single row with either one entrance or two. For the case p = 1
it is easy to see that the row will be fully occupied when the process finishes. We show that for
p = 0 (i.e., all theatregoers are selfish) the expected number of occupied seats is only 2 lnn+O(1)
for a row with two entrances. Surprisingly, for any fixed p < 1 we show that this is only improved
by essentially a constant factor of 1

1−p .
Some may argue that the assumption of choosing seats uniformly at random is somewhat

unrealistic. People choose their seats for a number of reasons (sight lines, privacy, etc.) which may
result in a nonuniform occupancy pattern. A natural tendency would be to choose seats closer to the
centre of the theatre to achieve better viewing. We attempt to model this with seat choices made
via the geometric distribution with a strong bias towards the centre seat for the central section
of the theatre and for the aisle seat for sections on the sides of the theatre. The results here are
more extreme, in that for p constant, we expect only a constant number of seats to be occupied
when there is a bias towards the entrance of a row while we expect at least half the row to be filled
when the bias is away from the entrance. In a further attempt to make the model more realistic we
consider the Zipf distribution on the seat choices, as this distribution often arises when considering
the cumulative decisions of a group of humans (though not necessarily Greeks)[?]. We show that
under this distribution when theatregoers are biased towards the entrance to a row, the number of
occupied seats is Θ(ln lnn) while if the bias is towards the centre of the row the number is Θ(ln2 n).
If we assume that theatregoers proceed to another row if their initial choice is blocked it is easy to
use our results for single rows with one and two entrances to derive bounds on the total number of
seats occupied in a theatre with multiple rows and aisles.

1.1 Related work

Motivation for seating arrangement problems comes from polymer chemistry and statistical physics
in [?,?] (see also [?][Chapter 19] for a related discussion). In particular, the number and size of
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random independent sets on grids (and other graphs) is of great interest in statistical physics
for analyzing hard particles in lattices satisfying the exclusion rule, i.e., if a vertex of a lattice is
occupied by a particle its neighbors must be vacant, and have been studied extensively both in
statistical physics and combinatorics [?,?,?,?,?].

Related to this is the “unfriendly seating” arrangement problem which was posed by Freedman
and Shepp [?]: Assume there are n seats in a row at a luncheonette and people sit down one at
a time at random. Given that they are unfriendly and never sit next to one another, what is the
expected number of persons to sit down, assuming no moving is allowed? The resulting density has
been studied in [?,?,?] for a 1× n lattice and in [?] for the 2× n and other lattices. See also [?] for
a related application to privacy.

Another related problem considers the following natural process for generating a maximal in-
dependent set of a graph [?]. Randomly choose a node and place it in the independent set. Remove
the node and all its neighbors from the graph. Repeat this process until no nodes remain. It is of
interest to analyze the expected size of the resulting maximal independent set. For investigations
on a similar process for generating maximal matchings the reader is referred to [?,?].

1.2 Outline and results of the paper

We consider the above problem for the case of a row that has one entrance and the case with two
entrances. We develop closed form formulas, or almost tight bounds up to multiplicative constants,
for the expected number of occupied seats in a row for any given n and p. First we study the sim-
pler problem for selfish theatregoers, i.e., p = 1, in Section 2. In Section 3, we consider p-courteous
theatregoers. In these sections, the placement of theatregoers obeys the uniform distribution. Sec-
tion 4 considers what happens with p-courteous theatregoers under the geometric distribution. In
Section 5 we look at theatregoers whose placement obeys the Zipf distribution. And in Section 6
we show how the previous results may extended to theater arrangements with multiple rows and
aisles. Finally, in Section 7 we conclude by proposing several open problems and directions for
further research. Details of any missing proofs can be found in the Appendix.

2 Selfish Theatregoers

In this section we consider the occupancy problem for a row of seats arranged next to each other in
a line. First we consider theater occupancy with selfish theatregoers in that a theatregoer occupying
a seat never gets up to allow another theatregoer to go by. We consider two types of rows, either
open on one side or open on both sides. Although the results presented here are easily derived from
those in Section 3 for the p-courteous case, our purpose here is to introduce the methodology in a
rather simple theatregoer model.

Consider an arrangement of n seats in a row (depicted in Figure 1 as squares). Theatregoers enter
in sequence one after the other and may enter the arrangement only from the left. A theatregoer
occupies a seat at random with the uniform distribution and if selfish (s)he blocks passage to her/his
right. What is the expected number of occupied seats?

Theorem 1 (Row with only one entrance). The expected number of occupied seats by selfish
theatregoers in an arrangement of n seats in a row with single entrance is equal to Hn, the nth
harmonic number.
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Fig. 1. An arrangement of seats; theatregoers may enter only from the left and the numbering of the seats is 1 to n
from left to right.

Proof. (Theorem 1) Let En be the expected number of theatregoers occupying seats in a row of
n seats. Observe that E0 = 0, E1 = 1 and that the following recurrence is valid for all n ≥ 1.

En = 1 +
1

n

n∑
k=1

Ek−1 = 1 +
1

n

n−1∑
k=1

Ek. (1)

The explanation for this equation is as follows. A theatregoer may occupy any one of the seats
from 1 to n. If it occupies seat number k then seats numbered k + 1 to n are blocked while only
seats numbered 1 to k − 1 may be occupied by new theatregoers. It is not difficult to solve this
recurrence. Write down both recurrences for En and En−1.

nEn = n+
n−1∑
k=1

Ek and (n− 1)En−1 = n− 1 +
n−2∑
k=1

Ek.

Substracting these two identities we see that nEn − (n − 1)En−1 = 1 + En−1. Therefore En =
1
n + En−1. This proves Theorem 1. ut

Now consider an arrangement of n seats (depicted in Figure 2) with two entrances such that

Fig. 2. An arrangement of n seats; theatregoers may enter either from the right or from the left.

theatregoers may enter only from either right or left. In what follows, we invoke several times the
approximate size of the harmonic number Hn which can be expressed as follows

Hn = lnn+ γ +
1

2n
+ o(n),

where γ is Euler’s constant [?].

Theorem 2 (Row with two entrances). The expected number of occupied seats by selfish the-
atregoers in an arrangement of n seats in a row with two entrances is 2 lnn, asymptotically in
n.

Proof. (Theorem 2) Let Fn be the expected number of occupied seats in a line with two entrances
and n seats. Further, let En be the expected number of theatregoers occupying seats in a line with
a single entrance and n seats, which is the function defined in the proof Theorem 1.
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Observe that

Fn = 1 +
1

n

n∑
k=1

(Ek−1 + En−k) (2)

The explanation for this is as follows. The first theatregoer may occupy any position k in the row
of n seats. Being selfish, entry is possible only from one side of the row, i.e., the next seat that can
be occupied is numbered either from 1 to k − 1 or from k + 1 to n.

It follows from Theorem 1 and using the standard approximation for the harmonic number
(see [?]) that

Fn = 1 +
1

n

n∑
k=1

(Hk−1 +Hn−k) = 1 +
2

n

n∑
k=1

Hk−1 = 2 lnn+O(1),

which proves Theorem 2. ut

3 Courteous Theatregoers

Now consider the case where theatregoers are courteous with probability p and selfish with proba-
bility 1− p. We assume that the probabilistic behaviour of the theatregoers is independent of each
other and it is set at the start and remains the same throughout the occupancy of the row of seats.
Analysis of the occupancy will be done separately for rows of seats with one and two entrances (see
Figures 1 and 2). Again, seat choices are made uniformly at random. Observe that for p = 1 no
theatregoer is selfish and therefore all seats in a row of seats will be occupied. Also, since the case
p = 0 whereby all theatregoers are selfish was analyzed in the last section, we can assume without
loss of generality that 0 < p < 1.

Theorem 3 (Row with only one entrance). Assume 0 < p < 1 is given. The expected number
En of occupied seats in an arrangement of n seats in a row having only one entrance at an endpoint
with p-courteous theatregoers is given by the expression

En =
n∑

k=1

1− pk

k(1− p)
, (3)

for n ≥ 1. In particular, for fixed p, En is Hn+ln(1−p)
1−p , asymptotically in n.

Proof. (Theorem 3) Consider an arrangement of n seats (depicted in Figure 1 as squares). Let
En denote the expected number of occupied positions in an arrangement of n seats with single
entrance at an endpoint and p-courteous theatregoers. With this definition in mind we obtain the
following recurrence

En = 1 + pEn−1 +
1− p
n

n∑
k=1

Ek−1 (4)

where the initial condition E0 = 0 holds.
Justification for this recurrence is as follows. Recall that we have a line with single entrance on

the left. Observe that with probability 1− p the theatregoer is selfish and if (s)he occupies position
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k then theatregoers arriving later can only occupy a position in the interval [1, k − 1] with single
entrance at 1. On the other hand, with probability p the theatregoer is courteous in which case the
next person arriving sees n − 1 available seats as far as (s)he is concerned; where the first person
sat doesn’t matter and what remains is a problem of size n− 1. This yields the desired recurrence.

To simplify, multiply Recurrence (4) by n and combine similar terms to derive

nEn = n+ (np+ 1− p)En−1 + (1− p)
n−2∑
k=1

Ek.

A similar equation is obtained when we replace n with n− 1

(n− 1)En−1 = n− 1 + ((n− 1)p+ 1− p)En−2 + (1− p)
n−3∑
k=1

Ek.

If we substract these last two equations we derive nEn − (n − 1)En−1 = 1 + (np + 1 − p)En−1 −
((n − 1)p + 1 − p)En−2 + (1 − p)En−2. After collecting similar terms. it follows that nEn = 1 +
(n(1 + p)− p)En−1 − (n− 1)pEn−2.

Dividing both sides of the last equation by n we obtain the following recurrence

En =
1

n
+
(

1 + p− p

n

)
En−1 −

(
1− 1

n

)
pEn−2,

where it follows easily from the occupancy conditions that E0 = 0, E1 = 1, E2 = 3
2 + p

2 . Finally, if
we define Dn := En − En−1, substitute in the last formula and collect similar terms we conclude
that

Dn =
1

n
+

(
1− 1

n

)
pDn−1, (5)

where D1 = 1. The solution of Recurrence (5) is easily shown to be Dn = 1−pn
n(1−p) for p < 1. By

telescoping we have the identity En =
∑n

k=1Dk. The proof of the theorem is complete once we
observe that

∑∞
k=1 p

k/k = − ln(1− p). ut

Theorem 4 (Row with two entrances). Assume 0 < p < 1 is given. The expected number Fn

of occupied seats in an arrangement of n seats in a row having two entrances at the endpoints with
probabilistically p-courteous theatregoers is given by the expression

Fn = −1− pn

1− p
+ 2

n∑
k=1

1− pk

k(1− p)
, (6)

for n ≥ 1. In particular, for fixed p, Fn is − 1
1−p + 2Hn−ln(1−p)

1−p , asymptotically in n.

Proof. (Theorem 4) Now consider an arrangement of n seats (depicted in Figure 2). For fixed
p, let Fn denote the expected number of occupied positions in an arrangement of n seats with
two entrances one at each endpoint and probabilistically p-courteous theatregoers. Let En denote
the expected number of occupied positions in an arrangement of n seats with single entrance and
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probabilistically p-courteous theatregoers (defined in Theorem 3). With this definition in mind we
obtain the following recurrence

Fn = 1 + pFn−1 +
1− p
n

n∑
k=1

(En−k + Ek−1) (7)

where the initial conditions E0 = F0 = 0 hold.
Justification for this recurrence is as follows. We have a line with both entrances at the endpoints

open. Observe that with probability 1 − p the theatregoer is selfish and if it occupies position k
then theatregoers arriving later can occupy positions in [1, k−1]∪ [k+1, n] such that in the interval
[1, k − 1] a single entrance is open at 1 and in the interval [k + 1, n] a single entrance is open at n.
On the other hand, like in the single entrance case, with probability p the theatregoer is courteous
in which case the next person arriving sees n− 1 available seats as far as (s)he is concerned; where
the first person sat doesn’t matter. This yields the desired recurrence.

Using Equation (4), it is clear that Equation (7) can be simplified to

Fn = 1 + pFn−1 +
2(1− p)

n

n∑
k=1

Ek−1 = 1 + pFn−1 + 2(En − 1− pEn−1),

which yields

Fn − 1− pFn−1 = 2(En − 1− pEn−1) (8)

Finally if we define ∆n := Fn − 2En then Equation (8) gives rise to the following recurrence

∆n = −1 + p∆n−1, (9)

with initial condition ∆1 = F1− 2E1 = −1. Solving Recurrence (9) we conclude that ∆n = −1−pn
1−p ,

for p < 1, and ∆n = −n, otherwise. Therefore, Fn = ∆n + 2En, from which we derive the desired
Formula (6). Using the expansion of ln(1 − p) in a Taylor series (in the variable p) we get the
claimed expression for fixed p and conclude the proof of the theorem. ut

4 Geometric Distribution

In the sections above the theatregoers were more or less oblivious to the seat they selected in
that they chose their seat independently at random with the uniform distribution. A more realistic
assumption might be that theatregoers prefer to be seated as close to the centre of the action as
possible. For a row in the centre of the theatre, this suggests that there would be a bias towards
the centre seat (or two centre seats in the case of an even length row) which is nicely modelled by
a row with one entrance ending at the middle of the row where the probability of choosing a seat
is biased towards the centre seat (which we consider to be a barrier, i.e., people never go past the
centre if they enter on a given side of a two sided row). For a row towards the edge of the theatre
this would imply that theatregoers prefer to chose their seats as close to the aisle, i.e., as close to
the entrance, as possible. This is nicely modelled by a row with one entrance with a bias towards
the entrance.

As usual, we consider a row with one entrance with n seats (depicted in Figure 1 as squares)
numbered 1, 2, . . . n from left to right. We refer to a distribution modelling the first case, with bias
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away from the entrance, as a distribution with a right bias, while in the second case, with bias
towards the entrance, as distribution with a left bias. (We only consider cases where the bias is
monotonic in one direction though one could consider more complicated distributions if for example
there are obstructions part of the way along the row.)

A very strong bias towards the centre might be modelled by the geometric distribution. For
the case of a left biased distribution theatregoers will occupy seat k with probability 1

2k
for k =

1, . . . , n − 1 and with probability 1
2n−1 for k = n. For the case of a right biased distribution

theatregoers will occupy seat k with probability 1
2n+1−k for k = 2, . . . , n and with probability 1

2n−1

for k = 1. We examine the occupancy of a one-entrance row under each of these distributions
assuming a p-courteous audience.

Theorem 5 (Left bias). The expected number of occupied seats by p-courteous theatregoers in an
arrangement of n seats in a row with single entrance is

n∑
l=1

l−1∏
k=1

(
p+

1− p
2k

)
(10)

In particular, the value Tp of (10) as n→∞, satisfies

1.6396− 0.6425p

1− p
≤ Tp ≤

1.7096− 0.6425p

1− p

for all p < 1.

Proof. (Theorem 5) In the geometric distribution with left bias a theatergoer occupies seat num-
bered k with probability 2−k, for k ≤ n − 1 and seat numbered n with probability 2−(n−1). The
seat occupancy recurrence for courteous theatergoers is the following

Ln = 1 + pLn−1 + (1− p)
n−1∑
k=1

2−kLk−1 + (1− p)2−(n−1)Ln−1 (11)

with initial condition L0 = 0, L1 = 1. To solve this recurrence we consider the expression for Ln−1

Ln−1 = 1 + pLn−2 + (1− p)
n−2∑
k=1

2−kLk−1 + (1− p)2−(n−2)Ln−2 (12)

Subtracting Equation (12) from Equation (11) and using the notation ∆k := Lk−Lk−1 we see that

∆n =

(
p+

1− p
2n−1

)
∆n−1,

for n ≥ 2. It follows that

∆n =
n−1∏
k=1

(
p+

1− p
2k

)
,

which proves Identity (10).

8



The previous identity implies that ∆n ≤
(
1+p
2

)n−1
and therefore we can get easily an upper

bound on the magnitude of Ln. Indeed,

Ln =

n∑
k=1

∆k ≤
n−1∑
k=1

(
1 + p

2

)k−1
≤ 2

1− p
,

for p < 1. Similarly, one can easily show a lower bound of 1/(1− p). Next we focus on showing the
much tighter bounds we have already promised.

Our goal is to provide good estimates of Tp =
∑∞

l=1

∏l−1
k=1

(
p+ 1−p

2k

)
. Although there seems to

be no easy closed formula that describes Tp, the same quantity can be numerically evaluated for
every fixed value of p < 1 using any mathematical software that performs symbolic calculations. In
particular we can draw Tp for all non negative values of p < 1.

One strategy to approximate Tp to a good precision would be to compute enough points (p, Tp),
and then find an interpolating polynomial. Since we know Tp is unbounded as p→ 1−, it seems more
convenient to find interpolating points (p, (1 − p)Tp) instead (after all, we know that 1/(1 − p) ≤
Tp ≤ 2/(1− p)). Adding at the end a sufficient error constant term, we can find polynomials that
actually bound from below and above expression (1− p)Tp.

It turns out that just a few interpolating points are enough to provide a good enough estimate.
In that direction, we define polynomial

g(p) := 1.6746− 0.6425p

which we would like to show that approximates (1−p)Tp sufficiently well. To that end, we can draw

0.2 0.4 0.6 0.8 1.0

-0.03

-0.02

-0.01

0.01

0.02

0.03

Fig. 3. The graph of g(p) − (1 − p)Tp together with the bounds ±0.035.

g(p)− (1− p)Tp, see Figure 3, and verify that indeed |g(p)− (1− p)Tp| ≤ 0.035 as promised. ut

We leave it as an open problem to determine the exact asymptotics of expression (10) above,
as a function of p. As a sanity check, we can find (using any mathematical software that performs
symbolic calculations) the limit of (10) as n→∞ when p = 0, which turns out to be approximately
1.64163.
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Theorem 6 (Right bias). The expected number of occupied seats by p-courteous theatregoers in
an arrangement of n seats in a row with single entrance is at least n+1

2 , for any p. Moreover, this
bound is attained for p = 0.

Proof. (Theorem 6) In the geometric distribution with left bias a theatergoer occupies seat num-
bered k with probability 2k−n−1, for k ≥ 2 and seat numbered 1 with probability 2−(n−1). The seat
occupancy recurrence for courteous theatergoers is the following

Rn = 1 + pRn−1 + (1− p)
n∑

k=2

2n+1−kRk−1. (13)

with initial condition R0 = 0, R1 = 1. To solve this recurrence, we consider as usual the equation
for Rn−1

Rn−1 = 1 + pRn−2 + (1− p)
n−1∑
k=2

2n−kRk−1. (14)

Subtracting Equation (14) from Equation (13) and using the notation ∆k := Rk−Rk−1 we see that

∆n = p∆n−1 + (1− p)
n−2∑
k=1

1

2k
∆n−k +

1− p
2n−1

, (15)

for n ≥ 2. We claim that we can use Equation (15) to prove that ∆k ≥ 1
2 by induction on k, for all

k ≥ 1. Observe ∆1 = 1. Assume the claim is valid for all 1 ≤ k ≤ n− 1. Then we see that

∆n ≥
p

2
+

1− p
2

(
1− 1

2n−2

)
+

1− p
2n−1

=
1

2
,

which proves the claim.
It is easy to see that this same proof can be used to show that ∆n = 1

2 , for all n ≥ 2, in the
case p = 0. This proves the theorem. ut

5 Zipf Distribution

We now study the case where theatregoers select their seat using an arguably more natural dis-
tribution, namely, the Zipf distribution [?]. As before, throughout the presentation we consider an
arrangement of n seats (depicted in Figure 1 as squares) numbered 1 to n from left to right with
one entrance starting from seat 1. Theatregoers enter in sequentially and may enter the row only
from the single entrance. There are two occupancy possibilities: Zipf with left bias and Zipf with
right bias. In Zipf with left bias (respectively, right) a theatregoer will occupy seat k at random
with probability 1

kHn
(respectively, 1

(n+1−k)Hn
) and a selfish theatregoer blocks passage to her/his

right, i.e., all positions in [k+ 1, n]. In the sequel we look at a row with a single entrance. The case
of a row with two entrances may be analyzed in a similar manner.

First we analyze the Zipf distribution with left bias for selfish theatregoers.

Theorem 7 (Selfish with left bias). The expected number of occupied seats by selfish theatregoers
in an arrangement of n seats in a row with single entrance is equal to ln lnn, asymptotically in n.
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Proof. (Theorem 7) Let Ln be the expected number of theatregoers occupying seats in a row of
n seats. Observe that L0 = 0, L1 = 1 and that the following recurrence is valid for all n ≥ 1.

Ln = = 1 +
1

Hn

n∑
k=1

1

k
Lk−1. (16)

The explanation for this equation is as follows. A theatregoer may occupy any one of the seats from
1 to n. If it occupies seat number k then seats numbered k + 1 to n are blocked while only seats
numbered 1 to k − 1 may be occupied by new theatregoers.

It is not difficult to solve this recurrence. Write down both recurrences for Ln and Ln−1.

HnLn = Hn +

n∑
k=1

1

k
Lk−1 and Hn−1Ln−1 = Hn−1 +

n−1∑
k=1

1

k
Lk−1.

Substracting these last two identities we see that

HnLn −Hn−1Ln−1 = Hn −Hn−1 +
1

n
Ln−1 =

1

n
+

1

n
Ln−1

Therefore HnLn = 1
n + HnLn−1. Consequently, Ln = 1

nHn
+ Ln−1. From the last equation we see

that

Ln =
n∑

k=2

1

kHk
≈
∫ n

2

dx

x lnx
= ln lnn.

This yields easily Theorem 7. ut

Next we consider selfish theatregoers choosing their seats according to the Zipf distribution with
right bias. As it turns out, the analysis of the resulting recurrence is more difficult than the previous
cases. First we need the following technical lemma whose proof can be found in the Appendix.

Lemma 1. For every ε > 0, there exists n0 big enough such that∣∣∣∣∣π26 −
n−1∑
k=1

Hn −Hk

n− k

∣∣∣∣∣ ≤ ε, ∀n ≥ n0

In particular, for all n ≥ 40 we have

1.408 ≤
n−1∑
k=1

Hn −Hk

n− k
≤ 1.86.

Next we use Lemma 1 to conclude that

Lemma 2. The solution of the recurrence relation

Rn = 1 +
1

Hn

n−1∑
k=1

1

n− k
Rk

with initial condition R1 = 1 satisfies

100

383
H2

n ≤ Rn ≤
5

7
H2

n. (17)

11



Proof. (Lemma 2) It is easy to check numerically that for n0 = 40 we have

Rn0

H2
n0

≈ 0.430593

and indeed 100
383 ≤ 0.430593 ≤ 5

7 .
Hence, the promised bounds follow inductively on n ≥ n0, once we prove that for the constants

c′ = 5
7 , c
′′ = 5

19 and that for all n ≥ n0 we have

1 +
c′

Hn

n−1∑
k=1

1

n− k
H2

k ≤ c′H2
n

1 +
c′′

Hn

n−1∑
k=1

1

n− k
H2

k ≥ c′′H2
n

To save repetitions in calculations, let 2 ∈ {≤,≥} and c ∈ {c′, c′′}, and observe that

1 +
c

Hn

n−1∑
k=1

1

n− k
H2

k 2 cH2
n ⇔ Hn

c
2 H3

n −
n−1∑
k=1

1

n− k
H2

k

⇔ Hn

c
2

n−1∑
k=1

H2
n −H2

k

n− k
+
H2

n

n
(Since

∑n−1
k=0

1
n−k = Hn)

⇔ 1

c
− Hn

n
2

1

Hn

n−1∑
k=1

H2
n −H2

k

n− k

⇔ 1

c
− Hn

n
2

1

Hn

n−1∑
k=1

(Hn +Hk)(Hn −Hk)

n− k
(18)

For proving the upper bound of (17), we use 2 = ” ≤ ” (note that the direction is inversed).
We focus on expression (18) which we need to show that is satisfied for the given constant. In that
direction we have

1

Hn

n−1∑
k=1

(Hn +Hk)(Hn −Hk)

n− k
≥

n−1∑
k=1

Hn −Hk

n− k
(Lemma 1)

≥ 1.408 ≥ 7

5
− Hn

n

Hence, (18) is indeed satisfied for c = 5
7 , establishing the upper bound of (17).

Now for the lower bound of (17), we take 2 = ” ≥ ” , and we have

1

Hn

n−1∑
k=1

(Hn +Hk)(Hn −Hk)

n− k
≤ 2

n−1∑
k=1

Hn −Hk

n− k
(Lemma 1)

≤ 3.72 ≤ 383

100
− Hn

n

for n ≥ 40. Hence c′′ = 100
383 , again as promised. ut

Note that Lemma 2 implies that limn→∞Rn/ ln2 n = c, for some constant c ∈ [0.261, 0.72]. This
is actually the constant hidden in the Θ-notation of Theorem 8. We leave it as an open problem
to determine exactly the constant c. Something worthwhile noticing is that our arguments cannot
narrow down the interval of that constant to anything better than [3/π2, 6/π2].
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Theorem 8 (Selfish with right bias). The expected number of occupied seats by selfish theatre-
goers in an arrangement of n seats in a row with single entrance is Θ(ln2 n), asymptotically in
n.

Proof. (Theorem 8) Let Rn be the expected number of theatregoers occupying seats in a row of
n seats, when seating is biased to the right, Observe that R0 = 0, R1 = 1 and that the following
recurrence is valid for all n ≥ 1.

Rn = 1 +
1

Hn

n∑
k=2

1

n+ 1− k
Rk−1 = 1 +

1

Hn

n−1∑
k=1

1

n− k
Rk. (19)

The justification for the recurrence is the same as in the case of the left bias with the probability
changed to reflect the right bias. The theorem now follows immediately from Lemma 2. ut

Theorem 9 (Courteous with left bias). The expected number of occupied seats by p-courteous
theatregoers in an arrangement of n seats in a row with single entrance is equal to

Ln = ln lnn+
n∑

l=1

l∑
k=1

pk (1− hl) (1− hl−1) · · · (1− hl−k+1)hl−k (20)

asymptotically in n, where h0 := 0 and hk := 1
kHk

, for k ≥ 1. In particular, for constant 0 < p < 1

we have that Ln = Θ( ln lnn
1−p ).

Proof. (Theorem 9) We obtain easily the following recurrence

Ln = 1 + pLn−1 +
1− p
Hn

n∑
k=1

1

k
Lk−1. (21)

Write the recurrence for Ln−1:

Ln−1 = 1 + pLn−2 +
1− p
Hn−1

n−1∑
k=1

1

k
Lk−1.

Multiply these last two recurrences by Hn, Hn−1 respectively to get

HnLn = Hn + pHnLn−1 + (1− p)
n∑

k=1

1

k
Lk−1

Hn−1Ln−1 = Hn−1 + pHn−1Ln−2 + (1− p)
n−1∑
k=1

1

k
Lk−1

Now subtract the second equation from the first and after collecting similar terms and simpli-
fications we get

Ln =
1

nHn
+

(
1 + p− p

nHn

)
Ln−1 − p

Hn−1
Hn

Ln−2,

13



with initial conditions L0 = 0, L1 = 1. In turn, if we set ∆n := Ln − Ln−1 then we derive the
following recurrence for ∆n.

∆n =
1

nHn
+ p

(
1− 1

nHn

)
∆n−1, (22)

with initial condition ∆1 = 1. Recurrence (22) gives rise to the following expression for ∆n

∆n = hn +
n∑

k=1

pk (1− hn) (1− hn−1) · · · (1− hn−k+1)hn−k, (23)

where h0 := 0 and hk := 1
kHk

. This completes the proof of Identity (20).
Next we prove the bounds on Ln. First of all observe that the following inequality holds

2hn ≤ hn/2 ≤ 3hn. (24)

Next we estimate the sum in the righthand side of Equation (23). To this end we split the sum
into two parts: one part, say S1, in the range from 1 to n/2 and the second part, say S2, from
n/2 + 1 to n. Observe that

S2 =
∑

k≥n/2+1

pk (1− hn) (1− hn−1) · · · (1− hn−k+1)hn−k

≤
∑

k≥n/2+1

pk ≤ pn/2+1 1

1− p
,

which is small, asymptotically in n, for p < 1 constant.
Now consider the sum S1.

S1 =

n/2∑
k=1

pk (1− hn) (1− hn−1) · · · (1− hn−k+1)hn−k

≤ hn/2
n/2∑
k=1

pk ≤ 3hn
p

1− p
(Using Inequality (24))

and

S1 ≥ hn
n/2∑
k=1

pk (1− hn) (1− hn−1) · · · (1− hn−k+1)

≈ hn
n/2∑
k=1

pke−(hn+hn−1+···+hn−k+1) (since 1− x ≈ e−x)

≈ hn
n/2∑
k=1

pke
− ln

(
lnn

ln(n/2)

)
≈ hn

n/2∑
k=1

pk ≈ chn
p

1− p
,

for some constant c > 0. Combining the last two inequalities it is easy to derive tight bounds for
∆n and also for Ln, since Ln =

∑n
k=1∆k. This completes the proof of Theorem 9. ut
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Theorem 10 (Courteous with right bias). The expected number Rn(p) of occupied seats by
p-courteous theatregoers in an arrangement of n seats in a row with single entrance, and for all
constants 0 ≤ p < 1 satisfies

Rn(p) = Ω

(
H2

n

1− 0.944p

)
and Rn(p) = O

(
H2

n

1− p

)
asymptotically in n.

Proof. (Theorem 10) Let Rn(p) be the expected number of theatregoers occupying seats in a row
of n seats, when seating is biased to the right. Observe that R0(p) = 0, R1(p) = 1 and that the
following recurrence is valid for all n ≥ 1.

Rn(p) = 1 + pRn−1(p) +
1− p
Hn

n∑
k=1

1

n+ 1− k
Rk−1(p)

= 1 + pRn−1(p) +
1− p
Hn

n−1∑
k=1

1

n− k
Rk(p) (25)

Before proving the theorem we proceed with the following lemma.

Lemma 3. Let Rn = Rn(0), Rn(p) be the solutions to the recurrence relations (19), (25), respec-
tively. Then for every 0 ≤ p < 1 and for every constants c1, c2 > 0 with c1 < 4, we have if(
∀n ≥ 40, c1H

2
n ≤ Rn ≤ c2H2

n

)
then(

∀n ≥ 40,
4c1/9

1− (1− 0.214c1)p
H2

n ≤ Rn(p) ≤ c2
1− p

H2
n

)
.

assuming that the bounds for Rn hold for n = 40.4

Proof. (Lemma 3) The proof is by induction on n, and the base case n = 40 is straightforward.

For the inductive step, suppose that the bounds for Rn(p) are true for all integers up to
n − 1, and fix some 2 ∈ {≥,≤} corresponding to the bounding constants c ∈ {c1, c2} and

x ∈
{

c1
1−(1−0.214c1)p ,

c2
1−p

}
respectively.

The we have

Rn(p) = 1 + pRn−1(p) +
1− p
Hn

n−1∑
k=1

Rk(p)

n− k
(definition of Rn)

2 1 + pxH2
n−1 +

(1− p)x
Hn

n−1∑
k=1

H2
k

n− k
(Inductive Hypothesis)

2 1 + pxH2
n−1 + (1− p)x

(
H2

n −
1

c

)
(Preconditions)

2 x
(
pH2

n−1 + (1− p)H2
n

)
1− (1− p)x

c
(26)

4 Constant c1 is scaled by 4/9 only to satisfy a precondition in a subsequent theorem.
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Now consider 2 = ” ≥ ”, and observe that

Rn(p)
(26)

≥ x
(
pH2

n−1 + (1− p)H2
n

)
1− (1− p)x

c1

= xH2
n + xp(H2

n−1 −H2
n) + 1− (1− p)x

c1

= xH2
n + xp(Hn−1 −Hn)(Hn−1 +Hn) + 1− (1− p)x

c1

= xH2
n − xp

Hn−1 +Hn

n
+ 1− (1− p)x

c1

≥ xH2
n − 2xp

Hn

n
+ 1− (1− p)x

c1

≥ xH2
n − 0.214xp+ 1− (1− p)x

c1
(Since Hn

n < 0.106964, for n ≥ 40)

≥ xH2
n (x = 4c1/9

1−(1−0.214c1)p ≤
c1

1−(1−0.214c1)p)

Finally, we consider 2 = ” ≤ ”, and we have

Rn(p)
(26)

≤ x
(
pH2

n−1 + (1− p)H2
n

)
1− (1− p)x

c2

≤ xH2
n + 1− (1− p)x

c2
= xH2

n (x = c2
1−p)

This completes the proof of Lemma 3. ut

Now we proceed with the main proof of Theorem 10. Recall that by Lemma 2 we have 100
383H

2
n ≤

Rn ≤ 5
7H

2
n for all n ≥ 40, where Rn is the solution to the recurrence (19). But then, according to

Lemma (3), it suffices to verify that for all 0 ≤ p < 1, both bounds below hold true

4c1/9

1− (1− 0.214c1)p
H2

40 ≤ R40(p) ≤
c2

1− p
H2

40

where c1 = 100/383 and c2 = 5/7. In other words, it suffices to verify that

2.13

1− 0.945p
≤ R40(p) ≤

13

1− p
, ∀ 0 ≤ p < 1.
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Expression R40(p) is a polynomial on p of degree 39, which can be computed explicitly from recur-
rence (25).

R40(p) =3.70962710339202× 10−7p39 + 3.0614726926339265× 10−6p38 + 0.0000139932p37

+ 0.0000467865p36 + 0.000127738p35 + 0.000301798p34 + 0.000639203p33

+ 0.00124237p32 + 0.0022527p31 + 0.00385706p30 + 0.00629362p29 + 0.00985709p28

+ 0.0149033p27 + 0.0218533p26 + 0.0311969p25 + 0.0434963p24 + 0.0593899p23

+ 0.0795964p22 + 0.104921p21 + 0.136261p20 + 0.174618p19 + 0.221108p18 + 0.27698p17

+ 0.343639p16 + 0.422678p15 + 0.51592p14 + 0.625477p13 + 0.753831p12 + 0.903948p11

+ 1.07944p10 + 1.28482p9 + 1.52585p8 + 1.81016p7 + 2.14819p6 + 2.55498p5 + 3.05352p4

+ 3.68202p3 + 4.51248p2 + 5.7117p+ 7.8824.

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

Fig. 4. The black solid line represents polynomial R40(p), the red dot-dashed line represents 4c1/9
1−(1−0.214c1)p

H2
40, while

the blue dotted line represents c2
1−p

H2
40.

Then we can draw R40(p) to verify that it is indeed sandwiched between 2.13
1−0.945p and 13

1−p , for

all 0 ≤ p < 1, as Figure 4 confirms Note that 13
1−p is unbounded as p → 1, and hence its value

exceeds R40(1) for p large enough, here approximately for p ≥ 0.7. This completes the proof of
Theorem 10. ut

6 The Occupancy of a Theater

Given the previous results it is now easy to analyze the occupancy of a theater. A typical theater
consists of an array of rows separated by aisles. This naturally divides each row into sections which
either have one entrance (e.g., when the row section ends with a wall) or two entrances. For example
in Figure 5 we see the Greek theatre on Lipari consisting of twelve rows each divided into two one
entrance sections and three two entrance sections. In a sequential arrival model of theatregoers, we
assume that a theatergoer chooses a row and an entrance to the row by some arbitrary strategy. If
she finds the row blocked at the entrance, then she moves on to the other entrance or another row.

17



Then, the resulting occupancy of the theater will be equal to the sum of the number of occupied
seats in each row of each section. These values depend only on the length of the section. This
provides us with a method of estimating the total occupancy of the theatre.

Fig. 5. The Greek theatre on Lipari Island.

For example, for the Lipari theatre if each row section seats n theatregoers then we get the
following:

Corollary 1. Consider a theater having twelve rows with three aisles where each section contains n
seats. For firxed 0 < p < 1, the expected number of occupied seats assuming p-courteous theatregoers
is given by the expression

− 36

1− p
+ 96

Hn − ln(1− p)
1− p

, (27)

asymptotically in n. ut

7 Conclusions and Open Problems

There are several interesting open problems worth investigating for a variety of models reflecting
alternative and/or changing behaviour of the theatregoers, as well as their behaviour as a group.
Also problems arising from the structure (or topology) of the theatre are interesting. In this section
we propose several open problems and directions for further research.

While we considered the uniform, geometric and Zipf distributions above, a natural extension
of the theatregoer model is to arbitrary distributions with the probability that a theatregoer selects
seat numbered k is pk. For example, theatregoers may prefer seats either not too close or too far
from the stage. These situations might introduce a bias that depends on the two dimensions of the
position selected. It would be interesting to compare the results obtained to the actual observed
occupancy distribution of a real open seating theatre such as movie theatres in North America.

Another model results when the courtesy of a theatregoer depends on the position selected,
e.g., the further away from an entrance the theatregoer is seated the less likely (s)he is to get up.

18



Another interesting question arises when theatregoers not only occupy seats for themselves but
also need to reserve seats for their friends in a group. Similarly, the courtesy of the theatregoers
may now depend on the number of people in a group, e.g., the more people in a group the less
likely for all theatregoers to get up to let somebody else go by. Another possibility is to consider
the courteous theatregoers problem in an arbitrary graph G = (V,E). Here, the seats are vertices
of the graph. Theatregoers occupy vertices of the graph while new incoming theatregoers occupy
vacant vertices when available and may request sitting theatregoers to get up so as to allow them
passage to a free seat. Further, the set of nodes of the graph is partitioned into a set of rows or
paths of seats and a set of “entrances” to the graph. Note that in this more general case there
could be alternative paths to a seat. In general graphs, algorithmic questions arise such as give
an algorithm that will maximize the percentage of occupied seats given that all theatregoers are
selfish.

A Proof of Lemma 1

In what follows we fix some ε > 0. Below we use that for every f : R+ 7→ R+ which is monotone,
we have

n−1∑
k=1

f(k) ≤
∫ n

1
f(t)t. ≤

n∑
k=2

f(k). (28)

Then we observe that for every fixed n, expression Hn−Hk
n−k is decreasing in k. This is because

−Hk
n−k is clearly decreasing, and the rate of change dominates that of the increasing expression Hn

n−k ,
since n is fixed. That will be shortly combined with observation (28).

First we upper bound the sum above.

n−1∑
k=1

Hn −Hk

n− k
=
Hn −Hn−1

1
+

n−2∑
k=1

Hn −Hk

n− k

=
1

n
+

n−2∑
k=1

Hn −Hk

n− k

≤ 1

n
+

∫ n−1

1

Hn −Hk

n− k
k. (by (28), since Hn−Hk

n−k is monotone)

=
1

n
+

∫ n−1

1

1

n− k

n∑
t=k+1

1

t
k.

≤ 1

n
+

∫ n−1

1

1

n− k

∫ n+1

k+1

1

t
t.k. (by (28), since 1

t is monotone)

=
1

n
+

∫ n−1

1

1

n− k
(ln(n+ 1)− ln(k + 1)) k.

By solving the last integral it is easily seen that the last term is equal to
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1

n
+ ln(n+ 1) ln

(
1 +

1

n− 1

)
+ ln 2 ln

(
1 +

2

n− 1

)
− Li2

(
2

n+ 1

)
+ Li2

(
1− 1

n

)
≤ 2 ln(n+ 1) ln

(
1 +

2

n− 1

)
− Li2

(
2

n+ 1

)
+ Li2

(
1− 1

n

)
≤ 4 ln(n+ 1)

n− 1
− Li2

(
2

n+ 1

)
+ Li2

(
1− 1

n

)
(29)

Next we observe that both Li2

(
2

n+1

)
,Li2

(
1− 1

n

)
are non negative, and in particular Li2

(
2

n+1

)
is decreasing with

lim
n→∞

Li2

(
2

n+ 1

)
= 0,

and Li2
(
1− 1

n

)
is increasing with

lim
n→∞

Li2

(
1− 1

n

)
=
π2

6
.

Since also 4 ln(n+1)
n−1 is positive and tends to 0, we conclude that for big enough n we have

∑n−1
k=1

Hn−Hk
n−k ≤

π2/6 + ε. In particular, expression (29) is at most 1.86 for all n ≥ 40.
Next we lower bound the sum.

n−1∑
k=1

Hn −Hk

n− k
≥

n−1∑
k=2

Hn −Hk

n− k

≥
∫ n−1

1

Hn −Hk

n− k
k. (by (28), since Hn−Hk

n−k is monotone)

=

∫ n−1

1

1

n− k

n∑
t=k+1

1

t
k.

≥
∫ n−1

1

1

n− k

∫ n−1

k

1

t
t.k. (by (28), since 1

t is monotone)

=

∫ n−1

1

1

n− k
(ln(n− 1)− ln(k)) k.

= ln(n− 1) ln

(
1− 1

n

)
− Li2

(
1

n

)
+ Li2

(
1− 1

n

)
(30)

As before, one can see that as n tends to infinity, both expressions ln(n− 1) ln
(
1− 1

n

)
and Li2

(
1
n

)
tend to 0, while Li2

(
1− 1

n

)
tends to π2/6. Hence, for big enough n we have

∑n−1
k=1

Hn−Hk
n−k ≥ π2/6−ε.

In particular, expression (30) is at least 1.408 for all n ≥ 40. ut
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