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Abstract

Consider n sensors placed randomly and independently with the uniform distribution in a d−dimensional unit cube (d ≥ 2). The
sensors have identical sensing range equal to r, for some r > 0. We are interested in moving the sensors from their initial positions
to new positions so as to ensure that the d−dimensional unit cube is completely covered, i.e., every point in the d−dimensional
cube is within the range of a sensor. If the i-th sensor is displaced a distance di, what is a displacement of minimum cost that
ensures coverage? As cost measure for the displacement of the team of sensors we consider the a-total movement defined as the
sum Ma :=

∑n
i=1 da

i , for some constant a > 0. We assume that r and n are chosen so as to allow full coverage of the d−dimensional
unit cube. Motivation for using this cost metric arises from the fact that there might be a terrain affecting the movement of the
sensors from their initial to their final destinations (e.g., a terrain surface which is either obstructing or speeding the movement).
Therefore the a-total displacement is not more general but can also be a more realistic metric than the one previously considered
for a = 1.

The main contribution of this paper is to show the existence of a tradeoff in the d−dimensional cube between sensing radius and
a-total movement. Omitting low order terms, the main results can be summarized as follows for the case of the d−dimensional
cube.
1. If the d−dimensional cube sensing radius is 1

2n1/d and n = md, for some m ∈ N, then we present an algorithm that uses O
(
n1− a

2d

)
total expected movement (see Algorithm 2 and Theorem 5).

2. If the the d−dimensional cube sensing radius is greater than 33/d

(31/d−1)(31/d−1)
1

2n1/d and n is a natural number then the total expected

movement is O
(
n1− a

2d

(
ln n
n

) a
2d
)

(see Algorithm 3 and Theorem 7).

This sharp decline from O(n1− a
2d ) to O

(
n1− a

2d

(
ln n
n

) a
2d
)

in the a-total movement of the sensors to attain complete coverage of the
d−dimensional cube indicates the presence of an interesting threshold on the sensing radius in a d−dimensional cube as it increases
from 1

2n1/d to 33/d

(31/d−1)(31/d−1)
1

2n1/d . In addition, we simulate Algorithm 2 and discuss the results of our simulations.
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1. Introduction

A key challenge in utilizing effectively a group of sensors
is to make them form an interconnected structure with good
communication characteristics. For example, one may want to
establish a sensing and communication infrastructure for robust
connectivity, surveillance, security, or even reconnaissance of
an urban environment using a limited number of sensors. For
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a team of sensors initially placed in a geometric domain such
a robust connectivity cannot be assured a priori e.g., due to
geographic obstacles (inhibiting transmissions), harsh environ-
mental conditions (affecting signals), sensor faults (due to mis-
placement), etc. In those cases it may be required that a group
of sensors originally placed in a domain be displaced to new
positions either by a centralized or distributed controller. The
main question arising is what is the cost of displacement so as to
move the sensors from their original positions to new positions
so as to attain the desired communication characteristics?

A typical sensor is able to sense a limited region usually de-
fined by its sensing radius, say r, and considered to be a circular
domain (disc of radius r). To protect a larger region against in-
truders every point of the region must be within the sensing
range of at least one of the sensors in the group. Moreover,
by forming a communication network with these sensors one is
able to transmit to the entire region any disturbance that may
have occurred in any part of the region. This approach has been
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previously studied in several papers. It includes research on 1)
area coverage in which one ensures monitoring of an entire re-
gion [10, 15], and 2) on perimeter or barrier coverage whereby
a region is protected by monitoring its perimeter thus sensing
intrusions or withdrawals to/from the interior [2, 3, 5, 6, 14].
Note that barrier coverage is less expensive (in terms of number
of sensors) than area coverage. Nevertheless, barrier coverage
can be only used to monitor intruders to the area, as opposed to
area coverage that can also protect the interior.

1.1. Related work
Assume that n sensors of identical range are all initially

placed on a line. It was shown in [5] that there is an O(n2) algo-
rithm for minimizing the max displacement of a sensor while
the optimization problem becomes NP-complete if there are
two separate (non-overlapping) barriers on the line (cf. also
[4] for arbitrary sensor ranges). If the optimization cost is the
sum of displacements then [6] shows that the problem is NP-
complete when arbitrary sensor ranges are allowed, while an
O(n2) algorithm is given when all sensing ranges are the same.
Similarly, if one is interested in the number of sensors moved
then the coverage problem is NP-complete when arbitrary sen-
sor ranges are allowed, and an O(n2) algorithm is given when
all sensing ranges are the same [16]. Further, [7] considers the
algorithmic complexity of several natural generalizations of the
barrier coverage problem with sensors of arbitrary ranges, in-
cluding when the initial positions of sensors are arbitrary points
in the two-dimensional plane, as well as multiple barriers that
are parallel or perpendicular to each other.

An important setting in considerations for barrier coverage is
when the sensors are placed at random on the barrier according
to the uniform distribution. Clearly, when the sensor dispersal
on the barrier is random then coverage depends on the sensor
density and some authors have proposed using several rounds
of random dispersal for complete barrier coverage [9, 18]. An-
other approach is to have the sensors relocate from their initial
position to a new position on the barrier so as to achieve com-
plete coverage [5, 6, 8, 16]. Further, this relocation may be done
in a centralized (cf. [5, 6]) or distributed manner (cf. [8]).

Closely related to our work is [13], where algorithm
MV1(n, y) (see Algorithm 1) was analysed. In this paper, n
sensors were placed in the unit interval uniformly and indepen-
dently at random and the cost of displacement was measured
by the sum of the respective displacements of the individual
sensors in the unit line segment [0, 1]. Lets call the positions
i
n −

1
2n , for i = 1, 2, . . . , n, anchor positions. The sensors have

the sensing radius r = 1
2n each. Notice that the only way to at-

tain complete coverage is for the sensors to occupy the anchor
positions. The following result was proved in [13].

Theorem 1 (cf. [13]). Assume that, n mobile sensors are
thrown uniformly and independently at random in the unit inter-
val. The expected sum of displacements of all n sensors to move
from their current location to the equidistant anchor locations
i
n −

1
2n , for i = 1, 2, . . . , n, respectively, is in Θ(

√
n).

In [12], Theorem 1 was extended to when the cost of dis-
placement is measured by the sum of the respective displace-

Algorithm 1 MV1(n, y) (Sensor displacement on a interval).
Require: n mobile sensors with identical sensing radius r =

y
2n placed uniformly and independently at random on the
interval [0, y].

Ensure: The final positions of the sensors are at the locations(
yi
n −

y
2n

)
, 1 ≤ i ≤ n (so as to attain coverage of the interval

[0, y].)
1: sort the initial locations of sensors; the locations after sort-

ing x1, x2, . . . xn, x1 ≤ x2 ≤ · · · ≤ xn.
2: for i = 1 to n do
3: move the sensor S i at position

(
yi
n −

y
2n

)
4: end for

ments raised to the power a > 0 of the respective sensors in the
unit line segment [0, 1]. The following result was proved.

Theorem 2 (cf. [12]). Assume that n mobile sensors are thrown
uniformly and independently at random in the unit interval. The
expected sum of displacements to a given power a of algorithm
MV1(n, 1) is in Θ

(
1/n

a
2−1

)
, when a is natural number, and in

O
(
1/n

a
2−1

)
, when a > 0.

An analysis similar to the one for the line segment was pro-
vided for the unit square in [13]. Our present paper focuses
on the analysis of sensor displacement for a group of sensors
placed uniformly at random on the d−dimensional unit cube,
thus also generalizing the results of [11] from d = 2 to arbitrary
dimension d ≥ 2. In particular, our approach is first to gener-
alize the results of [13] to the d−dimensional unit cube using
as cost metric the a-total movement, and second obtain sharper
bounds for the case of the unit square.

1.2. Preliminaries and notation

Let d be a natural number. We define below the concept d-
Dimensional Cube Sensing Radius which refers to a coverage
area having the shape of a d-dimensional cube.3

Definition 3 (d-Dimensional Cube Sensing Radius). Consider
a sensor Z(x1,x2,...,xd) located in position (x1, x2, . . . , xd), where
0 ≤ x1, x2, . . . , xd ≤ 1. We define the range of the sensor
Z(x1,x2,...,xd) to be the area delimited by the d-dimensional cube
with the 2d vertices (x1 ± r, x2 ± r, . . . xd ± r), and call r the
d-dimensional cube sensing radius of the sensor.

We also define the cost measure a-total movement as follows.

Definition 4 (a-total movement). Let a > 0 be a constant. Sup-
pose the displacement of the i-th sensor is a distance di. The
a-total movement is defined as the sum Ma :=

∑n
i=1 da

i . (We as-
sume that, r and n are chosen so as to allow full coverage of the
d-dimensional cube and a > 0.)

3Recall that the generally accepted coverage area of a sensor is a d-
dimensional ball. Our results can be easily converted to this model by d-
dimensional ball circumscribing the d-dimensional cube.
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In the analysis below we consider the Beta distribution. We
say that a random variable concentrated on the interval [0, 1]
has the B(a, b) distribution with parameters a, b, if it has the
probability density function

f (x) =
1

B(a, b)
xa−1(1 − x)b−1, (1)

where the Euler Beta function (see [17])

B(a, b) =

∫ 1

0
xa−1(1 − x)b−1dx (2)

is defined for all complex numbers a, b such as <(a) > 0 and
<(b) > 0. Let us notice that for any integer numbers a, b ≥ 0,
we have

B(a, b)−1 =

(
a + b − 1

a

)
a. (3)

1.3. Results of the paper

We consider n mobile sensors with identical d−dimensional
cube sensing radius r placed independently at random with the
uniform distribution in the d−dimensional unit cube (d ≥ 2).
We want to have the sensors move from their current location
to positions that cover the d−dimensional cube in the sense
that every point in the d−dimensional cube is within the range
of at least one sensor. When a sensor is displaced on the
d−dimensional cube a distance equal to dx the cost of the dis-
placement is da

x for some (fixed) power a > 0 of the distance
dx traveled. We assume that r and n are chosen so as to allow
full coverage of the d−dimensional cube, i.e., every point of the
region is within the range of at least one sensor.

Omitting unnecessary low order terms, the main contribution
of the paper in Section 2 is to show the existence of a tradeoff
between d−dimensional cube sensing radius and a-total move-
ment that can be summarized as follows:

1. For the case of the d−dimensional cube sensing radius 1
2n1/d

and n = md for some m ∈ N we present an algorithm that
uses O

(
n1− a

2d

)
total expected movement (see Algorithm 2

and Theorem 5).
2. If the d−dimensional cube sensing radius is greater than

33/d

(31/d−1)(31/d−1)
1

2n1/d and n is a natural number then the ex-

pected movement is O
(
n1− a

2d

(
ln n
n

) a
2d
)

(see Algorithm 3 and
Theorem 7).

Notice that, for a = d Algorithm MVd(n, 1) (see Algorithm 2)
uses O(

√
n) total expected movement while Algorithm LVd(n)

(see Algorithm 3) uses O(
√

ln n) total expected movement.

Therefore this sharp decrease from O(n1− a
2d ) to O

(
n1− a

2d

(
ln n
n

) a
2d
)

in the a-total movement of the sensors to attain complete cov-
erage of the d−dimensional cube indicates the presence of an
interesting threshold on the d−dimensional cube sensing radius
when it increases from 1

2n1/d to 33/d

(31/d−1)(31/d−1)
1

2n1/d .
In Section 3 we simulate Algorithm 2 and provide the results

of the simulations. Finally, Section 4 is the conclusion.

 

Fig. 1: Nine mobile sensors located in the interrior of a unit square move to
new positions according to steps (1 − 6) of Algorithm MV2(9, 1).

2. Displacement in d−dimensional cube

Assume that n mobile sensors with the same d−dimensional
cube sensing radius are thrown uniformly and independently at
random in the d−dimensional unit cube [0, 1]d. Let a > 0 and
d ≥ 2.

Our first result is an upper bound on the expected a−total
movement for the case, where the d−dimensional cube sensing
radius is 1

2n1/d . Observe that in this case the only way for the
sensors to attain complete coverage of the d−dimensional unit
cube is to occupy the positions(

l1
n1/d −

1
2n1/d ,

l2
n1/d −

1
2n1/d , . . . ,

ld
n1/d −

1
2n1/d

)
,

for 1 ≤ l1, l2, . . . , ld ≤ n1/d and l1, l2, . . . , ld ∈ N. We present a
recursive algorithm MVd(n, 1) (see Algoritm 2 for y = 1) that
uses O

(
n1− a

2d

)
expected a−total movement.

The phases of the algorithm are d. When the sensors are in
the i−th phase then they are moved in the (d−i+1)−dimensional
cubes. During the first phase (see steps (1 − 6)) we apply
a greedy strategy and move all the sensors only according to
the first coordinate. Figure 1 illustrates the steps (1 − 6) of
Algorithm MV2(n, 1) As a result of the first phase we have
n1/d (d − 1)-dimensional cubes each with n

d−1
d random sensors.

Therefore, n = md for some m ∈ N. Hence the first phase
reduces the sensor movement on the unit d-dimensional cube
to the sensor movement on the unit (d − 1)-dimensional cube.
Then (see steps (7 − 9)) we move sensors in the unit (d − 1)-
dimensional cube. Notice that for the base case d = 1 we exe-
cute algorithm MV1(n, 1).

We prove the following theorem.

Theorem 5. Fix d ∈ N. Let n = md for some m ∈ N and let
a > 0. Assume that n sensors of d-dimensional cube sensing ra-
dius equal to 1

2n1/d are thrown randomly and uniformly and inde-
pendently with the uniform distribution on a unit d-dimensional
cube. The expected a−total movement of algorithm MVd(n, 1)
is in O

(
n1− a

2d

)
.

Proof. First of all, observe that n = md for some m ∈ N (see
step (8) of Algorithm 2). We will prove the statement of the
theorem by mathematical induction. Observe that the base case
for d = 1 follows from Theorem 2 [cf. [12]]. Let us assume the

3



Algorithm 2 MVd(n, y) Sensor displacement on a d-
dimensional cube [0, y]d, when n is dth power of the natural
number and d ≥ 2.
Require: n mobile sensors with identical d-dimensional cube

sensing radius r = 1
2n1/d placed uniformly and indepen-

dently at random on the d−dimensional cube [0, y]d

Ensure: The final positions of the sensors are at the
locations

(
yl1
n1/d −

y
2n1/d ,

yl2
n1/d −

yl2
2n1/d , . . . ,

yld
n1/d −

yld
2n1/d

)
, 1 ≤

l1, l2, . . . , ld ≤ n1/d

and l1, l2, . . . , ld ∈ N (so as to attain coverage of [0, y]d)
1: Sort the initial locations of sensors according to the first

coordinate; the locations
after sorting S 1 = (x1(1), x2(1), . . . , xd(1)), S 2 =

(x1(2), x2(2), . . . , xd(2)), . . .
S n = (x1(n), x2(n), . . . , xd(n)), x1(1) ≤ x1(2) ≤ · · · ≤
x1(n);

2: for j = 1 to n1/d do
3: for i = 1 to n(d−1)/d do
4: Move the sensor S i+( j−1)n1/d at position(

jy
n1/d −

y
2n1/d , xi+( j−1)n1/d (2), . . . , xi+( j−1)n1/d (d)

)
;

5: end for
6: end for
7: for j = 1 to n1/d do
8: Execute MVd−1(n(d−1)/d, y) for sensors

S 1+( j−1)n1/d , S 2+( j−1)n1/d , . . . , S n(d−1)/d+( j−1)n1/d ;
9: end for

result holds for the number d − 1. Let a > 0. We will estimate
the expected a−total movement at the steps (1 − 6). Let Xi be
the ith order statistic, i.e., the position of the ith sensor in the
interval [0, 1] after sorting in step (1). It turns out (see [1]) that
Xi obeys the Beta distribution with parameters i, n − i + 1. We
know that the density function for Xi (see Equation (1)) is

fXi (x) = i
(
n
i

)
xi−1(1 − x)n−i.

Therefore, the expected a−total movement in steps (1 − 6) of
algorithm MVd(n, 1) is equal to

E(a)
(1−6) =

n1/d∑
j=1

jn(d−1)/d∑
i=( j−1)n(d−1)/d+1

i
(
n
i

) ∫ 1

0

∣∣∣∣∣∣x −
(

j
n1/d −

1
2n1/d

)∣∣∣∣∣∣a ×
× xi−1(1 − x)n−idx.

Notice that, the expected a−total movement of algorithm
MV1(n, 1) is equal to

D(a) =

n∑
i=1

i
(
n
i

) ∫ 1

0

∣∣∣∣∣∣x −
(

i
n
−

1
2n

)∣∣∣∣∣∣a xi−1(1 − x)n−idx

=

n1/d∑
j=1

jn(d−1)/d∑
i=( j−1)n(d−1)/d+1

i
(
n
i

) ∫ 1

0

∣∣∣∣∣∣x −
(

i
n
−

1
2n

)∣∣∣∣∣∣a ×
× xi−1(1 − x)n−idx.

According to Theorem 2 [cf. [12]]

D(a) = O(n1− a
2 ), (4)

when a > 0.
Firstly, we estimate E(a)

(1−6), when a ≥ 1. Notice that

|z1 + z2|
a ≤ (|z1|+ |z2|)a ≤ 2a−1(|z1|

a + |z2|
a) for a ≥ 1, z1, z2 ∈ R.

(5)
This inequality is the consequence of the fact that f (x) = xa

is convex over R+ for a ≥ 1. Using Inequality (5) for z1 =

x −
(

i
n −

1
2n

)
and z2 =

(
i
n −

1
2n

)
−

(
j

n1/d −
1

2n1/d

)
we get

∣∣∣∣∣∣x −
(

j
n1/d −

1
2n1/d

)∣∣∣∣∣∣a
≤ 2a−1

(∣∣∣∣∣∣x −
(

i
n
−

1
2n

)∣∣∣∣∣∣a +

∣∣∣∣∣ i
n
−

j
n1/d +

1
2n1/d −

1
2n

∣∣∣∣∣a) . (6)

We apply the definition of the Beta function (see Equation (2))
with parameters i, n − i + 1, as well as Equation (3) to deduce
that

n1/d∑
j=1

jn(d−1)/d∑
i=( j−1)n(d−1)/d+1

i
(
n
i

) ∫ 1

0

∣∣∣∣∣ i
n
−

j
n1/d +

1
2n1/d −

1
2n

∣∣∣∣∣a ×
× xi−1(1 − x)n−idx

=

n1/d∑
j=1

n(d−1)/d∑
k=1

∣∣∣∣∣∣ ( j − 1)n(d−1)/d + k
n

−
j

n1/d +
1

2n1/d −
1

2n

∣∣∣∣∣∣a

=

n1/d∑
j=1

n(d−1)/d∑
k=1

∣∣∣∣∣ kn − 1
2n1/d −

1
2n

∣∣∣∣∣a

≤

n1/d∑
j=1

n(d−1)/d∑
k=1

(
1

2n1/d

)a

=
n1− a

d

2a . (7)

Putting together Formulas (4), (6), and (7) we obtain

E(a)
(1−6) = O(n1− a

2 ) + O(n1− a
d ) = O(n1− a

d ), when a ≥ 1, d ≥ 2
(8)

To estimate E(a)
(1−6), when 0 < a < 1 we define

F(a)
(i, j) = i

(
n
i

) ∫ 1

0

∣∣∣∣∣∣x −
(

j
n1/d −

1
2n1/d

)∣∣∣∣∣∣a xi−1(1 − x)n−idx.

Observe that,

E(a)
(1−6) =

n1/d∑
j=1

jn(d−1)/d∑
i=( j−1)n(d−1)/d+1

F(a)
(i, j).

Then, we use the discrete Hölder inequality with parameters 1
a

4



and 1
1−a to derive

n1/d∑
j=1

jn
d−1

d∑
i=( j−1)n

d−1
d +1

F(a)
(i, j)

≤


n1/d∑
j=1

jn
d−1

d∑
i=( j−1)n

d−1
d +1

(
F(a)

(i, j)

) 1
a


a
1


n1/d∑
j=1

jn
d−1

d∑
i=( j−1)n

d−1
d +1

1


1−a

≤

n1/d∑
j=1

jn(d−1)/d∑
i=( j−1)n(d−1)/d+1

(
F(a)

(i, j)

) 1
a


a

(n)1−a. (9)

Next, we use Hölder inequality for integrals with parameters 1
a

and 1
1−a and get∫ 1

0

∣∣∣∣∣∣x −
(

j
n1/d −

1
2n1/d

)∣∣∣∣∣∣a xi−1(1 − x)n−ii
(
n
i

)
dx

≤

∫ 1

0

(∣∣∣∣∣∣x −
(

j
n1/d −

1
2n1/d

)∣∣∣∣∣∣a
) 1

a

xi−1(1 − x)n−ii
(
n
i

)
dx


a
1

,

so
(
F(a)

(i, j)

) 1
a
≤ F(1)

(i, j). Putting together Equation (8) and Equa-
tion (9) we obtain

E(a)
(1−6) = O

(
n1− a

d

)
, when 0 < a < 1. (10)

Observe that in step (8) of algorithm MVd(n, 1) we have that
n

d−1
d mobile sensors are thrown uniformly and indendently at

random in the unit (d − 1)-dimensional cube. According to in-
ductive assumption the expected a−total movement at the step
(8) is equal O((n

d−1
d )1− a

2(d−1) ). Hence the expected a−total move-
ment in steps (7 − 9) is in O(n1/d(n

d−1
d )1− a

2(d−1) ) = O(n1− a
2d ). No-

tice that the expected a−total movement in steps (1-6) is equal
O(n1− a

d ) (see Formula (8) and Formula (10)). Therefore, the ex-
pected cost of displacement to power a of algorithm MVd(n, 1)
is in O(n1− a

2d ). This gives the claimed estimate for d and com-
pletes the proof of Theorem 5.

Now we study an upper bound on the total displacement,
when the d−dimensional cube sensing radius of the sensors is
larger than 1

2n1/d . We begin with a lemma which will be helpful
in the proof of Theorem 7. The lemma indicates how to scale
the results of Theorem 5 to d−dimensional cube of arbitrary
length and states that Algorithm MVd(n, y) uses O

(
yan1− a

2d

)
ex-

pected a−total movement.

Lemma 6. Fix d ∈ N. Let n = md for some m ∈ N and let a > 0.
Assume that n sensors of d-dimensional cube sensing radius
equal to y

2n1/d are thrown randomly and uniformly and indepen-
dently with the uniform distribution on the [0, y]d. The expected
a−total movement of algorithm MVd(n, y) is in O

(
yan1− a

2d

)
.

Proof. Assume that, n sensors are in the cube [0, y]d. Then,
multiply their coordinates by 1/y. From Theorem 5 the ex-
pected a−total movement in the unit cube [0, 1]d is in O

(
n1− a

2d

)
.

Now by multiplying their coordinates by y we get the result in
the statement of the lemma.

A natural question to ask is: how to exploit the proposed
Algorithm MVd(n, 1) when the number n of nodes is not a
d−th power of natural number. Assume that n sensors have
the d−dimensional cube sensing radius r =

f
2n1/d and f ≥ n1/d

bn1/dc
.

To attain coverage of the cube [0, 1]d choose bn1/dcd sensors at
random and use Algorithm MVd(n, 1) for the chosen sensors.
Then similar arguments hold for Algorithm MVd(n, y).

Notice that for f ≥ 33/d

(31/d−1)(31/d−1) we can do better.
The following theorem states that Algorithm LVd(n) uses

O
(
n1− a

2d

(
ln n
n

) a
2d
)

expected a−total movement.

Algorithm 3 LVd(n) Sensor displacement on a unit d-
dimensional cube when d ≥ 2, p = 9

4

(
2 + a

d

)
, A =

3
4

(
2 + a

d

)
, x0 is the real solution of the equation x

9
4 (2+ a

d ) ln x
= 3

such that x0 ≥ 3
Require: n ≥ dx0e mobile sensors with identical square sens-

ing radius r =
f

2n1/d , f ≥ 33/d

(31/d−1)(31/d−1) placed uniformly
and independently at random on the cube [0, 1]d.

Ensure: The final positions of sensors to attain coverage of the
cube [0, 1]d

1: Divide the d−dimensional unit cube into d−dimensional
subcubes of side 1⌊(

n
p ln n

)1/d
⌋ ;

2: if there is a d-dimensional subcube with fewer than
1
3

n⌊(
n

p ln n

)1/d
⌋d sensors then

3: choose bn1/dcd sensors at random;
4: use Algorithm MVd(n, 1) that moves all n := bn1/dcd sen-

sors to equidistant points that are sufficient to cover the
d-dimensional subcube;

5: else
6: In each d-dimensional subcube choose

⌊
(A ln n)1/d

⌋d
sen-

sors at random and use Algorithm MVd(n, y) with n :=⌊
(A ln n)1/d

⌋d
, y := 1⌊(

n
p ln n

)1/d
⌋ to move the chosen sensors

to equidistant positions so as to cover the d-dimensional
subcube;

7: end if

Theorem 7. Fix d ∈ N \ {1} and a > 0. Let f ≥ 33/d

(31/d−1)(31/d−1)
and n ≥ dx0e, where x0 is the real solution of the equation

x
9
4 (2+ a

d ) ln x
= 3 such that x0 ≥ 3. Assume that n sensors of d-

dimensional cube sensing radius r =
f

2n1/d are thrown randomly
and uniformly and independently with the uniform distribution
on the [0, 1]d. The expected a−total movement of algorithm

LVd(n) is in O
(
n1− a

2d

(
ln n
n

) a
2d
)
.

Proof. Assume that d ∈ N \ {1} and a > 0. Let p = 9
4

(
2 + a

d

)
and A = 3

4

(
2 + a

d

)
, x0 is the real solution of the equation

x
9
4 (2+ a

d ) ln x
= 3 such that x0 ≥ 3. First of all, observe that

n
p ln(n) > 3 for n ≥ dx0e. We will prove that Algorithm LVd(n)

uses O
(
n1− a

2d

(
ln n
n

) a
2d
)

expected a−total movement. There are
two cases to consider.

5



Case 1: There exists a d−dimensional subcube with fewer
than

1
3

n⌊(
n

p ln n

)1/d
⌋d

sensors. In this case choose bn1/dcd sensors uniformly and ran-
domly from n sensors. Applying the inequalities bxc > x − 1
and f ≥ 33/d

(31/d−1)(31/d−1) >
31/d

31/d−1 we deduce that

(
bn1/dc

f
n1/d

)d

>

(
n1/d − 1

n1/d

31/d

31/d − 1

)d

≥ 1 for n ≥ 3.

Therefore, the bn1/dcd chosen sensors are enough to at-
tain the coverage. The expected a−total movement is

O
((
bn1/dcd

)1− a
2d
)

= O
(
n1− a

2d

)
by Theorem 5.

Case 2: All d−dimensional subcubes contain at least
1
3

n⌊(
n

p ln n

)1/d
⌋d sensors. From the inequality bxc ≤ x we deduce

that, ⌊
(A ln n)1/d

⌋d
≤

1
3

n⌊(
n

p ln n

)1/d
⌋d .

Hence it is possible to choose
⌊
(A ln n)1/d

⌋d
sensors at random

in each d-dimensional subcube with more than 1
3

n⌊(
n

p ln n

)1/d
⌋d sen-

sors. Let us consider the sequence

an =
33/d

(31/d − 1)(31/d − 1)

⌊
(A ln n)1/d

⌋ 1
n1/d

( n
p ln n

)1/d
for n ≥ dx0e. Applying inequality bxc > x − 1 we see that

an >
33/d

(31/d − 1)(31/d − 1)

(
(A ln n)1/d − 1

) 1
n1/d×

×

( n
p ln n

)1/d

− 1


=

32/d

(31/d − 1)(31/d − 1)

(
1 −

1
(A ln n)1/d

)
×1 − (

p ln n
n

)1/d (11)

Observe that

p ln n
n
≤

1
3
,

1
A ln n

≤
1
3

for n ≥ dx0e (12)

Putting together Equation (11) and Equation (12) we get

⌊
(A ln n)1/d

⌋d f d

n

( n
p ln n

)1/dd

≥ ad
n > 1.

Therefore,
⌊
(A ln n)1/d

⌋d
chosen sensors are enough to attain

the coverage. By the independence of the sensors positions,
the

⌊
(A ln n)1/d

⌋d
chosen sensors in any given d-dimensional

subcube are distributed randomly and independently with uni-
form distribution over the d-dimensional subcube of side y =

1⌊(
n

p ln n

)1/d
⌋ . By Lemma 6 the expected a−total movement inside

each d-dimensional subcube is

O


 1⌊(

n
p ln n

)1/d
⌋


a (⌊
(A ln n)1/d

⌋d
)1− a

2d

 = O
(

(ln n)
a

2d

n
a
d

(ln n)
)
.

Since, there are
⌊(

n
p ln n

)1/d
⌋d

d-dimensional subcubes, the ex-
pected a−total movement over all d-dimensional subcubes must

be in O
(
n1− a

2d

(
ln n
n

) a
2d
)
. It remains to consider the probability

with which each of these cases occurs. The proof of the theo-
rem will be a consequence of the following Claim.

Claim 8. Let p = 9
4

(
2 + a

d

)
. The probability that fewer than

1
3

n⌊(
n

p ln n

)1/d
⌋d sensors fall in any d-dimensional subcube is <

⌊(
n

p ln n

)1/d
⌋d

n1+ a
2d

.

Proof. (Claim 8) First of all, from the inequality bxc ≤ x we get√√(
2 + a

d

)
ln n

n

( n
p ln n

)1/dd

≤
2
3
.

Hence,

1
3

n⌊(
n

p ln n

)1/d
⌋d ≤

n⌊(
n

p ln n

)1/d
⌋d −

√√√√√√√(
2 + a

d

)
n ln n⌊(

n
p ln n

)1/d
⌋d . (13)

The number of sensors falling in a d-dimensional subcube is
a Bernoulli process with probability of success 1⌊(

n
p ln n

)1/d
⌋d . By

Chernoff bounds, the probability that a given d-dimensional
subcube has fewer than

n⌊(
n

p ln n

)1/d
⌋d −

√√√√√√√(
2 + a

d

)
n ln n⌊(

n
p ln n

)1/d
⌋d

sensors is less than e−(1+ a
2d ) ln n < 1

n1+ a
2d
. Specifically we use the

Chernoff bound

Pr[X < (1 − δ)m] < e−δ
2m/2,

m = n⌊(
n

p ln n

)1/d
⌋d , δ =

√
(2+ a

d ) ln n
n

⌊(
n

p ln n

)1/d
⌋d
. As there are⌊(

n
p ln n

)1/d
⌋d

d-dimensional subcubes, the event that one has
fewer than

n⌊(
n

p ln n

)1/d
⌋d −

√√√√√√√(
2 + a

d

)
n ln n⌊(

n
p ln n

)1/d
⌋d .
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Fig. 2: The expected 2−total movement of Algorithm MV2(n, 1); M2 = 1
6
√

n

sensors occurs with probability less than

⌊(
n

p ln n

)1/d
⌋d

n1+ a
2d

. This and
Equation (13) completes the proof of Claim 8.

Using Claim 8 we can upper bound the expected a−total
movement as follows:1 −

⌊(
n

p ln n

)1/d
⌋d

n1+ a
2d

O
n1− a

2d

(
ln n
n

) a
2d
 +


⌊(

n
p ln n

)1/d
⌋d

n1+ a
2d

 O
(
n1− a

2d

)

= O

n1− a
2d

(
ln n
n

) a
2d
 ,

which proves Theorem 7.

3. Simulation Results

In this section we use simulation results to analyze how ran-
dom placement of sensors on the square impacts the expected
a−total movement.

We repeated 20 times the following experiments. Firstly,
for each number of sensors n ∈ {22, 32, 42, . . . , 602} we gen-
erated 10 random placements. Then we calculated the ex-
pected a−total movement according to Algorithm MV2(n, y).
Let En,10 be the average of 10 measurements of the expected
a−total movement. Then, we placed the points in the set
{(n, En,10) : n = 22, 32, 42, . . . , 602} into the picture.

Figures 2 and 3 illustrates the described experiments for Al-
gorithm MV2(n, 1) when a = 2 and a = 4. The additional line in
the above pictures is the plot of the function which is the theo-
retical estimation. Black dots which represent numerical results
are situated near the theoretical line. According to the proof of
Theorem 5 the steps (7-9) of Algorithm MV2(n, 1) contribute
the asymptotics. Notice that, the expected a−total movement in
steps (7-9) of Algorithm MV2(n, 1) is equal to

E(a)
(7−9) =

√
n

√
n∑

i=1

i
(√

n
i

) ∫ 1

0

∣∣∣∣∣∣x −
(

j
√

n
−

1
2
√

n

)∣∣∣∣∣∣a ×
× xi−1(1 − x)

√
n−idx.
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Fig. 3: The expected 4−total movement of Algorithm MV2(n, 1); M4 = 1
10
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Fig. 4: The expected 2−total movement of Algorithm MV2
(
n, 1

3

)
; M2 = 1

54
√

n

Applying the Formulas for E(2)
(7−9) and E(4)

(7−9) in any mathemati-
cal software that performs symbolic calculation we get

E(2)
(7−9) ∼

1
6
√

n and E(4)
(7−9) ∼

1
10
.

Therefore, M2 = 1
6

√
n and M4 = 1

10 .
Figures 4 and 5 illustrates the described experiments for Al-

gorithm MV2(n, 1
3 ) when a = 2 and MV2(n, 2) when a = 4. The

additional line in the above pictures is the plot of the function
which is the theoretical estimation. Black dots which represent
numerical results are situated near the theoretical line. Accord-
ing to the proof of Lemma 6 we have M2 =

(
1
3

)2 1
6

√
n = 1

54

√
n

and M4 = 24 1
10 = 4

5 .

3.1. Mathematica code

The following Mathematica code was used to simulate Algo-
rithm 2 for d = 2, a = 2 and y = 1.

CH2[ n ] : = Block [{M1, L1 , M2, L2 = 0 ,L} ,
M1= S o r t [ RandomReal [{0 , 1} , n ] ] ;
L1=Sum[Sum [ (M1[ [ i ] ] − j / S q r t [ n ]

+ 1 / ( 2∗ S q r t [ n ] ) ) ˆ 2 ,
{ i , ( j − 1)∗ S q r t [ n ] + 1 , j ∗ S q r t [ n ] } ] ,

7



500 1000 1500 2000 2500 3000 3500

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 5: The expected 4−total movement of Algorithm MV2 (n, 2) ; M4 = 4
5

{ j , 1 , S q r t [ n ] } ] ;
Do [M2 = S o r t [ RandomReal [{0 , 1} , S q r t [ n ] ] ] ;

L2=L2+Sum [ (M2[ [ i ] ] − ( i / S q r t [ n ]
−1/(2∗ S q r t [ n ] ) ) ) ˆ 2 , { i , 1 , S q r t [ n ] } ] ,

{ j , 1 , S q r t [ n ] } ] ;
L=L1+L2 ] ;

SR [ n , I P ] : = Mean [ Tab le [CH2[ n ] ,{ IP } ] ] ;

p o i n t s [ m ] : = Block [{ d a t a ={}} ,
Do [ d a t a = J o i n [ da t a , Tab le [{ n ˆ 2 , SR [ n ˆ 2 , 1 0 ]} ,
{n , 4 , 6 0 , 1 } ] ] , { c o u n t e r , 1 ,m} ] ; d a t a ] ;

P l o t [{ S q r t [ n ] / 6 } , { n , 2 , 3 6 0 0} ,
P l o t S t y l e −>D i r e c t i v e [ Thick , Black ] ,
Ep i log −>{P o i n t S i z e [ Medium ] ,
P o i n t [ p o i n t s [ 2 0 ] ] } ,
T i c k s S t y l e −>D i r e c t i v e [ Black , 3 5 ] ,
AxesOr ig in −>{0 ,0} ,
A x e s S t y l e −> D i r e c t i v e [ Thick ] ]

4. Conclusion

In this paper we studied the movement of n sensors with iden-
tical square sensing radius in d dimensions when the cost of
movement of sensor is proportional to some (fixed) power a > 0
of the distance traveled. We obtained bounds on the movement
depending on the range of sensors. An interesting problem for
future work is to evaluate experimental results from some real-
life sensor deployments. Also experimental validation of the
results would be useful. However this might be rather expen-
sive due to the large number of sensors that would be required
for reliable estimation.
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