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ABSTRACT

Media access control (MAC) address spoofing can result
in the unauthorized use of network resources. This paper
demonstrates a novel approach, which incorporates radio
frequency fingerprinting (RFF) into a wireless intrusion de
tection system (IDS), for detecting this attack. RFF is a
technique that is used to uniquely identify a transceiver
based on the transient portion of the signal it generates.
Moreover, the success rate of a wireless IDS is also im-
proved by correlating several observations in time, using
a Bayesian filter. Simulation results, with an average suc-
cess rate of (94-100%), support the feasibility of employ-
ing RFF and Bayesian filtering techniques to successfully
address the aforementioned problem.

KEY WORDS

Intrusion Detection, Media Access Control, Radio Fre-
guency Fingerprinting, Wireless Networks, Network Secu-
rity, Bayesian Filter.

1 Introduction

Unlike wired IDSs, wireless IDSs for 802.11 [1] networks
must also defend against attacks including rogue access
points, media access control (MAC) address spoofing and
password-guessing for 802.1x [2] (authentication stashdar
[3] used by the 802.11i security infrastructure [4]), actor

ing to Potter [5].

While commercial IDS products such as AirDefense,
Netstumbler and Airtraf are currently available, they tend
to focus primarily on the detection of rogue access points,
as indicated by Potter in [5]. Although AirDefense does ad-
dress the issue of MAC address spoofing, it can only make
a distinction between transceivers from different manufac
turers. In terms of solutions that are open source, Kismet
and Snort-wireless are used to counter war driving (driv-
ing in a vehicle and searching for the presence of wireless
networks) and to detect rogue access points in ad hoc net-
works respectively. Finally, the use of an agent framework
for detecting rogue access points and unauthorized clients
(nodes) is explored by Chirumamilla and Ramamurthy in
[6]. The main disadvantage with this approach is the use of
a list of MAC addresses, which can be spoofed, for identi-
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fying authorized access points and nodes.
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Figure 1. Signal from a 802.11b Transceiver

The problem that is addressed in this paper is the mal-
leability of the identifier used for access control. In theea
of MAC address spoofing, the address itself (used as an
identifier) is acquired over the air by an intruder and subse-
guently used to gain unauthorized access to the network.

What is required is a form of identification that is non-
malleable (cannot be spoofed easily). Pioneered by the
military to track the movement of enemy troops and sub-
sequently implemented by some cellular carriers (e.g. Bell
Nynex) to combat cloning fraud [7], radio frequency finger-
printing (RFF) has been used to uniquely identify a given
transceiver, based on its transceiverprint. A transceiver
print consists of features, which have been extracted from
the turn-on transient portion of a signal [8]. Figure 1 iHlus
trates the location of the transient from the SMC 802.11b
transceiver (ID:798). The key benefit of this technique is
that a transient reflects the unique hardware charactevristi
of a transceiver and thus cannot be easily forged, unless the
entire circuitry of a transceiver can be accurately repdida
(e.g. theft of an authorized device).

In this paper, a novel approach is presented whereby
a profile of a transceiver (created using RFF) is used for
anomaly-based intrusion detection. By associating a MAC
address with the corresponding transceiver profile, the ca-
pabilities of a wireless IDS is further enhanced.



It is generally known that current IDSs render a de-
cision, as to whether an observed behavior/event is normal
or anomalous, based onsingle observation. By delay-
ing this decision untimultiple observations have been an-
alyzed, the level of uncertainty is reduced, resulting in a
higher success rate. Thus, the Bayesian filter, presented by
Russell and Norvig in [9], has been used to achieve this
goal.

The remaining sections of the paper are organized as
follows. The details of using RFF for anomaly-based de-
tection is presented in Section 2, followed by the results of
the simulation in Section 3. Section 4 briefly summarizes
other related work in the area of RFF. Finally, the conclu-
sions drawn are reported in Section 5.

2 Novel Approach: RFF for Anomaly-based
Detection

This section describes the framework and the key activities
that are undertaken to fulfill two primary objectives: the
creation of a profile for each transceiver and the specifica-
tion of the classification system.

2.1 Intrusion Detection Framework

The intrusion detection framework is illustrated in Fig@re
The overall objective is to classify an observed transeeive
print as normal (belongs to the transceiver of a device with
a given MAC address) or anomalous (belongs to another
transceiver).
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Figure 2. Anomaly-based Intrusion Detection

The flow of information begins with the conversion
of an analog signal to a digital signal using an analog to
digital converter (will not be covered in detail). Once in a
digital form, the transient portion of the signal is extestt
by the transient extractor. Upon isolating the transidm, t
amplitude, phase and frequency components of the tran-
sient are subsequently extracted by the feature extrdntor.
turn, these components are used for the extraction of spe-
cific features that define a transceiverprint. The classgier
then used to determine the probability of a match between

a transceiverprint and each of the transceiver profilesan th
IDS. Finally, the Bayesian filter is applied to render a fi-
nal decision regarding the status (normal/anomalous) of a
transceiverprint.

A transceiver profile is created by extracting the
transceiverprints from a set of digital signals and storing
the corresponding centroid and the covariance matrix (dis-
cussed in section 2.4) in a profile. This exercise is under-
taken prior to the detection process. Due to factors, such as
transceiver aging, there is a need to periodically update th
profiles. One possible strategy would be to continuously re-
calculate the centroid and the covariance matrix (after suc
cessful transceiver identification) using one or more recen
transceiverprints and pre-established thresholds (¢ag- ¢
sification error rate).

2.2 Transient Extractor

As the unique characteristics of transceivers are maeiflest

in the transient portion of a signal, the key objective is to
extract the transient using the phase characteristicseof th
signal, as proposed by Hall, Barbeau and Kranakis [8]. In
brief, the successful detection of the start of the trarisien
is based on the fact that the variance of the phase remains
constant until the start of the transient. The end of the tran
sient is identified in an experimental manner.

2.3 Feature Extractor

Once the transient has been isolated, the next requirement
is to extract the three primary components from the tran-
sient. The amplitude and phase [10] components are ob-
tained using Eq.1 and Eq.2 respectively.

at) = Vi*(t) + ¢*(t) 1)
0(t) = tan™* {%} (2)

The preferred approach for obtaining the frequency
component of a non-stationary signal (e.g. transient) is
the application of the Discrete Wavelet Transform (DWT)
[11]. Due to its lower computational complexity, as stated
by Choe et al. [12] and Hippenstiel and Payal [13], the
Daubechies filter is used to obtain the DWT coefficients.

While other research teams have focused primarily
on the use of a single component (e.g. amplitude or fre-
guency) for feature extraction, we have opted to make use
of all three components, namely amplitude, phase and fre-
guency. This strategy increases the number of components
from which a set of features (feature vector) are derived,
thus enhancing the characterization of the transceivers.

Figure 3 displays a signal from the SMC transceiver
798 as well as the frequency component (DWT coeffi-
cients) of the transient (between vertical lines in the first

plot).
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Figure 3. Frequency component of Transceiver 798

Once these components have been extracted, a feature
vector, defined by the feature selection/profile definition
process (discussed in Section 2.6), is created to represent
a transceiverprint. Please note that the term transceiver-
print and feature vector will be used interchangeably in the
following sections.

2.4 Classifier

With regards to classification, the guiding factor is thechee
to determine the probability of a match between a given
transceiverprint and each of the transceiver profiles.
Although the Probabilistic Neural Network (PNN)
[14] has been used by many research teams including Shaw
and Kinsner [15] and Hunter [16], the issue of scalability
(memory requirement per profile (MPP)) prohibits its use
in real time systems. In contrast, the MPP of a statistical
classifier is very modest and is defined by Eq.3

®)

wheren is the number of featuresy is the size in
bytes, andnn andmn? represent the memory requirement
for the centroid and covariance matrix respectively. 8agtti
n to ten andm to four, results in a MPP of 440 bytes in
comparison to 61,440 bytes (2048 bytes per training pattern
multiplied by 30 patterns) required for PNN.

A statistical classifier uses a set of variables, in this
case a set of features, to represent a vector that is to be
classified. The probability of a match is calculated using
a Kalman filter from Bar-Shalom [17] that has been modi-
fied:

MPP(m,n) = mn + m(n?)

Pa) = exp | 5@ —w) V@] @
whereau represents the feature vector to be classifiechr-
responds to the centroid (vector with elements represgntin
the average of each of the features) &hi$ the covariance
matrix, which characterizes the dispersion or variabiity
each feature with respect to one another. EQ.4 returns a

probability based on the relationship between an observed
feature vector and the profile of a transceiver.

2.5 Bayesian Filter

In a wireless environment, characterized by noise and in-
terference, there is a potential for increased variabilgy
tween signals from a given transceiver. The Bayesian filter
probabilistically estimates the state of a system fromynois
observations. We will use Figure 4 to illustrate the appli-
cation of the Bayesian filter to 10 transceiverprints from
transceiver SMC 798.

In RFF, the state is defined as a transceiver (from the
transceiver space: x-axis) to which a transceiverprintfro
SMC 798 could potentially belong to. At each pointin time
t, a probability distribution, callebelief over the statexf(;)
space, represents the uncertainty and is denotBdids:; ).
Initially, the Bel(x() or probability is uniformly distributed
att = 0. This is demonstrated by the similar height of the
vertical bars (y-axis) along the x-axis for transceiverpri
number one. Actual classification of the 10 transceiver-
prints begins with transceiverprint number two on the z-
axis.

Therefore, at = 1, the probability distribution asso-
ciated with the first transceiverprint (z=2) is obtainedhfro
the classifier. The filter sequentially estimates such fselie
using Eq.5 for(t = 1,2,...,10). At each iteration, the
belief at timet represents the current probability that has
been influenced by the probability of the previous observa-
tion (transceiverprinty, att — 1.

Bel(xy) = p(a¢|o)Bel(xi—1) (5)

Based on the normalized distributiontat 10, it is
clearly evident that there is a high probability of a match,
between the transceiverprints and transceiver SMC 798.

Bayesian Probability for Transceiver: 798

Figure 4. Bayesian Probability: Transceiver 798

2.6 Feature Selection/Profile Definition

In order to define a profile (for each transceiver), one must
first define the composition of a transceiverprint. The key



objective is to select a set of features that have low intra-
transceiver variability (within a transceiver) and higkein
transceiver variability (between transceivers).

In order to determine the two classes of variability, the
use of euclidian distance (ED) and clustering techniques of
Multivariate Analysis (MVA) are employed [18]. The fea-
tures (variables), to be analyzed using MVA, are extracted
from the three components of the signal.

Thus, the initial set of ten features (transceiverprint)
is comprised of the following:

Standard deviation of normalized amplitude, Stan-
dard deviation of normalized phase, Standard deviation of
normalized frequency, Variance of change in amplitude,
Standard deviation of normalized in-phase data, Standard
deviation of normalized quadrature data, Standard devia-
tion of normalized amplitude (mean centered), Power per
section, Standard deviation of phase (normalized using
mean) and the Average change in DWT coefficients.

In order to refrain from a detailed treatment of each
feature, a brief overview of the first four features is pro-
vided next:

Standard deviation of normalized amplitude is defined
as
(An - Man)2 (6)

OAn =

where A,, represents the normalized instantaneous ampli-
tude (Eq.1) and is denoted q%% While A; represents
the amplitude at time instant(t = 1,2,...,N), M, =
max{A;} and it is the maximum of the instantaneous am-
plitudes. Finally, the mean of the normalized amplitudes
M, is defined ast- 37" | A,,.

The Standard deviation of normalized phase and the
Standard deviation of normalized frequency are similarly
defined by substitutingd; with the phase and frequency
data (DWT coefficients) respectively.

Variance of change in amplitude is defined as

=% ((DAq) ~( <DL>> ™

whereD 4, is the difference in the amplitudgd; — A, 4,
andN is the size of the transient.

The extraction of the 10 features from each transient
results in a set of feature vectors referred to as a cluster.
In order to assess the intertransceiver variability of two o
more transceivers (clusters), a centroid (composed of the
average value of each of the features in the vectors) is cre-
ated for each cluster. The centroids as well as the vartabili
between the SMC transceivers are illustrated in Figure 5.

Intratransceiver variability, on the other hand, is de-
picted in Figure 6. The individual data curves represent the
ED of each of the 31 transceiverprints from the correspond-
ing centroids. The transceiverprints have been sortedibase
on the ED in order to determine the range of the dispersion.

Once the composition of a transceiverprint has been
established, through an iterative process of profiling and
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classification, a subset of these transceiverprints is tesed
create the profile (centroid and the covariance matrix).

3 Simulation

The purpose of the simulation was to primarily assess the
composition of the transceiverprint based on the classifica
tion success rate (metric). In order to fulfill this objeetiv
the following steps were carried out using a set of signals
from each transceiver:

For each transceiver being profiled, the predefined
features were extracted from the transients. A subset
(approximately 31) of the transceiverprints was selected
(based on the ED) and subsequently used to create a cen-
troid and covariance matrix. The remaining transceiver-
prints (approximately 60) were used for testing purposes.

The actual simulation was carried out by: selecting
a transceiver to be tested (from a list); obtaining a set of
10 consecutive transceiverprints (for that transceivemf
a given starting point (changed between each iteration) in
the test data set; classifying each of the 10 transceivesgpri
and thus obtaining the corresponding probability distribu
tions; and finally determining the transceiver with the high
est probability using the Bayesian filter.



3.1 Details of Simulation

In order to ensure statistical significance, 100 signalsfro
each of the 14 802.11b transceivers (3COM-2, DLink-
2, SMC-4, Spectrum-2, Breezenet-3, Lucent-1) were cap-
tured for the purpose of RFF. All subsequent processing
and simulations were carried out using Matlab software and
associated tools. As far as the simulation platform is con-
cerned, a notebook (HP Pavilion N5445), with 256 Mbs of
memory and running XP and Matlab software, was used.

3.2 Simulation Results - RFF and Bayesian
Filter

After running the simulation for 50 iterations, the follow-
ing classification success rates (no.of correct classiicat
/ number of iterations) (Table 1) were obtained.

Based on the simulation results, there are some ob-
servations that are noteworthy. First, the high success rat
for most of the transceivers, especially those from the same
manufacturer, attest to the quality of the characteriratio
the transceivers.

Spectrum| % Dlink % SMC | %
700 100 552 100 | 991 | 100
759 88 553 98 798 | 100

758 96
794 | 100
3Com % | Breezenetf % | Lucent| %
644 100 864 100 | 200 | 100
863 100 52 100
100 100

Table 1. Classification Success Rate

Second, an improvement in the success rates achieved
by the classifer (e.g. from 92% to 100% and from 95% to
100% for transceivers SMC 794 and 3Com 863) provides
evidence to support the use of the Bayesian filter.

Finally, as expected, the success rates for transceivers
SMC 758, Spectrum 759 and Dlink 553 reflect the lower
intertransceiver variability between transceivers frdra t
same manufacturer.

As current classifiers for RFF are typically based on
some variant of neural networks e.g. PNN and Artificial
Neural Network (ANN) used by Zuidweg and Zuidweg
[19], and Self Organizing Maps by Kayacik et al. [20],

a direct comparison of the simulation results is rather-diffi
cult.

Nevertheless, the type of research carried out by Choe
[12] is similar to some degree. However, the number
of profiled transceivers was limited to three (2-Motorola
HT-220, 1-Motorola MX-330) in comparison to the 14
802.11b transceivers used in this project. Despite the in-
creased complexity, the average success rate of (94-100%),

achieved using RFF and Bayesian filter, is consistent with
their results of (94%).

4 Related Work

This section provides a brief overview of the various re-
search initiatives that have been undertaken to address the
requirements of the RFF process.

Radio Transmitter Fingerprints

Inthe paper by Ellis and Serinken [21], the authors examine
the amplitude and phase components of signals and arrive
at the conclusion that all transceivers do possess some con-
sistent features.

Detection of Transients

The detection of transients, based on the variance of the
amplitude, is proposed by Shaw and Kinsner [15] and Ure-
ten and Serinken [22].

Feature Selection

As far as the selection of features is concerned, the use of
the Probabilistic Neural Network (PNN) by Specht [23] is
explored by Hunter in [16].

Classification of Transceiverprint

In terms of classification, different approaches have been
proposed. In the paper by Somervuo and Kohonen [24],
the authors make use of the Self-Organizing Map and a
Learning Vector Quantization (LVQ) algorithm to support
variable-length feature sequences used for classification
While the use DWT coefficients is explored by Hippen-
stiel and Payal in [13], Toonstra and Kinsner [25] exploit
the properties of genetic algorithms for classification-pur
poses.

5 Conclusion

Based on the simulation results (average classification suc
cess rate of 94-100%), the use of RFF and Bayesian filter
for anomaly-based intrusion detection is technically ifeas
ble.

More specifically, the characterization of transceivers
using multiple features has proven to be effective (high
classification rate). In addition, the use of a statistitad-c
sifier that is memory conscious (440 bytes per transceiver
profile) could achieve sufficient performance for support-
ing real-time applications. Furthermore, delaying thelfina
decision until a sufficient number of transceiverprintsénav
been classified, increases the confidence level and classifi-
cation success rate.

Nevertheless, there are some issues, which warrant
further attention. First and foremost, the success rates
should be improved by optimizing the composition of
the transceiverprints and validating them using additiona
transceivers from the same manufacturer. Second, it would
prove beneficial to repeat the profiling exercise periotiical
in order to determine the impact of various factors, e.g.
transceiver aging, on the classification success ratellfina
as far as scalability is concerned, the comparison of assingl



transceiverprint to multiple transceiver profiles shouitlyo

be carried out during the profiling phase. During the execu-
tion phase of the IDS, the classifier and the Bayesian filter
will be applied to the target profile only, along with appro-
priate thresholds (e.g. level of correlation). This wilt et

us to determine, whether or not, an observed transceiver-
print belongs to the target transceiver, which is assatiate
with a given MAC address.

6 Acknowledgments

The authors graciously acknowledge the financial sup-
port received from the following organizations: Natural
Sciences and Engineering Research Council of Canada
(NSERC) and Mathematics of Information Technology
and Complex Systems (MITACS). In addition, the authors
also acknowledge the support received from Lucent, SMC,
Spectrum, D-Link, BreezeNet and 3COM.

References

[1] Working Group for Wireless Local Area Networks.
IEEE Standard for Wireless LAN MAC and PHY
Specifications. http://standards.ieee.org/wireless,
1997.

[2] Frank Robinson. 802.11i and WPA Up Closilet-
work Computingpages 79-82, 2004.

[3] Working Group for Wireless Local Area Net-
works. Port Based Network Access Control.
http://standards.ieee.org/wireless, August 2003.

[4] Working Group for Wireless Local Area Net-
works. MAC  Security Enhancements.
http://standards.ieee.org/wireless, June 2004.

[5] Bruce Potter. Wireless Intrusion DetectioWireless
Security pages 4-5, 2004.

[6] Mohan K. Chirumamilla and Byrav Ramamurthy.
Agent based intrusion detection and response system
for wireless LANs. InCommunicationspages 492—
496. IEEE, May 2003.

[7] Michael J. Riezenman. Cellular security: better, but
foes still lurk. IEEE Spectrumpages 39-42, June
2000.

[8] Jeyanthi Hall, Michel Barbeau, and Evangelos
Kranakis. Detection of transient in radio frequency
fingerprinting using signal phase. Mireless and
Optical Communicationgages 13-18. ACTA Press,
July 2003.

[9] S.J. Russell and P. NorvidArtificial Intelligence: A
Modern Approach Prentice Hall, 2002.

[10] John G. Proakis and Dimitris G. Manolaki®igital
Signal ProcessingPrentice Hall PTR, 1996.

[11] Stephane MallatA Wavelet Tour of Signal Process-
ing. Academic Press, 1999.

[12] H. Choe, C.E. Poole, A.M. Yu, and H.H. Szu. Novel
identification of intercepted signals from unknown ra-
dio transmittersSPIE 2491:504-516, 1995.

[13] Ralph D. Hippenstiel and Yalcin Payal. Wavelet based
transmitter identification. Innternational Sympo-
sium on Signal Processing and its Applicatip@®ld

Coast Australia, August 1996.

[14] Laurene FausettFundamentals of Neural Networks
Architectures, Algorithms and ApplicatianBrentice

Hall, 1994.

[15] D. Shaw and W. Kinsner. Multifractal modelling of
radio transmitter transients for classificationdam-
munications Power and Computingages 306—312,

Winnipeg Manitoba, May 1997. IEEE.

[16] Andrew Hunter. Feature selection using probabilis-
tic neural networksNeural Computing and Applica-

tions, 9:124-132, 2000.

[17] X.-R. Li Y. Bar-Shalom and T. KirubarajarEstima-
tion with Applications to Tracking and Navigation

John Wiley, 2001.

[18] Jr. Joseph F. Hair, Rolph E. Anderson, and William
C. Black Ronald L. TathamMultivariate Data Anal-

ysis Prentice Hall, 1998.

[19] Johan Zuidweg and Han ZuidwedNext Generation

Intelligent Networks Artech House, 2002.

[20] H. Gunes Kayacik, A. Nur Zincir-Heywood, and Mal-
colm I. Heywood. On the Capability of an SOM
based Intrusion Detection System. MNeural Net-

works pages 1808-1813. IEEE, July 2003.

[21] K.J. Ellis and N. Serinken. Characteristics of radio
transmitter fingerprintsRadio Science36:585-597,

2001.

[22] Oktay Ureten and Nur Serinken. Detection of ra-
dio transmitter turn-on transient&lectronic Letters

35:1996-1997, 1999.

[23] D.F. Specht. Probabilistic neural networks for clas-
sification mapping or associative memory. |EEE
International Conference on Neural Networksges

525-532. IEEE, 1988.

[24] Panu Somervuo and Teuvo Kohonen. Self-Organizing
Maps and Learning Vector Quantization for Feature
SequencesNeural Processing Letterd0:151-159,

1999.

[25] J. Toonstra and W. Kinsner. Transient analysis and
genetic algorithms for classification. MVESCAN

IEEE, 1995.



