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ABSTRACT
Media access control (MAC) address spoofing can result
in the unauthorized use of network resources. This paper
demonstrates a novel approach, which incorporates radio
frequency fingerprinting (RFF) into a wireless intrusion de-
tection system (IDS), for detecting this attack. RFF is a
technique that is used to uniquely identify a transceiver
based on the transient portion of the signal it generates.
Moreover, the success rate of a wireless IDS is also im-
proved by correlating several observations in time, using
a Bayesian filter. Simulation results, with an average suc-
cess rate of (94-100%), support the feasibility of employ-
ing RFF and Bayesian filtering techniques to successfully
address the aforementioned problem.
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1 Introduction

Unlike wired IDSs, wireless IDSs for 802.11 [1] networks
must also defend against attacks including rogue access
points, media access control (MAC) address spoofing and
password-guessing for 802.1x [2] (authentication standard
[3] used by the 802.11i security infrastructure [4]), accord-
ing to Potter [5].

While commercial IDS products such as AirDefense,
Netstumbler and Airtraf are currently available, they tend
to focus primarily on the detection of rogue access points,
as indicated by Potter in [5]. Although AirDefense does ad-
dress the issue of MAC address spoofing, it can only make
a distinction between transceivers from different manufac-
turers. In terms of solutions that are open source, Kismet
and Snort-wireless are used to counter war driving (driv-
ing in a vehicle and searching for the presence of wireless
networks) and to detect rogue access points in ad hoc net-
works respectively. Finally, the use of an agent framework
for detecting rogue access points and unauthorized clients
(nodes) is explored by Chirumamilla and Ramamurthy in
[6]. The main disadvantage with this approach is the use of
a list of MAC addresses, which can be spoofed, for identi-

fying authorized access points and nodes.
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Figure 1. Signal from a 802.11b Transceiver

The problem that is addressed in this paper is the mal-
leability of the identifier used for access control. In the case
of MAC address spoofing, the address itself (used as an
identifier) is acquired over the air by an intruder and subse-
quently used to gain unauthorized access to the network.

What is required is a form of identification that is non-
malleable (cannot be spoofed easily). Pioneered by the
military to track the movement of enemy troops and sub-
sequently implemented by some cellular carriers (e.g. Bell
Nynex) to combat cloning fraud [7], radio frequency finger-
printing (RFF) has been used to uniquely identify a given
transceiver, based on its transceiverprint. A transceiver-
print consists of features, which have been extracted from
the turn-on transient portion of a signal [8]. Figure 1 illus-
trates the location of the transient from the SMC 802.11b
transceiver (ID:798). The key benefit of this technique is
that a transient reflects the unique hardware characteristics
of a transceiver and thus cannot be easily forged, unless the
entire circuitry of a transceiver can be accurately replicated
(e.g. theft of an authorized device).

In this paper, a novel approach is presented whereby
a profile of a transceiver (created using RFF) is used for
anomaly-based intrusion detection. By associating a MAC
address with the corresponding transceiver profile, the ca-
pabilities of a wireless IDS is further enhanced.



It is generally known that current IDSs render a de-
cision, as to whether an observed behavior/event is normal
or anomalous, based on asingle observation. By delay-
ing this decision untilmultipleobservations have been an-
alyzed, the level of uncertainty is reduced, resulting in a
higher success rate. Thus, the Bayesian filter, presented by
Russell and Norvig in [9], has been used to achieve this
goal.

The remaining sections of the paper are organized as
follows. The details of using RFF for anomaly-based de-
tection is presented in Section 2, followed by the results of
the simulation in Section 3. Section 4 briefly summarizes
other related work in the area of RFF. Finally, the conclu-
sions drawn are reported in Section 5.

2 Novel Approach: RFF for Anomaly-based
Detection

This section describes the framework and the key activities
that are undertaken to fulfill two primary objectives: the
creation of a profile for each transceiver and the specifica-
tion of the classification system.

2.1 Intrusion Detection Framework

The intrusion detection framework is illustrated in Figure2.
The overall objective is to classify an observed transceiver-
print as normal (belongs to the transceiver of a device with
a given MAC address) or anomalous (belongs to another
transceiver).
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Figure 2. Anomaly-based Intrusion Detection

The flow of information begins with the conversion
of an analog signal to a digital signal using an analog to
digital converter (will not be covered in detail). Once in a
digital form, the transient portion of the signal is extracted
by the transient extractor. Upon isolating the transient, the
amplitude, phase and frequency components of the tran-
sient are subsequently extracted by the feature extractor.In
turn, these components are used for the extraction of spe-
cific features that define a transceiverprint. The classifieris
then used to determine the probability of a match between

a transceiverprint and each of the transceiver profiles in the
IDS. Finally, the Bayesian filter is applied to render a fi-
nal decision regarding the status (normal/anomalous) of a
transceiverprint.

A transceiver profile is created by extracting the
transceiverprints from a set of digital signals and storing
the corresponding centroid and the covariance matrix (dis-
cussed in section 2.4) in a profile. This exercise is under-
taken prior to the detection process. Due to factors, such as
transceiver aging, there is a need to periodically update the
profiles. One possible strategy would be to continuously re-
calculate the centroid and the covariance matrix (after suc-
cessful transceiver identification) using one or more recent
transceiverprints and pre-established thresholds (e.g. clas-
sification error rate).

2.2 Transient Extractor

As the unique characteristics of transceivers are manifested
in the transient portion of a signal, the key objective is to
extract the transient using the phase characteristics of the
signal, as proposed by Hall, Barbeau and Kranakis [8]. In
brief, the successful detection of the start of the transient
is based on the fact that the variance of the phase remains
constant until the start of the transient. The end of the tran-
sient is identified in an experimental manner.

2.3 Feature Extractor

Once the transient has been isolated, the next requirement
is to extract the three primary components from the tran-
sient. The amplitude and phase [10] components are ob-
tained using Eq.1 and Eq.2 respectively.

a(t) =
√

i2(t) + q2(t) (1)

θ(t) = tan−1

[

q(t)

i(t)

]

(2)

The preferred approach for obtaining the frequency
component of a non-stationary signal (e.g. transient) is
the application of the Discrete Wavelet Transform (DWT)
[11]. Due to its lower computational complexity, as stated
by Choe et al. [12] and Hippenstiel and Payal [13], the
Daubechies filter is used to obtain the DWT coefficients.

While other research teams have focused primarily
on the use of a single component (e.g. amplitude or fre-
quency) for feature extraction, we have opted to make use
of all three components, namely amplitude, phase and fre-
quency. This strategy increases the number of components
from which a set of features (feature vector) are derived,
thus enhancing the characterization of the transceivers.

Figure 3 displays a signal from the SMC transceiver
798 as well as the frequency component (DWT coeffi-
cients) of the transient (between vertical lines in the first
plot).
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Figure 3. Frequency component of Transceiver 798

Once these components have been extracted, a feature
vector, defined by the feature selection/profile definition
process (discussed in Section 2.6), is created to represent
a transceiverprint. Please note that the term transceiver-
print and feature vector will be used interchangeably in the
following sections.

2.4 Classifier

With regards to classification, the guiding factor is the need
to determine the probability of a match between a given
transceiverprint and each of the transceiver profiles.

Although the Probabilistic Neural Network (PNN)
[14] has been used by many research teams including Shaw
and Kinsner [15] and Hunter [16], the issue of scalability
(memory requirement per profile (MPP)) prohibits its use
in real time systems. In contrast, the MPP of a statistical
classifier is very modest and is defined by Eq.3

MPP (m,n) = mn + m(n2) (3)

wheren is the number of features,m is the size in
bytes, andmn andmn2 represent the memory requirement
for the centroid and covariance matrix respectively. Setting
n to ten andm to four, results in a MPP of 440 bytes in
comparison to 61,440 bytes (2048 bytes per training pattern
multiplied by 30 patterns) required for PNN.

A statistical classifier uses a set of variables, in this
case a set of features, to represent a vector that is to be
classified. The probability of a match is calculated using
a Kalman filter from Bar-Shalom [17] that has been modi-
fied:

P (ū) = exp

[

−
1

2
(ū − µ)T V −1(ū − µ)

]

(4)

whereū represents the feature vector to be classified,µ cor-
responds to the centroid (vector with elements representing
the average of each of the features) andV is the covariance
matrix, which characterizes the dispersion or variabilityof
each feature with respect to one another. Eq.4 returns a

probability based on the relationship between an observed
feature vector and the profile of a transceiver.

2.5 Bayesian Filter

In a wireless environment, characterized by noise and in-
terference, there is a potential for increased variabilitybe-
tween signals from a given transceiver. The Bayesian filter
probabilistically estimates the state of a system from noisy
observations. We will use Figure 4 to illustrate the appli-
cation of the Bayesian filter to 10 transceiverprints from
transceiver SMC 798.

In RFF, the state is defined as a transceiver (from the
transceiver space: x-axis) to which a transceiverprint from
SMC 798 could potentially belong to. At each point in time
t, a probability distribution, calledbelief, over the state (xt)
space, represents the uncertainty and is denoted asBel(xt).
Initially, theBel(x0) or probability is uniformly distributed
at t = 0. This is demonstrated by the similar height of the
vertical bars (y-axis) along the x-axis for transceiverprint
number one. Actual classification of the 10 transceiver-
prints begins with transceiverprint number two on the z-
axis.

Therefore, att = 1, the probability distribution asso-
ciated with the first transceiverprint (z=2) is obtained from
the classifier. The filter sequentially estimates such beliefs
using Eq.5 for(t = 1, 2, . . . , 10). At each iteration, the
belief at timet represents the current probability that has
been influenced by the probability of the previous observa-
tion (transceiverprint)ot at t − 1.

Bel(xt) = p(xt|ot)Bel(xt−1) (5)

Based on the normalized distribution att = 10, it is
clearly evident that there is a high probability of a match,
between the transceiverprints and transceiver SMC 798.
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Figure 4. Bayesian Probability: Transceiver 798

2.6 Feature Selection/Profile Definition

In order to define a profile (for each transceiver), one must
first define the composition of a transceiverprint. The key



objective is to select a set of features that have low intra-
transceiver variability (within a transceiver) and high inter-
transceiver variability (between transceivers).

In order to determine the two classes of variability, the
use of euclidian distance (ED) and clustering techniques of
Multivariate Analysis (MVA) are employed [18]. The fea-
tures (variables), to be analyzed using MVA, are extracted
from the three components of the signal.

Thus, the initial set of ten features (transceiverprint)
is comprised of the following:

Standard deviation of normalized amplitude, Stan-
dard deviation of normalized phase, Standard deviation of
normalized frequency, Variance of change in amplitude,
Standard deviation of normalized in-phase data, Standard
deviation of normalized quadrature data, Standard devia-
tion of normalized amplitude (mean centered), Power per
section, Standard deviation of phase (normalized using
mean) and the Average change in DWT coefficients.

In order to refrain from a detailed treatment of each
feature, a brief overview of the first four features is pro-
vided next:

Standard deviation of normalized amplitude is defined
as

σAn =
√

(An − Man)2 (6)

whereAn represents the normalized instantaneous ampli-
tude (Eq.1) and is denoted asAi

Ma
. While Ai represents

the amplitude at time instant t(i = 1, 2, . . . , N), Ma =
max{Ai} and it is the maximum of the instantaneous am-
plitudes. Finally, the mean of the normalized amplitudes
Man is defined as1

N

∑n

i=1
An.

The Standard deviation of normalized phase and the
Standard deviation of normalized frequency are similarly
defined by substitutingAi with the phase and frequency
data (DWT coefficients) respectively.

Variance of change in amplitude is defined as

V =
∑

(

(DAi
) − (

1

n

N−1
∑

i=1

( ~DAi
)

)2

(7)

whereDAi
is the difference in the amplitudeAi − Ai+1

andN is the size of the transient.
The extraction of the 10 features from each transient

results in a set of feature vectors referred to as a cluster.
In order to assess the intertransceiver variability of two or
more transceivers (clusters), a centroid (composed of the
average value of each of the features in the vectors) is cre-
ated for each cluster. The centroids as well as the variability
between the SMC transceivers are illustrated in Figure 5.

Intratransceiver variability, on the other hand, is de-
picted in Figure 6. The individual data curves represent the
ED of each of the 31 transceiverprints from the correspond-
ing centroids. The transceiverprints have been sorted based
on the ED in order to determine the range of the dispersion.

Once the composition of a transceiverprint has been
established, through an iterative process of profiling and
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Figure 6. Intratransceiver Variability for SMC Transceivers

classification, a subset of these transceiverprints is usedto
create the profile (centroid and the covariance matrix).

3 Simulation

The purpose of the simulation was to primarily assess the
composition of the transceiverprint based on the classifica-
tion success rate (metric). In order to fulfill this objective,
the following steps were carried out using a set of signals
from each transceiver:

For each transceiver being profiled, the predefined
features were extracted from the transients. A subset
(approximately 31) of the transceiverprints was selected
(based on the ED) and subsequently used to create a cen-
troid and covariance matrix. The remaining transceiver-
prints (approximately 60) were used for testing purposes.

The actual simulation was carried out by: selecting
a transceiver to be tested (from a list); obtaining a set of
10 consecutive transceiverprints (for that transceiver) from
a given starting point (changed between each iteration) in
the test data set; classifying each of the 10 transceiverprints
and thus obtaining the corresponding probability distribu-
tions; and finally determining the transceiver with the high-
est probability using the Bayesian filter.



3.1 Details of Simulation

In order to ensure statistical significance, 100 signals from
each of the 14 802.11b transceivers (3COM-2, DLink-
2, SMC-4, Spectrum-2, Breezenet-3, Lucent-1) were cap-
tured for the purpose of RFF. All subsequent processing
and simulations were carried out using Matlab software and
associated tools. As far as the simulation platform is con-
cerned, a notebook (HP Pavilion N5445), with 256 Mbs of
memory and running XP and Matlab software, was used.

3.2 Simulation Results - RFF and Bayesian
Filter

After running the simulation for 50 iterations, the follow-
ing classification success rates (no.of correct classification
/ number of iterations) (Table 1) were obtained.

Based on the simulation results, there are some ob-
servations that are noteworthy. First, the high success rates
for most of the transceivers, especially those from the same
manufacturer, attest to the quality of the characterization of
the transceivers.

Spectrum % Dlink % SMC %
700 100 552 100 991 100
759 88 553 98 798 100

758 96
794 100

3Com % Breezenet % Lucent %
644 100 864 100 200 100
863 100 52 100

100 100

Table 1. Classification Success Rate

Second, an improvement in the success rates achieved
by the classifer (e.g. from 92% to 100% and from 95% to
100% for transceivers SMC 794 and 3Com 863) provides
evidence to support the use of the Bayesian filter.

Finally, as expected, the success rates for transceivers
SMC 758, Spectrum 759 and Dlink 553 reflect the lower
intertransceiver variability between transceivers from the
same manufacturer.

As current classifiers for RFF are typically based on
some variant of neural networks e.g. PNN and Artificial
Neural Network (ANN) used by Zuidweg and Zuidweg
[19], and Self Organizing Maps by Kayacik et al. [20],
a direct comparison of the simulation results is rather diffi-
cult.

Nevertheless, the type of research carried out by Choe
[12] is similar to some degree. However, the number
of profiled transceivers was limited to three (2-Motorola
HT-220, 1-Motorola MX-330) in comparison to the 14
802.11b transceivers used in this project. Despite the in-
creased complexity, the average success rate of (94-100%),

achieved using RFF and Bayesian filter, is consistent with
their results of (94%).

4 Related Work

This section provides a brief overview of the various re-
search initiatives that have been undertaken to address the
requirements of the RFF process.
Radio Transmitter Fingerprints
In the paper by Ellis and Serinken [21], the authors examine
the amplitude and phase components of signals and arrive
at the conclusion that all transceivers do possess some con-
sistent features.
Detection of Transients
The detection of transients, based on the variance of the
amplitude, is proposed by Shaw and Kinsner [15] and Ure-
ten and Serinken [22].
Feature Selection
As far as the selection of features is concerned, the use of
the Probabilistic Neural Network (PNN) by Specht [23] is
explored by Hunter in [16].
Classification of Transceiverprint
In terms of classification, different approaches have been
proposed. In the paper by Somervuo and Kohonen [24],
the authors make use of the Self-Organizing Map and a
Learning Vector Quantization (LVQ) algorithm to support
variable-length feature sequences used for classification.
While the use DWT coefficients is explored by Hippen-
stiel and Payal in [13], Toonstra and Kinsner [25] exploit
the properties of genetic algorithms for classification pur-
poses.

5 Conclusion

Based on the simulation results (average classification suc-
cess rate of 94-100%), the use of RFF and Bayesian filter
for anomaly-based intrusion detection is technically feasi-
ble.

More specifically, the characterization of transceivers
using multiple features has proven to be effective (high
classification rate). In addition, the use of a statistical clas-
sifier that is memory conscious (440 bytes per transceiver
profile) could achieve sufficient performance for support-
ing real-time applications. Furthermore, delaying the final
decision until a sufficient number of transceiverprints have
been classified, increases the confidence level and classifi-
cation success rate.

Nevertheless, there are some issues, which warrant
further attention. First and foremost, the success rates
should be improved by optimizing the composition of
the transceiverprints and validating them using additional
transceivers from the same manufacturer. Second, it would
prove beneficial to repeat the profiling exercise periodically
in order to determine the impact of various factors, e.g.
transceiver aging, on the classification success rate. Finally,
as far as scalability is concerned, the comparison of a single



transceiverprint to multiple transceiver profiles should only
be carried out during the profiling phase. During the execu-
tion phase of the IDS, the classifier and the Bayesian filter
will be applied to the target profile only, along with appro-
priate thresholds (e.g. level of correlation). This will permit
us to determine, whether or not, an observed transceiver-
print belongs to the target transceiver, which is associated
with a given MAC address.
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