
Endpoint-driven Intrusion Detection and Containment of Fast Spreading Worms in
Enterprise Networks

Frank Akujobi, Ioannis Lambadaris
�

Evangelos Kranakis
�

Department of Systems and Computer Engineering Department of Computer Science
Carleton University, Ottawa, ON, Canada Carleton University, Ottawa, ON, Canada

fakujobi, ioannis@sce.carleton.ca kranakis@scs.carleton.ca

Abstract—Fast spreading network worms have become one
of the most service-impacting threats in enterprise and ISP net-
works. We identify core requirements for effective detection
and containment of such worms and propose a technique that
uses a combination of distributed anomaly-based host intru-
sion detection and statistical analysis of network heuristics to
detect malicious worm activity. Our proposal employs a collab-
orative network-centric worm containment approach. We ex-
periment on a live test-bed with fast spreading worms and eval-
uate the effectiveness of our method in detecting and contain-
ing such worms. We also evaluate the system’s performance
when malicious worm traffic blends with benign network scan-
ning traffic.

Keywords – False negatives, False positives, Anomaly-based
host intrusion detection, Fast spreading worms.

I. INTRODUCTION AND MOTIVATION

Techniques for detecting malicious intrusions can be di-
vided into two broad groups: Signature-based techniques
and anomaly-based techniques. Signature-based techniques
in general require a managed database of unique malicious
code signatures and are only capable of detecting malicious
packets with known signatures [1]. Zero-day attacks due
to malicious traffic with unknown signatures cannot be de-
tected by such techniques. Similarly, intrusion containment
systems that depend on signature-based detection schemes
are largely ineffective in containing zero-day attacks. Be-
sides, documented well-known techniques for evading sig-
nature detection exist. For instance, while some exploits in-
corporate special encryption and tunneling protocols to hide
the signature of the code [2-4], others employ dynamic poly-
morphic mutations [6]. Anomaly-based intrusion detection
systems (AIDS) can be classified as network AIDS or host
AIDS depending on where the anomalous behavior is to be
detected. Anomaly-based network intrusion detection tech-
niques infer malicious activity in a network by detecting
anomalous network traffic patterns [7-13]. While these tech-
niques can effectively detect fast spreading worms under fa-
�
This research was partially funded by grants from Natural Sciences and

Engineering Research Council (NSERC) and Mathematics of Information
Technology and Complex Systems (MITACS).

vorable conditions, they cannot reliably detect worm propa-
gation that do not cause anomalous traffic patterns [6, 14].
For instance, flash worms do not exhibit anomalous num-
ber of connection failures and connection attempts since they
have pre-determined lists of vulnerable targets. Such worms
will therefore evade existing scanning worm detection tech-
niques that depend solely on number of connection failures
and connection attempts for detection [14]. Nonetheless, re-
cent papers [15, 16] [2, 17] and vendor implementations [18]
have recorded success in using anomaly-based host intrusion
detection (AHID) techniques for effective detection of unau-
thorized intrusions. AHID are capable of leveraging large
amounts of detailed context about applications and system
behavior to effectively detect anomalous host behaviors [4].
Authors in [17] presented an AHIDS model that detects at-
tacks on a host machine running Windows by checking for
anomalous attempts to access the Windows registry. Further,
it has been suggested that since end hosts running vulnerable
software are the targets of malicious code attacks, they ought
to be the point of detection [16]. The technique adopted in
[16] shows that with properly instrumented detection soft-
ware, host-based intrusion detection is effective and capable
of eliminating false positives. Their containment approach
however relies on broadcast notification messages from in-
fected hosts to other hosts in the network while host-based
filters are used to block the intrusion. It is our opinion that
while host-based detection holds lots of promise, host-based
filtering is not scalable and cannot address worm contain-
ment in large enterprise networks. For instance, in ISP net-
works, network administrators do not have any direct con-
trol over individual client machine configuration and there-
fore cannot depend on them for worm containment. Another
problem with host-based containment techniques is that a
successful compromise of a participating host could subvert
the containment technique [20, 21].

We point out that there are still gaps between existing
worm detection and containment techniques and a feasi-
ble real world approach to effectively combat fast spread-
ing zero-day enterprise worms. In this paper, we pro-
pose a technique that uses host-based intrusion detection to

achieve intrusion containment in the network. As explained
above, there is ample evidence of the effectiveness of host-
based anomaly detection techniques in detecting host intru-
sions and anomalous behaviour with minimal false alarms
[16][17]. Our technique is unique because it leverages the
benefits of host-based detection to achieve distributed col-
laborative network intrusion containment of fast spreading
worms and malicious code with zero false positives and false
negatives.

Contributions of this work are:
� We propose requirements for effective intrusion detec-

tion and collaborative containment.� We present our proposed novel technique and algorithm
for detection and containment of fast spreading worms.� We demonstrate the effectiveness of our technique on a
live testbed and analyse its performance.

In the next section we identify core requirements that an ef-
fective detection/containment technique should meet.

A. Requirements for effective intrusion detection and con-
tainment

1) Verifiable detection of malicious intrusions: An effec-
tive detection technique should include detection of actual
malicious intrusion attempts or observation of verifiable in-
trusion as a basis for confirming the existence of malicious
activity. Dependence on network traffic heuristics alone for
detection either on a host network interface or on network
routers does not offer guarantees on the rate of false posi-
tives and false negatives [16][29]. The technique proposed
in this paper uses an anomaly-based host intrusion detection
mechanism that alerts only when an unauthorized intrusion
occurs. Such instrumented endpoint intrusion detection soft-
ware are known to minimize false alarms [16].

2) Collaborative network-based containment: Contain-
ment can be executed either at the host level or on the net-
work. A containment technique that ensures fast propagation
of the containment action is required. Ideally, such a tech-
nique should propagate the containment action at a rate com-
parable or superior to the rate of propagation of fast spread-
ing worms. While network-based techniques protect a frac-
tion of the target population when executed, host-based tech-
niques protect only a single host at a time. Clearly, for fast
spreading containment, network-based techniques should be
deployed. Further, a collaborative containment architecture
should be used to suppress large scale worm attacks [20-
22]. Authors in those papers experimented with the con-
cept of collaborative cellular containment where the network
is broken into logical cells, each with in-built containment
capabilities. Their results show that such a distributed and
cooperative approach can greatly improve containment sys-
tems. Similarly, the pushback technique [28] employs a col-

laborative packet dropping technique to suppress distributed
denial of service (DDoS) attacks. Our technique executes
network-based containment at the first upstream router (i.e
the gateway router) of the subnet or cell or VLAN under at-
tack. The gateway router of the cell then sends signals to
peer routers to execute similar containment procedures thus
achieving enterprise-wide collaborative containment.

3) Automated rapid response: Response to worm inva-
sion must be automated and fast to be effective. An effective
response should involve minimal overhead and processing
time between intrusion detection and containment execution.
Our technique uses a host-based detection technique and an
optimized correlation algorithm to automatically and rapidly
implement a network filter against intrusion traffic.

B. Merits of our approach

The technique proposed in this paper combines the sig-
nificant benefits of host-based anomaly detection with sta-
tistical correlation of network heuristics to determine an in-
trusion traffic flow. It employs a distributed network-centric
containment approach to rapidly contain the intrusion traf-
fic. The first merit of our technique stems from its abil-
ity to accurately detect unauthorized intrusions due to both
known and unknown malicious code which tamper with vul-
nerable endpoints. The technique is non-responsive to be-
nign traffic hits such as reconnaissance network scans irre-
spective of the traffic rate of the scans. Intrusion detection
alerts are generated only when verifiable malicious intrusion
traffic is detected. Occurrence of false alarms is therefore
eliminated since the technique responds only to verifiable
intrusions and not to benign intrusion attempts which occur
quite frequently on enterprise networks and on the Internet.
The second merit is that the containment action is network-
centric. This makes the technique feasible in real world sce-
narios where containment actions are typically carried out
at layer-3 boundaries thus protecting a fraction of the vul-
nerable population with a single containment action. Also,
our reactive containment technique generates a router filter
against ingress malicious intrusion traffic that match the de-
tected attacker’s profile. The profile is a 3-tuple consisting
of the attacker’s source IP address, the target port, and the
transport layer protocol used. This reactive blocking ensures
that access to the vulnerable service by only the attacking
IP address is blocked. Some recent worms [33,34] exploit
legitimate ports such as port 80, 135 that are required for en-
terprise services. Our reactive blocking ensures that only the
detected attacker’s IP address is filtered from accessing such
services. Other legitimate users of the services continue to
have access to the services. Third, the proposed detection,
correlation and containment protocols run continuously even
after a router filter has been generated against an attacker.

Multiple attacks from several attackers can therefore be de-
tected and contained automatically. Such attack models are
typical with botnets [35]. Recent work in [36] suggests that
a similar dynamic quarantine defense technique is capable of
slowing down propagation of network worms. After a suc-
cessful automated defense against multiple attackers, IT se-
curity personnel can review the established router filters and
embark on a remediation procedure based on pre-defined en-
terprise IT security policies. Our proposed system can also
be configured to automatically remove the router filters af-
ter a defined period following the worm defense. The fourth
merit is that the technique lends itself to distributed and col-
laborative containment. This merit is also enjoyed by the
pushback technique [28,38] where containment action is ini-
tiated from within a logical zone in a network and spreads out
into the larger enterprise network. The pushback mechanism
detects a DoS attack by monitoring packet drops on router
links and determining the aggregate 1 that occurs most fre-
quently amongst the dropped packet. It assumes that such an
aggregate is responsible for the high congestion. However,
a practical drawback of the pushback detection mechanism
is that most modern routers and switches have capabilitites
for multi-gigabit links in core and distribution networks and
gigabit links to servers and desktops. For such high capacity
links, significant packet drops will be observed only when
catastrophic DoS attacks occur and delay-sensitive applica-
tions would suffer greatly long before the pushback mech-
anism detects packet drops. Also, there is a strong chance
that a huge number of packets not belonging to a DoS attack-
ing traffic can be dropped in a congestion situation. This is
especially true in QoS-enabled networks where packets are
preferentially dropped to offer better QoS to other delay sen-
sitive applications. The pushback mechanism will result in
severe collateral damage in such circumstances. There is also
the possibility that some fast spreading worms may not cause
significant packet drops on routers and would therefore evade
the pushback mechanism. Our proposed technique does not
suffer from these drawbacks since it detects malicious activ-
ity by detecting verifiable malicious intrusions. Finally, due
to the responsiveness of our technique which ensures rapid
containment of detected intrusion traffic, it is capable of sig-
nificantly reducing the spread of fast propagating worms be-
fore core and distribution gigabit links in enterprise and ISP
networks become congested. Our technique can therefore
be effective in combatting DoS attacks due to malicious fast
spreading worms.

�
defined as a subset of the traffic with an identifiable property e.g. same

destination IP address.

C. Outline of the paper

Section II of this paper describes details of the proposed
detection technique and algorithms used for iterative analy-
sis of network heuristics and intelligent containment of in-
trusion traffic. Section III contains experimental analysis of
the technique while section IV presents our conclusion and
highlights ideas and possible extensions for future work.

II. AUTOMATED INTRUSION DETECTION AND

COLLABORATIVE CONTAINMENT

The proposed technique is divided into three sub-tasks: i)
Detection of intrusion ii) statistical determination of intru-
sion traffic and iii) containment of intrusion and its propaga-
tion.

A. Detection of Intrusion

We propose a distributed intrusion detection strategy
which uses our instrumented anomaly host-based detector
agent (DA) software running on designated strategically lo-
cated detector endpoints (DEs) within an enterprise net-
work for host-based detection. In large enterprise networks,
a number of independently functional DEs can be located
within distributed subnets or cells to detect and respond to
intrusion attempts on the subnet. This distributed detection
enjoys the benefit of operating close to the point of infec-
tion or intrusion. It is our assumption that such an approach
would be more responsive to a worm invasion compared to
other approaches that attempt to detect intrusions at a single
ingress point on the network. The DA running on a DE per-
forms continuous real-time recording of the profile of all net-
work traffic destined to the DE and originated from outside
its subnet. We define a profile as a 3-tuple consisting of srcIP,
dstport, proto. srcIP is the source IP address in the IP header
of packets captured by the DE, dstport is the target port and
proto is the transport layer protocol used. This profile for-
mat was chosen because it contains sufficient information to
implement a traffic flow-specific block on most real world
enterprise edge networking devices. The DE records are re-
initialized regularly so that only recent intrusion activities are
maintained in the records while ensuring that the size of the
record remains under 5KB. When a verifiable unauthorized
intrusion is detected by a DA it responds by notifying the up-
stream gateway router (GR) of the intrusion and triggering
a transfer of its record to the router over an encrypted chan-
nel. The size of the DE record has a proportional relationship
with the DA-to-GR record transfer time which directly im-
pacts the containment interval of our technique. It is there-
fore important to maintain the size of the DE record under
5KB by regularly initializing the record. With a DE record
size of under 5KB, encouraging experimental results were

obtained. Their dedicated functions in a subnet or cell are
to monitor, record, detect and respond to verifiable intrusion
attempts. They do not respond to benign traffic hits such as
network scans. In our experiments, we used port 9090 UDP
to emulate a vulnerable service running on the DEs and mali-
cious intrusion detection was verified only when an attacker
establishes a connection to the vulnerable service. DEs do
not initiate communication with any host outside their cell.
Traffic hits on the DEs from outside their cell must therefore
be as a result of benign network scans or verifiable malicious
intrusions. A minimum of two DEs are required in each logi-
cal cell to facilitate our correlation algorithm on the GR. The
DEs within a cell also maintain state with each other to en-
sure their GR does not receive multiple intrusion notifications
for a single attack instance.

B. Iterative statistical determination of intrusion traffic

A process running on the upstream gateway router (GR)
monitors the transfer of records from DEs within a target sub-
net. When the GR receives the first record from a DE in the
subnet it immediately establishes other secure sessions with
the remaining DE(s) in that subnet and retrieves their records.
A correlation algorithm triggered on the gateway router per-
forms an iterative statistical analysis on all the records to de-
termine the profile of the most likely intrusion traffic. We use
a number of states to describe the correlation algorithm.

1) Modeling: The algorithm starts by modeling each DE
record as an event ��� while the profiles in each record are
modeled as the outcomes of the event. The outcomes are
modeled as a discrete random variable � with a set of prob-
abilities �
	��� ����� ��� � � ��� . Using this model, ��	����� �
represents the probability that a particular profile �� occurs
in the record. The event � for a particular record can be
represented as:

� ��� ��� � is a profile in the record (1)

2) Normalization: In this state the algorithm uses Z-
score normalization to standardize the set of probabilities on
a common scale. Z-score for !"	#�� �$� is defined as:

% ��&� ��� !&	��� ����' !&	��� ���
stdev �(!)	#�� ���*� (2)

where !)	#�� ��� is the input variable, and the normalized
scores have a mean of zero and a standard deviation of one.

3) Comparison: In this state the algorithm first compares
the outcomes in � � and checks for common outcomes across
all � � events that occur in + DEs. A common outcome is an
outcome that exists on all �"� events. It generates event , as a
subset of � such that the outcomes of event , consist of the

common outcomes across all � � events. The event , can be
represented as:

, �-� ��� � is a common outcome (3)

� �.��/0��1�/0��2435353536/0� � (4)

If (number of outcomes of event , �87)
�
then outcome is associated with intrusion traffic
profile; transition to the Trigger state;

If (number of outcomes of event , �:9)
�
then worm activity does not exist; transition to the
Abort state;

If (number of outcomes of event ,<; 7)
�
then transition to the Selection and Iteration state;

4) Selection and Iteration: In this state the algorithm gen-
erates event = such that the outcomes in = are a selection
of the outcomes in , with probabilities that have a Z-score
greater than a chosen threshold > where 9@? > ?BA . The
outcomes of event = are considered suspicious due to the
degree of statistical deviation of the frequency of their occur-
rences from the mean and are therefore selected for further
analysis. > is a configurable parameter on the GR. The event
= can be represented as:

= ��� � Z-score of !)	#�� � ;C>D (5)

The algorithm iteratively determines the intrusion traffic us-
ing the following if loop:
If (number of elements in = �E9 and >GF�:9)

�
repeat Selection and Iteration state with lower >
value (>IH6J
� � >KH 'ML 2);

 else if (number of elements in =N; 7)
�
repeat Selection and Iteration state with greater
> value (>IHOJ
� � >KHQP L)

 else if (number of elements in = �:9 and > �:9)
�
worm activity does not exist; transition to the Abort
state

 else if (number of elements in = �87)
�
element is associated with intrusion traffic profile;

RTS
is the iteration interval and is an input parameter of the correlation

algorithm

transition to Trigger state.

5) Abort: In the Abort state the algorithm aborts and
waits to be triggered again.

6) Trigger: In the Trigger state the algorithm collects the
intrusion traffic profile associated with the detected common
outcome and triggers automatic containment of the intrusion
traffic (see section C).

It is our assumption in the Comparison state that during
a worm invasion there is a high probability that DEs located
in a cell under attack will experience early intrusion attempts
and therefore will record profiles of the intrusion traffic. Pre-
vious work reveal that several recent scanning worms such
as Code RED II [23-25] and Nimda [26, 27] preferentially
target other hosts from IP address ranges closer to the vul-
nerable target host (i.e. in the same /24 or /16 network). In-
trusion attempts as a result of flash worm activity will also be
captured by the DEs if the DEs run the same vulnerable soft-
ware as hosts within the subnet they are located and there-
fore cannot be differentiated from the vulnerable hosts. Our
assumption will fail only if the attacker has prior knowledge
of the DEs and instruments a worm that selectively avoids
malicious intrusion attempts on the DEs. We also assume
that while non-existence of common outcomes across the � �
events suggests non-occurrence of worm activity, the concur-
rent occurrence of a common outcome and a detected ver-
ifable malicious intrusion attempt is a strong indication of
worm activity. The selection and iteration process is used to
progressively and statistically analyze the records from the
DEs until the profile that corresponds to the common out-
come with the greatest relative frequency of occurrences is
determined if one exists. The correlation algorithm assumes
that such a profile must be associated with the malicious in-
trusion traffic and triggers a containment action.

The detection and correlation algorithms are capable of
deciphering fast spreading malicious worm traffic from be-
nign peer-to-peer traffic and other forms of legal traffic. The
correlation algorithm iteratively determines the traffic profile
which registers the greatest numbers of simultaneous hits on
all DEs in a target cell. First, such a traffic profile must be
captured on all DEs (i.e a common outcome). Among sev-
eral common outcomes, the traffic profile corresponding to
the common outcome with the greatest relative frequency of
occurrence is then determined during the Selection and Iter-
ation phase of the correlation algorithm. Legal peer-to-peer
traffic and regular web traffic would not register simultane-
ous hits on pre-defined open vulnerable ports running on all
the DEs let alone register a relatively large number of simul-
taneous hits on all the DEs. Only a fast spreading illegal traf-
fic or worm would be capable of registering such huge num-

GR-1

Cell-1

GR-9

GR-8

GR-7GR-6GR-4

GR-3

GR-5

GR-2

GR-10

Cell-7

Cell-3

Cell-6

Cell-10Cell-9

Cell-8

Cell-4 Cell-5

Cell-2

Cell under direct
attack

Notification
messages

Fig. 1. Distributed collaborative containment strategy

ber of simultaneous hits on all the DEs. Recall that DEs do
not initiate communication with any host outside their cell.
Traffic hits on the DEs from outside their cell must therefore
be as a result of benign network scans or verifiable malicious
intrusions.

C. Containment of intrusion

Our technique executes containment of malicious intru-
sion traffic by automatically applying router filters on the
GR to block the profile associated with the inbound mali-
cious intrusion traffic as determined by our correlation al-
gorithm. The filter is applied against the 3-tuple consisting
of the IP address of the attacker, the target vulnerable port
and the transport protocol used. This filter ensures that in-
bound access to the vulnerable target service by the attack-
ing IP address is blocked. If the target port is required for
legitimate services e.g port 443, 8080, other legitimate users
of the service can continue to enjoy the service. While au-
thors in [19] affirm that content filtering containment tech-
niques are generally more effective than address blocking
techniques, simulation results in [19] show that if certain
conditions are met such as if reaction time can be minimized,
address blocking techniques can be more effective. Besides,
content filtering techniques also suffer from all the previously
discussed inherent drawbacks of signature-based worm de-
tection strategies. Our approach uses a rapid reactive block-
ing technique that meets the timing conditions for effective
worm containment [19]. We propose a distributed collabora-
tive containment strategy in which the GR communicates its
recent worm containment action along with the 3-tuple pro-
file of the blocked malicious intrusion traffic to peer gateway
routers (see Fig. 1). In Fig. 1, cell-1 represents the subnet
under direct attack and GR-1 is the gateway router for cell-1.
After executing a reactive block against the attacker’s profile,
GR-1 notifies its peer GRs (GR-2, GR-3 and GR-8). A re-
active blocking protocol running on the peer gateway routers

determines how the routers handle the notification. The reac-
tive blocking protocol was designed to immediately block the
malicious intrusion traffic after receiving the notification and
then monitor the suspected vulnerable target ports for exis-
tence of worm activity. If the protocol determines that worm
activity is not prevalent it disables the block thereby prevent-
ing a potential denial of service. We use a number of states
to describe the reactive blocking protocol.

1) Reactive blocking: The protocol starts by creating a
router filter on a peer GR that blocks the profile associated
with the malicious intrusion traffic. The filter blocks ingress
traffic that match the profile from entering all cells or subnets
existing on the peer GR.

2) Monitoring: In this state, with the filter still applied,
the peer GR carries out real-time monitoring and recording
of the number of hits on the filter for a U -second interval to
confirm actual existence of worm activity. After U seconds
the algorithm computes a probing rate where:

Probing rate � number of hits on filter
U (6)

It then carries out the following if loop with chosen parameterV .
If (probing rate ; V probes/sec.)

�
then worm attack is prevalent; transition to the
Notification state;

If (probing rate ? V probes/sec.)

�
then worm attack is not prevalent; transition to
Unblocking state.

3) Notification: In this state the peer GR notifies other
peer GRs of the suspected attacker’s profile. This also trig-
gers the reactive blocking protocol on the peer GRs (see
Fig. 1).

4) Unblocking: In this state the filter is removed to pre-
vent a denial of service on legitimate traffic.

Both U and V are configurable parameters of the protocol.
Fast spreading worms are known to exhibit probing rates in
the order of tens of thousands probes/second. It is our as-
sumption that in an event of a fast spreading worm invasion
the reactive blocking protocol on peer GRs will reach Noti-
fication state if U and V parameters are properly chosen. In
that scenario, all enterprise gateway routers eventually get to
be aware of the attacker’s profile and establish filters against
ingress traffic that match the attacker’s profile thus achieving
enterprise-wide fast and automated containment.

Fig. 2. Network layout of experimental testbed

III. EXPERIMENTAL DESIGN AND ANALYSIS

To evaluate the functionality and performance of our pro-
posed technique, we emulated self propagating worm inva-
sion attacks using a modified blaster worm code which at-
tempts to randomly establish socket connections on UDP
port 9090 with a pre-generated list of vulnerable hosts (Host-
A1, Host-A2, DE-1, DE-2) in the target subnet A (see Fig. 2).
Vulnerable hosts were emulated using endpoints running a
hypothetically vulnerable UDP service on port 9090. They
are considered infected when they accept connections from
our instrumented worm code and a file named intrusion is
copied into their /root/ directory. UDP was used as the worm
transport layer protocol to avoid TIME-WAIT problems as-
sociated with overloading servers with TCP connection as
well as to emulate TCP-unfriendly worm traffic. Port 9090
was chosen arbitrarily. We measured average infection rates
of upto 70 hosts per second (h/s) using a single instance of
our instrumented worm. In comparison, the code red worm
[25] infected 359000 hosts in less than 14 hours, equivalent
to an average infection rate in the order of 7.1h/s. The Witty
worm [30] infected 110 hosts in the first 10 seconds, equiv-
alent to an average infection rate of about 11h/s while the
Slammer worm [31] infected more than 75,000 hosts within
10 minutes, equivalent to an average infection rate of over
125h/s. When hosts within the target subnet are infected by
the attacking host, they in turn propagate the worm by also at-
tempting to establish connections with a pre-generated list of
hosts outside the target subnet. In our experiment we chose
to limit worm propagation from infected hosts in subnet A
to destinations outside of subnet A in order to eliminate the
possibility of having the DEs erroneously respond to attacks
originating from within their cell.

In the experiments we varied the infection rate of our emu-
lated worm between 1h/s and 35h/s and observed the perfor-
mance of our proposed detection and containment technique.
Fig. 2 shows the layout of our live experimental test-bed. We
used only two detector endpoints (DE-1 and DE-2) and two
vulnerable hosts (Host-A1 and Host-A2) in the target net-

work (subnet A) to simplify demonstration of the technique
and result analysis. GR-1 is the gateway router for subnet A
while GR-2 and GR-3 are the gateway routers for subnet B
and subnet C respectively. All gateway routers ran our corre-
lation algorithm and reactive blocking protocol. After GR-1
executes a containment block, it notifies GR-2 and GR-3 and
they too execute similar blocks following the reactive block-
ing protocol. The gateway routers, detector endpoints and
vulnerable hosts were implemented on Linux systems run-
ning kernel 2.4 with 733Mhz Intel processors and 256MB
RAM. The GR-1 provided network time protocol (NTP) ser-
vices for time synchronization and all link capacities were
set to 100Mbps full duplex.

A. Experiment 1: Worm attack without background traffic

In this experiment the attacking host was used to launch
direct attacks on the four hosts in subnet A (Host-A1, Host-
A2, DE-1, DE-2) selecting each one randomly. Our detec-
tor agents (DAs) ran on DE-1 and DE-2 and re-initialized
DE records in 20-second intervals. After infection, Host-A1
and Host-A2 attempt to propagate the worm code by continu-
ously attempting socket connections on UDP port 9090 with
Host-B1 and Host-B2 in subnet B and Host-C1 and Host-C2
in subnet C. This emulates worm propagation. The objectives
in this experiment were to: i) Evaluate the responsiveness of
our proposed technique in protecting a target network from
unauthorized worm intrusions. ii) Evaluate effectiveness of
the technique in containing spread of network worms, hence
protecting other vulnerable hosts and services that reside out-
side the initial target network. The following system perfor-
mance metrics were measured:

1) Containment interval T: computed as the time inter-
val between detecting the worm intrusion traffic on a DE and
the establishment of a containment block against the attack-
ing host on the gateway router. This interval comprises the
time necessary for propagating the intrusion information to
the upstream GR, the time required for the GR to retrieve all
the DE records from all the DEs in the target cell, and the
time required to run our correlation algorithm and reactive
blocking protocol on the GR.

2) Rate of false negatives: computed as the fraction of
total number of experimental runs performed that did not re-
sult in a containment action even in the presence of malicious
worm activity.

To improve statistical significance of our results, 100 at-
tack instances were carried out for each infection rate level
used in the experiment. The average containment interval
and rate of false negatives were recorded. Parameters used
by the correlation algorithm were: > �W9 3 9YX , LC�W9 3 9YX .
These values determine the number of iterations performed

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

Rate of infection (hosts/second)

A
ve

ra
ge

 c
on

ta
in

m
en

t i
nt

er
va

ls
 (s

ec
on

ds
)

GR−1
GR−2
GR−3

Witty’s average
rate of infection

Code Red’s
average rate
of infection

Fig. 3. Average containment intervals

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rate of infection (hosts/second)
R

a
te

 o
f
fa

ls
e
 n

e
g
a
tiv

e
s

Code Red’s
average rate
of infection

Witty’s average
rate of infection

Fig. 4. Rate of false negatives with-
out background scanning traffic

0 5 10 15 20 25
0

50

100

150

Number of DE record snapshots

F
re

q
u

e
n

cy
 o

f
p

ro
fil

e
 in

 D
E

 r
e

co
rd

s

Worm traffic profile in DE−1 record
Worm traffic profile in DE−2 record

Fig. 5. Recorded profiles at 25h/s
infection rate

by the correlation algorithm before the intrusion traffic pro-
file is determined. Parameters used for the reactive blocking
protocol were: U �GZ69 seconds, V �<7[9 probes/second. Opti-
mizing the choice of parameters is reserved for future work.
Fig. 3 to Fig. 7 show the results obtained. Our results in
Fig. 3 show that the measured average containment interval
on GR-1 remained nearly steady at a mean value of 3.4s with
a variance of 9 3 9Y\O] 1 as we varied the infection rate of our in-
strumented worm. Similarly GR-2 and GR-3 recorded mean
containment interval values of 4.33s and 4.39s respectively
with variances of 9 3 96^_ZO] 1 and 9 3 96^_XO] 1 respectively. The re-
sults suggest that containment interval on the gateway routers
is largely independent of worm propagation speed or infec-
tion rate but is primarily determined by the operations of
the detection algorithm and containment technique. The re-
sults also suggest that our approach to collaborative contain-
ment is capable of containing fast spreading worms within
five seconds of detection. In comparison, recent simulations
by Moore et al suggest that an effective worm containment
should require a reaction time of well under sixty seconds
[19]. While worm infections in an enterprise network will
not be completely prevented by our technique during a worm
outbreak, the results suggest our technique is capable of pro-
tecting a proportion of vulnerable hosts in any enterprise or
global network during a zero-day fast spreading worm inva-
sion. Factors that determine the size of the protected portion
of enterprise hosts include worm propagation speed and de-

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Number of DE record snapshots

F
re

q
u

e
n

cy
 o

f
p

ro
fil

e
 in

 D
E

 r
e

co
rd

s
Worm traffic profile in DE−1 record
Worm traffic profile in DE−2 record

Fig. 6. Recorded profiles at 10h/s
infection rate

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of DE record snapshots

F
re

q
u

e
n

cy
 o

f
p

ro
fil

e
 in

 D
E

 r
e

co
rd

s

Worm traffic profile in DE−1 record
Worm traffic profile in DE−2 record

Fig. 7. Recorded profiles at 0.5h/s
infection rate

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rate of infection (hosts/second)

R
a

te
 o

f
fa

ls
e

 p
o

s
it
iv

e
s

Code Red’s
average rate
of infection

Witty’s average
rate of infection

Fig. 8. Rate of false positives with
scanning traffic

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Number of DE record snapshots

F
re

q
u

e
n

cy
 o

f
p

ro
fil

e
 in

 D
E

 r
e

co
rd

Worm traffic profile in DE−1 record
Worm traffic profile in DE−2 record
Scanning traffic profile in DE−1 record
Scanning traffic profile in DE−2 record

Fig. 9. Recorded profiles at 2h/s
infection rate with scanning traffic

ployment strategy of the technique. Network placement of
GRs and choice of configuration parameters for the both DEs
and GRs are crucial to rapid collaborative containment in an
enterprise network. Fig. 4 shows that for infection rates over
3h/s our technique exhibited zero false negatives.

However, for infection rates less than 1h/s we observed
non-zero rates of false negatives. For our correlation algo-
rithm to determine the offending traffic profile during worm
activity, the active DEs in the target subnet must simultane-
ously have record of the worm’s traffic profile. Fig. 5, Fig. 6
and Fig. 7 show snapshots of DE records for experiments
with infection rates of 25h/s, 10h/s and 0.5h/s respectively. It
can be observed in Fig. 5 and Fig. 6 that for 25h/s and 10h/s
infection rates both DE-1 and DE-2 simultaneously have en-
tries of the worm traffic profile for all captured snapshots.
This results in zero false negatives (see Fig. 4). For 0.5h/s
infection rate (Fig. 7), we observe that worm attacks do not
spread fast enough to register simultaneous records on both
DE-1 and DE-2 in a number of instances. This results in
higher rates of false negatives. The detection and correla-
tion algorithm proposed in this paper is however optimized
for detection of fast spreading worms. We leave detection of
stealthy worms for future work.

B. Experiment 2: Worm attack with background network
scanning traffic

In this experiment, the same experimental conditions used
in experiment 7 were maintained, with the addition of a con-

tinuous background scanning traffic. The network scanning
traffic stream was generated using a UDP socket application
attempting connections to port 1234 on the four hosts in sub-
net A (Host-A1, Host-A2, DE-1, DE-2). See Fig. 2. The
traffic is benign since it does not attack the vulnerable ser-
vice on port 9090 UDP. Typically, such network scans are
stealthy and are used by attackers for reconnaissance to en-
able them locate potential targets before launching an actual
attack [37]. The packet transmission rate of the scans was
therefore kept constant at two packets per second. The ob-
jective of the experiment was to assess the impact of such
network scans on the accuracy of our detection and correla-
tion techniques. We measure the rate of false positives ex-
hibited by our technique when worm traffic blends with the
network scans. Rate of false positives was computed as the
fraction of total number of experimental runs that triggered a
containment action against a traffic profile that did not belong
to the attacking worm.

Results in Fig. 8 show that for infection rates greater than
3h/s, our algorithms were accurate in determining the at-
tacker’s profile exhibiting 0% rate of false positives. Us-
ing detection of verifiable malicious intrusions as trigger for
our algorithm plays a vital role in ensuring zero false pos-
itives alerts for fast spreading worms. For stealthy worms
with infection rates less than 2h/s, the results show non-zero
rates of false positives. In this region, worm traffic is in-
distinguishable from the scanning traffic, and exhibits in a
number of instances, lower frequency of occurrence in DE
records compared to the scanning traffic (Fig. 9). It therefore
evades our correlation algorithm even though verifiable intru-
sions due to the worm traffic were detected by the DEs. Es-
sentially, when worm traffic blends with network scans, our
technique will record non-zero false positives only if probing
rate of network scans constantly exceeds the probing rate of
fast spreading worm traffic on the target cell. Since this is
rarely the case for real-world fast spreading worms our pro-
posed technique can be considered accurate in detecting fast
spreading worms. However, in the absence of worm traffic,
benign network scans would be ignored by the DEs since the
scans do not attempt to exploit the vulnerable service running
on the DEs and therefore cannot be verified.

IV. RELEVANT DISCUSSION

Concerns can be raised about the performance of our tech-
nique during DoS attacks and whether or not sending intru-
sion notification messages across the network would exacer-
bate already congestion links in such a circumstance. Previ-
ous work by Moore et al [19] suggests that a minimum reac-
tion time threshold of 60 seconds is required for any worm
detection and reaction mechanism to be effective. In [19],
reaction time of a containment system was defined to include

the time necessary for detection of malicious activity, prop-
agation of the information to all hosts participating in the
system, and the time required to activate any containment
strategy once this information has been received. Other re-
lated work show that it took several hours for Code Red I
v2 to spread among over 350,000 Internet hosts [23]. Slam-
mer worm [31] infected more than 90 percent of vulnerable
Internet hosts, equivalent to more than 75,000 hosts within
10 minutes while the Witty worm [30] infected almost all of
its 12,000 victims in 45 minutes. The Witty worm infected
110 hosts in the first 10 seconds. However, our experiments
show that our proposed technique is capable of automatically
containing fast spreading worms within 5 seconds of detec-
tion on any of the DEs in a target subnet. The interval be-
tween release of the worm in the wild to detection of the
worm on a DE running our algorithm depends on the prop-
agation speed of the worm. This interval will be very short,
in the order of few seconds for fast spreading worms. Our
technique, if deployed on all edge networks on the Internet is
therefore capable of significantly reducing the spread of these
fast propagating worms before core and distribution gigabit
links in enterprise or ISP networks become congested. Be-
sides, since only small-sized notification packets (under 100
bytes) are transmitted between peer GRs running our reactive
blocking protocol, GR to GR traffic is unlikely to congest
multiple gigabit links typically used for core and distribution
connections. In switched edge networks, the DEs as well as
other hosts within a target network would be typically con-
nected through switch ports which constitute seperate indi-
vidual collision domains. This also minimises the possibility
of having congested links between the DEs and the gateway
router upon detection of an attack. In addition, the observed
size of the DE records transfered between each DE and a
GR is relatively small, in the order of 5KB and is therefore
unlikely to congest 100MB links typically used to connect
hosts to switched networks. On the contrary, our proposed
technique can be effective in combatting DoS attacks due to
malicious fast spreading worms. Using our technique, such
DoS attacks can be contained within few seconds of detec-
tion.

V. CONCLUSION AND FUTURE WORK

In this paper we outlined crucial requirements for effective
detection and containment of fast spreading malicious worms
and proposed a distributed collaborative containment tech-
nique which relies on distributed host-based anomaly detec-
tor endpoints for notification. We identified gaps between ex-
isting proposals for detection and containment of such worms
and our proposed solution. Experimenting on a live test-bed,
our results revealed that the technique is capable of contain-
ing fast spreading zero-day worms within five seconds of de-

tecting the attack with zero false positives and false nega-
tives. The results also show that in the presence of benign
network scans, fast spreading malicious worms can be accu-
rately detected.

For future work, there are a number of possible directions.
First, we intend to carry out further analysis of our distributed
host-based intrusion detection and network centric contain-
ment technique for combatting fast spreading worms. This
involves development of analytical models to quantitatively
evaluate the effectiveness of the technique in slowing down
worm propagation as well as protecting a vulnerable popula-
tion during a worm invasion. Second, we would like to ex-
tend our host-based intrusion detection and network-centric
collaborative containment technique to DDoS attacks that
may not necessarily be caused by infectious worms. DDoS
attacks are of various kinds and it is unlikely that one de-
fense mechanism can defend against all DDoS attack types.
We intend to identify DDoS threat models that our technique
protects against and evaluate its performance under such at-
tack scenarios. Third, cells within large networks vary in size
and while our algorithm requires a minimum of two detector
endpoints in a cell to trigger our correlation algorithm we
have not provided guidelines for choosing an optimum num-
ber of detector endpoints for a given cell size if one exists.
This also requires some investigation.

REFERENCES

[1] K. Wang and S. J. Stolfo. Anomalous Payload-based Network Intru-
sion Detection. In Proceedings of the 7th International Symposium
on Recent Advanced in Intrusion Detection (RAID), pages 201-222,
September 2004.

[2] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo. Flips: Hybrid
adaptive intrusion prevention. In Proceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection (RAID),
September 2005.

[3] M. Handley, C. Kreibich and V. Paxson, ”Network Intrusion Detec-
tion: Evasion, Traffic Normalization, and End-to-End Protocol Se-
mantics”, Proc. USENIX Security Symposium, 2001.

[4] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm
Fingerprinting. In Proceedings of the ACM/USENIX Symposium on
Operating System Design and Implementation (OSDI), December
2004.

[5] S. Rubin, S. Jha, and B. Miller. Automatic generation and analysis
of NIDs attacks. In Proceedings of 20th Annual Computer Security
Applications Conference, Tucson, AZ, USA, Dec. 2004. IEEE Com-
puter Society.

[6] O. Kolesnikov and W. Lee. Advanced Polymorphic Worms: Evading
IDS by Blending in with Normal Traffic. Technical report, Georgia
Tech, 2004.

[7] D. Whyte, P.C. Van Oorschot, E. Kranakis. Detecting Intra-
Enterprise Scanning Worms Based on Address Resolution. Annual
Computer Security Applications Conference (ACSAC’05). Dec.
2005

[8] D. Whyte, E. Kranakis, and P. Van Oorschot. DNS-based Detection
of Scanning Worms in an Enterprise Network. In Network and Dis-
tributed Systems Symposium (NDSS), 2005.

[9] F. Guo, “Traffic Analysis: from Stateful Firewall to Network Intru-
sion Detection System, ” RPE Report, January 2004.

[10] P. Barford, J. Kline, D. Plonka, and R. Amos. A signal analysis of
network traffic anomalies. In Proceedings of the ACM SIGCOMM
Internet Measurement Workshop, Marseilles, France, November
2002.

[11] S. Singh, C. Estan, G. Varghese, and S. Savage. The EarlyBird sys-
tem for real-time detection of unknown worms. Technical Report
CS2003-0761, University of California, San Diego, August 2003.

[12] A. Habib, M. Hefeeda, and B. Bhargava. Detecting service violations
and DOS attacks. In Proceedings of Network and Distributed System
Security Symposium, San Diego, pages 177 189, February 2003.

[13] M. Mahoney, P. Chan: Detecting novel attacks by identifying
anomalous network packet headers. Technical Report CS-2001-2,
Florida Institute of Technology (2001).

[14] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top Speed of
FlashWorms. In 2nd ACM Workshop on Rapid Malcode (WORM),
2004.

[15] H. J. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known vulnera-
bility exploits. In ACM SIGCOMM, August 2004.

[16] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham. Vigilante: 12 EuroSys 2006 End-to-end containment
of Internet worms. In Proc. of the 20th ACM Symp. on Operating
Systems Principles, Brighton, UK, October 2005.

[17] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. J. Stolfo. De-
tecting malicious software by monitoring anomalous windows reg-
istry accesses. In Proceedings of the Fifth International Symposium
on Recent Advances in Intrusion Detection (RAID-2002), Zurich,
Switzerland, October 2002.

[18] Cisco Systems Inc. Cisco Security Agent ROI: Deploying Intrusion
Protection Agents on the Endpoints. 2003

[19] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet quar-
antine: Requirements for containing self-propagating code. In Pro-
ceedings of IEEE INFOCOM, April 2003.

[20] N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment of
Scanning Worms. In 13th Usenix Security Symposium, 2004.

[21] D. Nojiri, J. Rowe, and K. Levitt. Cooperative response strategies
for large scale attack mitigation. In Proceedings of the 3rd DARPA
Information Survivability Conference and Exposition, April 2003.

[22] M. Cai, K. Hwang, Y. Kwok, S. Song, Y. Chen. Collaborative In-
ternet Worm Containment. IEEE Security and Privacy Magazine,
May/June 2005.

[23] D. Moore, C. Shannon, and K. Claffy. Code red: A case study on
the spread and victims of an internet worm. In Proceedings of ACM
SIGCOMM Internet Measurement Workshop, November 2002.

[24] eEye Digital Security. CodeRedII Worm Analysis.
http://www.eeye.com/html/Research/Advisories/AL20010804.html

[25] SecurityFocus. SecurityFocus Code Red II Information Headquar-
ters. http://aris.securityfocus.com/alerts/codered2/.

[26] CERT. CERT Advisory CA-2001-26 Nimda Worm.
http://www.cert.org/advisories/CA-2001-26.html

[27] Symantec. W32.nimda.a@mm. http://www.symantec.com/avcenter/
[28] J. Ioannidis and S. M. Bellovin. Implementing pushback: Router-

based defense against DDoS attacks. In Proceedings of Network and
Distributed System Security Symposium, San Diego. The Internet
Society, February 2002.

[29] S. G. Cheetancheri, J. M. Agosta, D. H. Dash, K. N. Levitt, J. Rowe,
E. M. Schooler. A Distributed Host-based Worm Detection System.
In Proceedings of ACM SIGCOMM Workshops on Large scale at-
tack defences, September 2006.

[30] C. Shannon, D. Moore. The Spread of the Witty Worm. IEEE Secu-
rity Privacy, vol. 2, no. 4., Jul./Aug. 2004.

[31] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N.
Weaver. Inside the Slammer Worm. IEEE Security Privacy, vol. 1,
no. 4, Jul./Aug. 2003.

[32] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. The Spread of the Sapphire/Slammer Worm. Tech. rep.,
CAIDA, Jan 2003.

[33] Microsoft Inc. Virus alert about the Nachi worm. Article ID 826234,
Revision 5.6. http://support.microsoft.com/kb/826234, February 5,
2007.

[34] CERT Advisory CA-2001-19. ”Code Red” Worm Ex-
ploiting Buffer Overflow In IIS Indexing Service DLL.
http://www.cert.org/advisories/CA-2001-19.html, January 17,
2002.

[35] D. Dagon, G. Gu, C. Zou, J. Grizzard, S. Dwivedi, W. Lee, R. Lipton.
A Taxonomy of Botnets. Cyber Trust 2005 posters. September 2005.

[36] C. C. Zou, W. Gong, and D. Towsley. Worm propagation model-
ing and analysis under dynamic quarantine defense. In Proceedings
of ACM CCS Workshop on Rapid Malcode (WORM03) (October
2003).

[37] V. T. Lam, S. Antonatos, P. Akritidis, and K. G. Anagnostakis. Pup-
petnets: Misusing web browsers as a distributed attack infrastruc-
ture. In 13th ACM Conference on Computer and Communications
Security. ACM, 2006.

[38] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker. Controlling High Bandwidth Aggregates in the Network.
ACM Computer Communications Review, Vol. 32, No. 3, July 2002.

