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Abstract

The problem of traversal of planar subdivisions or other
graph-like structures without using mark bits is central to
many real-world applications [7, 8, 11, 13, 12, 17, 18].
First such algorithms developed were able to traverse tri-
angulated subdivisions [10]. Later these algorithm were
extended to traverse vertices of an arrangement or a con-
vex polytope [3]. The research progress culminated to an
algorithm that can traverse any planar subdivision [6, 9].
In this paper, we extend the notion of planar subdivision to
quasi-planar subdivision in which we allow many edges to
cross each other. We generalize the algorithm from [9] to
traverse any quasi-planar subdivision that satisfies a simple
requirement. If we use techniques from [6] the worst case
running time of our algorithm will be O(|E| log |E|); which
matches with the running time of the traversal algorithm for
planar subdivisions [6].
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1 Introduction

Graph traversal is a fundamental problem in graph al-
gorithms: Given a starting vertex, can we systematically
traverse the entire graph reaching every vertex reachable
from the starting one? Many elementary graph algorithms
involve making traversal of the graph (e.g., connected com-
ponent, tree and cycle detection, graph coloring) in order to
update their knowledge as they visit each edge and vertex.
There have been several studies on traversal in the literature.
The best known polynomial traversal algorithm for undi-
rected graphs needs O(log2 n) space—O(log n) variables
each storing an address (O(log n) bits) of a vertex [4, 16].
One can even drop the space to O(log3/2

n) but then time
will not be polynomial [15]. Very recently, this was im-
proved to O(log4/3 n) space [2]. There are also randomized
O(log n) space and expected polynomial time traversal al-
gorithms known [1]. Note that Ω(log n) space is necessary
for any traversal algorithm, hence O(log n) space traver-
sal algorithms are referred to as algorithms with no extra
memory or without using mark bits. For lower bounds on
time-space tradeoff of the traversal problem see [5]. In this
paper, we are solely interested in traversal algorithms with
no extra memory. We gain the improvement of factor log n

compared to the algorithm from [4] by assuming the graph
is geometric and satisfies a simple topological condition.
This is a significant improvement since, so far, such algo-
rithms have been known only for planar geometric graphs
[3, 6, 9, 10].



Our motivation for studying this problem comes from
wireless computing: a set of vertices forms spontaneously
an ad hoc wireless network. The vertices being aware only
of their own geographic location are required to perform
fundamental network tasks such as route discovery and
broadcasting under various performance parameters such as
minimum number of hops, lowest energy consumption, etc.
The problem has been considered in several papers includ-
ing [7, 8, 11, 13, 12]. In all cases, it is assumed that the un-
derlying ad hoc network is preprocessed in order to produce
a planar spanner over which a route discovery algorithm can
be performed. In this paper we go beyond the existing lit-
erature by defining a new class of networks over which the
fundamental task of graph traversal can be performed effi-
ciently without prior knowledge of the whole network but
rather based solely on local knowledge of the geographic
location of the nodes.

A planar subdivision is a partitioning of the plane E
2

into a set V of vertices (points), a set E of edges (line
segments), and a set F of faces (polygons). In this paper
we always consider only finite partitions. Furthermore, we
assume that no edge passes through any vertex except its
end-vertices. A combinatorial abstraction of a planar sub-
division is the planar graph G = (V, E) together with its
straight-line embedding into the plane. We will often iden-
tify the planar subdivision with its planar graph G in this
paper. A subdivision is connected if its graph is connected.

Planar subdivisions are finding more and more applica-
tions into various real-world problems. For example, they
are the basic spatial vector data structure in many geo-
graphic information systems [17, 18]. Further recent appli-
cations of planar subdivisions can be found in the area of ad
hoc wireless networks which we already mentioned above.
A fundamental task performed on planar subdivisions is the
traversal. Traversing a subdivision involves reporting each
vertex, edge, and face of G exactly once, so that some op-
eration can be applied to each. The usual approach to the
problem involves a DFS (Depth First Search) of the primal
(vertices and edges) or dual (faces and edges) graph. Un-
fortunately, this technique cannot be implemented without
using mark bits on the vertices, edges, or faces, and a stack
or queue. If the data structure used to represent the subdi-
vision G does not have extra memory allocated (which is
the case for many real-world applications, i.e. the hosts in
ad hoc wireless networks are usually very simple devices
with limited memory), then an auxiliary array must be al-
located and some form of hashing is required to map ver-
tex/edge/face records to array indices. The DFS approach
has also another drawback—the traversal cannot be per-
formed simultaneously by more than one thread of execu-
tion without some locking mechanism, and of course the
memory requirements are increasing.

These problems stimulated an extensive research on

traversing planar subdivisions or other graph-like structures
without the use of mark bits. One of the first such algo-
rithms developed was for the traversal of a triangulated sub-
division [10]. The main idea was to choose one starting
point and then define for each triangle unique starting edge
through which the triangle can be entered. With careful or-
der and choices one can make sure that each triangle in the
subdivision is reported exactly once. In fact, an order is
defined on triangles and triangles are reported in this or-
der. This technique is the basis of all subsequent results: In
[3], authors describe an algorithm for traversal of vertices
of an arrangement or a convex polytope. In [9], authors ex-
tend the algorithm to arbitrary planar subdivisions, and very
recently, in [6] the running time of this algorithm was im-
proved.

Generally speaking, all algorithms described in [3, 6,
9, 10] use geometric properties of planar subdivisions. In
this paper, we look at planar subdivisions as combinato-
rial objects—graphs consisting of vertices, edges and cy-
cles which give the notion of faces. This allows us to gen-
eralize results from [9, 6] to graphs that do not necessarily
represent planar subdivisions in E

2. In particular, we de-
fine a notion of a quasi-planar subdivision which general-
izes the notion of planar subdivision and give an algorithm
for traversing quasi-planar subdivisions without the use of
mark bits. The worst case running time of our algorithm is
O(|E| log |E|) where E is the number of edges in the quasi-
planar subdivision G. Note that if G is a planar subdivision,
then |E| = O(|V |) and the running time of our algorithm
matches the running time of the best known planar subdi-
vision traversal algorithm [6]. The implementation of our
algorithm only requires that every vertex knows its and its
neighbors coordinates.

2 Quasi-Planar Subdivisions

In this section, we generalize the notion of planar subdi-
vision and its traversal.

A quasi-planar subdivision is a graph G = (V, E) with
vertices embedded in the plane and partitioned into Vp ∪
Vc = V so that

• vertices in Vp induce a connected planar graph P ,

• the outer-face of P does not contain any vertex from
Vc or edge of G− P , and

• no edge of P is crossed by any other edge of G.

An example of a quasi planar subdivision is depicted in Fig-
ure 1.

We will refer to the graph P as an underlying planar
subgraph and to its faces as underlying faces. The notion



Figure 1. An example of a quasi-planar sub-
division that satisfies the Left-Neighbor Rule.
The filled vertices are in Vp and bold edges
are edges of the underlying planar subgraph
P .

of vertices and edges is explicit in the definition of quasi-
planar subdivision, however, the notion of faces is not. To
define the notion of a face, we need to introduce some basic
functions on quasi-planar subdivisions. Note that our algo-
rithms do not need to know the partition of V into Vp and
Vc. Such a partition is used only in the proofs of correctness
of algorithms.

2.1 Basic functions on quasi-planar subdivision.

We assume that every vertex u is uniquely determined
by pair [x, y] where x is its horizontal coordinate and y is
its vertical coordinate. Moreover, we assume that the rep-
resentation of G is so that every edge e = uv is stored
as two oppositely directed edges (u, v) and (v, u). If we
need to specify a direction of e, we write either e = (u, v)
or e = (v, u), and if the direction is irrelevant, we write
e = uv. Note that in our algorithm, we will still report each
(undirected) edge e = uv exactly once.

For a vertex v, the function xcor(v) will return the
horizontal coordinate of the vertex v, while the function
ycor(v) will return the vertical coordinate of v. For an
edge e = (u, v), the function rev(e) will return a pointer
to the edge (v, u). We will sometimes use e− to denote
rev(e). Similarly the function succ(e) will return a pointer
to the edge (v, x) so that (v, x) is the first edge counter-
clockwise around v starting from the edge (v, u), and the
function pred(e) will return a pointer to the edge (y, u) so
that (u, y) is the first edge clockwise around u starting from
the edge (u, v). For an illustration of these functions see
Figure 2. These functions can be easily implemented using
so-called doubly-connected edge list structure [14, 19].

Obviously, functions succ() and pred() are injective,
and thus, for every (directed) edge e = (u, v) of G, we can
define a closed walk by starting from e = (u, v) and then

pred(e)

v
u

e

rev(e)

qface(e)

succ(e)

Figure 2. Illustration of basic functions on
quasi-planar subdivisions.

Figure 3. A quasi-planar subdivision and its
six quasi-faces.

repeatedly applying the function succ() until we arrive at
the same edge e = (u, v). Such a walk is called a quasi-face
of G. The set of all quasi-faces of G is denoted by F . The
function qface(e) will return a pointer to the quasi-face de-
termined by the (directed) edge e = (u, v). Note that if
G is a planar subdivision, then quasi-faces become (regu-
lar) faces, and hence the notion of quasi-planar subdivision
generalizes the notion of the connected planar subdivision.

The task of traversing a quasi-planar subdivision is to
report every vertex, (undirected) edge, and quasi-face ex-
actly once in some order. For general quasi-planar subdivi-
sions this seems to be a hard task if we want to perform it
without using mark bits and a stack. In the next section, we
will show that it is possible to traverse a quite large class of
quasi-planar subdivisions.

Definition 1. We say that a quasi-planar subdivision G sat-
isfies a Left-Neighbor Rule if every vertex v ∈ Vc has a
neighbor u so that xcor(u) < xcor(v). For an example of
G that satisfies the Left-Neighbor Rule see Figure 1.

3 Quasi-Planar Subdivision Traversal Algo-
rithm

In this section, we generalize traversal algorithms from
[9, 6] so that it will traverse any quasi-planar subdivision



G = (V, E) that satisfies the Left-Neighbor Rule. The
general idea of the algorithm is the same as the one in
[3, 6, 9, 10]: We define a total order � on all edges in
E. Using this order, we define a unique predecessor for
every quasi-face in F such that the predecessor relationship
imposes a virtual directed tree G(F ). The algorithm will
search for the root of G(F ) and then will report quasi-faces
of G in DFS order on the tree G(F ). For this we use a
well-known tree-traversal technique to traverse G(F ) using
O(1) additional memory. Note that the tree G(F ) is never
stored in memory and at any given time the algorithm will
remember only a constant number of edges (at most two) of
this tree. The tree G(F ) is used to prove the correctness of
our algorithm.

3.1 The order �, the entry edge, and the virtual
tree G(F ).

In order to define the virtual tree G(F ), we determine a
unique edge, called an entry edge, in each quasi-face. We
first define a total order on all edges in E. We write u� v

if (xcor(u),ycor(u)) ≤ (xcor(v),ycor(v)) by lexico-
graphic comparison of the numeric values using ≤. For an
edge e = (u, v), let

left(e) =

{

u, if u� v

v, otherwise
, right(e) =

{

v, if u� v

u, otherwise
,

and ǔ = [xcor(u),ycor(u) − 1]. Now let key(e) be the
5-tuple

key(e) =(xcor(left(e)), ycor(left(e)),

] ˇleft(e) left(e) right(e), xcor(u), ycor(u)).

By ]abc we always refer to the counter-clockwise angle
between rays ba and bc with b being the apex of the angle. It
follows by our assumption that edges cannot cross vertices
that if two edges e 6= e′ have the same first three values in
their key(), then e′ = e− and hence their last two values
in key() cannot both be the same. Hence it follows that
e = e′ if and only if key(e) = key(e′). We define the total
order� by lexicographic comparison of the numeric key()
values using ≤. For a quasi-face f ∈ F , we define

entry(f) = e ∈ f : e � e′ for all e′ 6= e ∈ f,

i.e., entry(f) is the minimum edge (with respect to the or-
der �) on the quasi-face f . Such an edge e will be called
the entry edge of f . Note that this function is easy to imple-
ment using the function succ(), and the total order� using
only O(1) memory. We will use the following function

ismin(e) =















T, if e = entry(qface(e)) and
e− = entry(qface(e−)) and
e ≺ e−,

F, otherwise.

Let e0 = (u0, v0) be the minimum edge in the order� . The
next lemma shows that using the function ismin() we can
test for the minimum edge e0 in quasi-planar subdivisions
that satisfy the Left-Neighbor Rule.

Lemma 1. If a quasi-planar subdivision G satisfies the
Left-Neighbor Rule, then the function ismin(e) = T if and
only if e = e0.

Proof. The proof appears in a journal version of the paper.

Lemma 1 guarantees that we can test for the minimum
edge e0 using only the basic functions entry(), qface(),
rev(), and key(). This allows us to implement the follow-
ing function using only O(1) extra memory.

parent(f) =







qface(rev(entry(f))), if
entry(f) 6= e0, and

NULL, otherwise.

Let us note that it is possible that parent(f) = f , how-
ever, we show that if G satisfies the Left-Neighbor Rule,
then this never happen. This rule will also guarantee that
entry(parent(f)) ≺ entry(f) if entry(f) 6= e0. Our
algorithm will identify the edge e0 and will treat qface(e0)
differently than all other quasi-faces.

We now define an auxiliary graph which will be used
to prove the correctness of our algorithm. Let G(F ) =
(F, E(F )) with

E(F ) = {(f, f ′) : parent(f) = f ′} .

We prove that if G satisfies the Left-Neighbor Rule, then
G(F ) is a rooted tree.

Lemma 2. If a quasi-planar subdivision G satisfies the
Left-Neighbor Rule, then for every quasi-face f so that
entry(f) 6= e0, entry(parent(f)) ≺ entry(f).

Proof. The proof appears in a journal version of the paper.

Corollary 1. If a quasi-planar subdivision G satisfies
the Left-Neighbor Rule, then for every quasi-face f ,
parent(f) 6= f .

Proof. This follows directly from Lemma 2 for any f so
that entry(f) 6= e0. For qface(e0), by definition we have
parent(qface(e0)) = NULL.

Theorem 1. If a quasi-planar subdivision G satisfies the
Left-Neighbor Rule, then the graph G(F ) is a rooted tree
with the root qface(e0).



Proof. We must show that for every quasi-face f ∈ F there
is unique (directed) path from f to qface(e0) in G(F ).
Since every quasi-face has exactly one entry edge, there
cannot exist more than one path from f to qface(e0). It
remains to show that for every f ∈ F , there exists at least
one path f to qface(e0) in G(F ). Suppose by way of con-
tradiction that for some f ∈ F , there is no such path. Now
consider the sequence:

C = (f,parent(f),parent(f)2,parent(f)3, . . .

parent(f)i, . . .).

By our assumption parent(f)i 6= qface(e0) for i ≥ 1,
hence entry(parent(f)i) 6= e0 for i ≥ 1. Thus, for i ≥ 1,
entry(parent(f)i+1) ≺ entry(parent(f)i). More-
over, entry(f) 6= e0, and hence entry(parent(f)) ≺
entry(f) and hence all the terms in the sequence C are
distinct. Thus, C is an infinite sequence of distinct quasi-
faces of G. This contradicts the assumption that G is a finite
subdivision.

3.2 The Algorithm.

In this subsection, we describe Algorithm 1 which per-
forms traversal on any quasi-planar subdivision G. The
reader may check that the algorithm is very similar to the
one in [6, 9] and in fact it uses the same technique for re-
porting vertices, (undirected) edges and quasi-faces of G.
However to make the algorithm self-contained, we provide
all details here. Let |ab| denote the distance between points

a and b. Let
−→
ab be the direction of the ray originating at

a and containing b. Let cone(a, b, c) denote the cone with
apex b, the supporting rays passing through a and c, respec-
tively, and the interior angle ]abc. We will assume that the
bounding ray passing through a belongs to cone(a, b, c) but
the bounding ray passing through c does not. As noted in
[6], all the functions used in the algorithm can be easily im-
plemented using only algebraic functions. Using the results
from previous section, we can prove

Theorem 2. Algorithm 1 reports each vertex, (undi-
rected) edge, and quasi-face of a quasi-planar subdivi-
sion G that satisfies the Left-Neighbor Rule exactly once
in O(|E| log |E|) time.

Proof. The proof appears in a journal version of the paper.

The Left-Neighbor Rule condition is essential for Algo-
rithm 1 to successfully traverse quasi-planar subdivisions.
If a quasi-planar subdivision does not satisfy the Left-
Neighbor Rule condition, then the order � is not guaran-
teed to be a total order on edges of G and hence there may
be several locally minimal edges each playing the role of

e0. Then the traversal algorithm would traverse only a sub-
graph of G. For an example of a quasi-planar subdivision
with two locally minimal edges (u, v) and (x, y) see Figure
4.

x u

y

v

Figure 4. The vertex u does not satisfy the
Left-Neighbor Rule. Consequently, the func-
tion ismin() returns T for both edges (u, v)
and (x, y).

Algorithm 1 Traversal of quasi-planar
subdivision G(V, E).

Input: e = (u, v) of G(V, E)
Output: List of vertices, edges, and quasi-faces of G in

some order.

1: repeat {* find the minimum edge e0 *}
2: e← rev(e)
3: while e 6= entry(qface(e)) do
4: e← succ(e)
5: end while
6: until e = e0

7: p← ˇleft(e)
8: repeat {* start the traversal *}
9: e← succ(e)

10: let e = (u, v) and let succ(e) = (v, w)
11: if p is contained in cone(u, v, w) then {* report u if

necessary *}
12: report u

13: end if
14: if |up| < |vp| or (|up| = |vp| and −→up < −→vp) then {*

report e if necessary *}
15: report e

16: end if
17: if e = entry(qface(e)) then {* report e and return

to parent of qface(e) *}
18: report qface(e)
19: e← rev(e)
20: else {* descend to children of qface(e) if necessary

*}
21: if rev(e) = entry(qface(rev(e))) then
22: e← rev(e)



23: end if
24: end if
25: until e = e0

26: report qface(e0)

4 Concluding Remarks

We have generalized a graph traversal algorithm for geo-
metric planar subdivisions [9] (a graph is geometric if every
vertex knows its geometric coordinates). The main idea in
our algorithm is that of extending the notion of a face in
planar subdivision into a closed walk in symmetric directed
graph (i.e. directed graph which with every edge (u, v)
also contains the edge (v, u)). Thus, our algorithm can
traverse (in polynomial time and O(log n) space) a much
wider class of geometric graphs which satisfy a simple ge-
ometric condition. The best known polynomial traversal al-
gorithm for non-geometric graphs needs O(log2

n) space.
One interesting problem remains: Can the geometric condi-
tion be dropped from our algorithm by using a more sophis-
ticated approach to define a total order on edges? If so, this
would manifest the essential difference between geometric
and non-geometric graphs from the graph traversal point of
view.
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