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Abstract. We present 1 − ε approximation algorithms for the maximum
matching problem in location aware unit disc graphs and in growth-bounded
graphs. The algorithm for unit disk graph is local in the sense that whether or
not an edge is in the matching depends only on other vertices which are at most
a constant number of hops away from it. The algorithm for growth-bounded
graphs needs at most O

(
log4 log∗ n+ 1

ε

O(1) · log∗ n
)
communication rounds

during its execution. Using these matching algorithms we can compute vertex
covers of the respective graph classes whose size are at most twice the optimal.

1. Introduction

Unit Disk Graphs (UDGs) is a widely used concept for modeling ad hoc and
wireless networks. In these graphs, the connectivity of two nodes is established if
and only if their Euclidean distance of these two nodes is at most one. Therefore,
UDGs model the setting of identical wireless devices on a plane without obstacles
that could obscure the wireless signals. There are also other models for wireless
networks, e.g., Quasi-Unit-Disk-Graphs (Q-UDGs) which were first introduced by
Barriere et al. [2]. In Q-UDGs there is a certain radius ` such that two nodes which
are closer to each other than ` are always connected whereas nodes with a larger
distance than one unit are always disconnected. This and other models for wireless
networks are captured by growth-bounded graphs. These are graphs in which for
any vertex v the size of an independent set of the vertices which are at most r hops
away from v is at most f(r) (for a certain growth-function f).

In the setting of wireless and ad-hoc-networks there is usually no global com-
munication backbone available. So for organizing the network traffic and solving
problems like matching or vertex cover we need to find a method that does not
rely on global information of the network. So we are interested in local algorithms.
These are algorithms for which the result of a computation for a vertex or an edge
depends only on the vertices and edges which are at most a certain distance away
from them (the locality distance). With this constraint we ensure that we do not
need knowledge of the entire network but only information about the network in
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a certain neighborhood of a vertex or an edge. It is also of interest in dynami-
cally changing networks since if only small changes occur local algorithms need to
recompute only small parts of the solution.

In our UDG graph model we assume that every node is aware of its geographic
position in the plane. Allowing this positional knowledge we will see that the
locality distance of our algorithms can be bounded by a constant. Note that this
constant does not depend on the overall size of the network or the maximal vertex
degree. Since positioning systems like GPS become more and more common, this
setting seems to be relevant.

For organizing communication in wireless networks matching is a useful concept.
In one communication round a node can usually receive data from only sender (due
to interference) and each sender can send only one package at a time (usually to one
receiver). Thus the sender/receiver pairs form a matching in the underlying network
graph. Research has been done on finding matchings with certain properties [3]
in order to deal with interference and noise issues. Also, in the computation of
schedules for allocating bandwidth the matching problem can arise [12].

1.1. Related Work. The matching problem is in P for general graphs [5]. The
first algorithm due to Edmonds requires a runtime of O

(
n3
)
. For the restricted

case of bipartite graphs there are improvements known, e.g., the Hopcroft-Karp
algorithm [7].

The vertex cover problem is NP -hard in general graphs [6], but there are sev-
eral polynomial time approximation algorithms which guarantee an approximation
factor of 2, e.g., in [1]. However, it is NP -hard to approximate the problem with
a factor better than 10

√
5 − 21 ≈ 1, 3607 [4]. Thus there can be no polynomial

time approximation scheme (PTAS), unless P = NP . When we restrict the setting
to unit disk graphs, vertex cover remains NP -hard. The same holds for growth-
bounded graphs since this class includes unit graphs. However, for unit disk graphs
PTASs are known. For the case where the embedding of the graph is known, Hunt
III et al. [8] presented the first approximation scheme. The algorithm for indepen-
dent set presented in [10] together with the technique in [14] yields a global PTAS
for vertex cover that does not rely on the embedding of the graph. There is also a
local PTAS known for the setting of location aware UDGs [14].

1.2. Our Results. We present the first local approximation algorithms for match-
ing in location aware Unit Disk Graphs. It achieves an approximation ratio of 1− ε
for arbitrarily small ε. In this setting we can show that the locality distance of our
algorithm (i.e. the radius of the area that needs to be explored in order to compute
the status of one edge) is bounded by a constant. In particular, this constant does
not depend on the size of the entire network or the maximal degree of a vertex.
For growth-bounded graphs we also give a 1− ε approximation algorithm. For this
setting we lift the assumption of positional information in the nodes and require
only a unique ID in each vertex. The locality distance for this algorithm is in
O
(

log4 log∗ n+ 1
ε

O(1) log∗ n
)
. All matchings computed by these algorithms are

maximal.
Each matching algorithm yields a local approximation algorithm for the vertex

cover problem. The locality properties of these algorithms are identical to the
respective matching algorithms. The size of the computed vertex covers are at
most twice the size of an optimal vertex cover. As mentioned above, for location
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aware unit disk graphs there is a local PTAS known [14]. However, the locality
distance of this PTAS when executed with approximation factor 2 is a lot larger
than the locality of Algorithm 3.

1.3. Organization of the Paper. In Section 2 we present our local 1− ε approx-
imation algorithm for matching in location aware unit disk graphs. In Section 3 we
show how the ideas of this algorithm can be used in order to derive a local 1 − ε
approximation algorithm for the same problem in growth-bounded graphs. Our
local approximation algorithms for vertex cover with approximation factor 2 are
presented in Section 4. Finally in Section 5 we summarize our results and address
open problems.

2. Maximum matching in Location Aware UDGs

In this section we present a local 1−ε approximation algorithm for the maximum
matching problem in location aware unit disk graphs. First we give some basic
definitions. Then we define a tiling of the plane that we are going to use in our
algorithm. Finally we present the algorithm and prove its correctness.

2.1. Definitions. The graph G = (V,E) considered in this section is a unit disk
graph. For two vertices u and v let d(u, v) be the hop-distance between u and v, that
is the number of edges on a shortest path between these two vertices. Note that the
hop-distance between two vertices does not necessarily equal the geometric distance
between them. Denote by Nr(v) = {u ∈ V | d(u, v) ≤ r} the r-th neighborhood of
a vertex v. In Section 3 we will consider growth-bounded graphs.

Definition 1. An undirected graph G = (V,E) is called a growth-bounded graph
if there exists a polynomial bounding function f(r) such that for every v ∈ V and
r ≥ 0, the size of the largest independent set in the r-neighborhood Nr(v) is at
most f(r).

This is the definition that I copied from a paper. Actually, what is really meant
is something like this:

Definition 2. Let G be a family of graphs. We call G growth-bounded, if there exists
a polynomial bounding function f(r) such that for every graph G ∈ G, every vertex
v in G and every r ≥ 0, the size of the largest independent set in the r-neighborhood
Nr(v) in G is at most f(r).

In Section 3 we will consider growth-bounded graphs. We will implicitly assume
that the family G and its bounding function f(r) are known and fixed.

What do you think?

Let M ⊆ E be a set of edges. We call M a matching, if no two edges in M share
an end-vertex. We call M a maximum matching, if for all matchings M ′ it holds
that |M ′| ≤ |M |. A maximal matching is a matching which cannot be extended by
adding another edge.

Let M be a matching. We call a path p an M -alternating path, if it contains
alternating matching- and non-matching edges. We call a vertex v an isolated
vertex, is it is not adjacent to an edge from M . We call an M -alternating path p
an M -augmenting path, if it starts from and ends on isolated vertices. Note: An
M -augmenting path has an odd number of edges.
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Figure 1. The tiling of the plane.

Lemma 1. A matching M is a maximum matching, if and only if there is no
M -augmenting path.

2.2. Tiling of the Plane. Let 1 − ε be the desired approximation ratio for the
matching algorithm. We define k to be the smallest integer such that ε ≥ 2

k+1 . We
tile the plane with an infinitely repeated pattern of rectangles as seen in Figure 1.
Each rectangle is assigned class number 1, 2 or 3. The height of each rectangle is
2k + 2, the width of each rectangle is 4k + 4.

2.3. The Algorithm. Now we present the algorithm. It has three phases:
(1) For each rectangle R we compute a matching that includes only edges that

have both end-vertices in R.
(2) For each class 1 rectangle R we check if there are augmenting paths in the

subgraph induced by the vertices which are at most k hops away from R.
If there are such paths, we augmented the matching until no such paths are
left.

(3) For each class 2 rectangle R we check if there are augmenting paths in the
subgraph induced by the vertices in R and the vertices in class 3 rectangles
which are at most k hops away from R. As in the step before, we augment
the matching along all these paths.

Now we present the algorithm in detail. For all rectangles R we do the following:
Denote by VR the vertices in R. For the subgraph induced by VR we compute
a maximum matching using a standard matching algorithm. Since all VR for the
different rectangles R are disjoint the order in which we do this does not matter.
Now we come to phase 2: For each class 1 rectangle R we take the set of vertices
which are in R or at most k hops away from a vertex in R. Denote this set by V ′R.
In the subgraph induced by V ′R we augment the matching along all augmenting
paths. Since the height of the rectangles is 2k + 2 and their width is 4k + 4, the
order in which the class 1 rectangles are being processed does not matter. Finally
we start phase 3: For each class 2 rectangle R we compute all vertices which are
at most k hops away from R. Denote this set by V ′′R . For the subgraph induced
by V ′′R we we augment the matching along all augmenting paths. Denote by M the
resulting matching. We refer to the above as Algorithm 1.
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Algorithm 1: Algorithm for finding a matching in a unit disk graph G =
(V,E)
// Phase 1;
foreach rectangle R do

// denote by VR the vertices in R;
determine a maximum matching MR for the subgraph induced by VR;

end
Define M :=

⋃
R∈TMR;

// Phase 2;
foreach rectangle R with class(R) = 1 do

Denote by VR all vertices in R;
Explore all vertices which are at most k hops away from vertices in VR;
// Denote these vertices by V ′R;
Augment M along augmenting paths in the subgraph induced by V ′R;

end
// Phase 3;
foreach rectangle R with class(R) = 2 do

Denote by VR all vertices in R;
Explore all vertices which are at most k hops away from vertices in VR;
// Denote these vertices by V ′′R ;
Augment M along augmenting paths in the subgraph induced by V ′′R ;

end

In the following theorem we prove that Algorithm 1 is a local algorithm that
computes a valid matching with a competitive ratio of 1− ε.

Theorem 1. Algorithm 1 has the following properties:
(1) The computed matching M is a maximal matching for G.
(2) Let MOPT be an optimal matching for G. It holds that |M | ≥ (1 − ε) ·
|MOPT |.

(3) Whether or not an edge e = (u, v) is a matching edge depends only on the
vertices which are at most O

(
1/ε2

)
hops away from u or v, i.e. Algorithm

1 is local.
(4) The processing time for an edge e = (u, v) is bounded by a cubic polynomial

in the number of vertices which are at most O
(
1/ε2

)
hops away from u or

v.

2.4. Proof of Correctness. We will prove the four parts of this theorem in four
steps.

2.4.1. Validity and Maximality. We prove that M is a valid matching for G and
that it is maximal.

Proof. (of part 1 of Theorem 1): The matchings constructed in phase 1 are clearly
valid. Since in phase 2 and 3, M is only augmented along augmenting paths, the
resulting matching is valid as well.

Now we want to prove that M is maximal. We call an edge that would extend
M an extending edge. Since we augment the matching along augmenting paths a
vertex which is adjacent to a matching edge once will be adjacent to a matching
edge in the final matching as well. We see that after phase 1 all extending edges
must have their adjacent vertices in different rectangles since we compute maximum
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matchings for each rectangle. From the construction of the tiling we see that these
rectangles must have different class number (since the length of an edge is at most
1). After phase 2 there are no extending edges between class 1 and 2 rectangles
left since the matching would be augmented along such “paths”. With the same
reasoning we see that after phase 3 there are no extending edges between class 2
and 3 rectangles left. So for the final matching there are no extending edges in the
graph. This implies that the matching M is maximal. �

2.4.2. Approximation Ratio. Let MOPT be an optimal matching for G. We prove
that |M | ≥ (1− ε) · |MOPT |.

Proof. (of part 2 of Theorem 1): Denote by Mi the matching computed by the
algorithm after phase i for i ∈ {1, 2, 3}. Let Pi be the set of augmenting paths
for Mi with i ∈ {1, 2, 3}. From the construction of M1 it follows that all paths
in P1 must have their start- and endvertices in two different rectangles. From the
algorithm we see that all paths in P2 either

• do not have their start- and endvertex in a rectangle of class 1 or
• are longer than k,

since all other augmenting paths in P1 are eliminated in phase 2. Similarly, in P3

all augmenting paths which are left are longer than k edges.
ConsiderM ′ := M34MOPT = (M3−MOPT )∪(MOPT −M3) and G′ := (V,M ′).

All nodes in G′ have a degree of at most two (since M3 and MOPT are both
matchings). Its connected components are

• isolated vertices
• cycles of even length
• paths of three possible types

– paths starting and ending with an edge from M . This cannot hap-
pen since this would be an augmenting path for MOPT and MOPT is
optimal.

– paths starting with an edge from M and ending with an edge from
MOPT . These paths have the same number of edges from M as from
MOPT .

– paths starting and ending with an edge from MOPT . These are aug-
menting paths for M . Denote all these paths by P ′3.

Every augmentation would increase the number of edges in M by one, so |M |+
|P ′3| = |MOPT |. Since P ′3 ⊆ P3 all paths in P ′3 have more than k edges. So every
path in P ′3 contains at least k+1

2 edges of MOPT . Since the paths are disjoint, it
follows that |P ′3| ≤ |MOPT | /k+1

2 . We then have

|M | = |MOPT | − |P ′3|

≥ |MOPT | −
2 |MOPT |
k + 1

=
(

1− 2
k + 1

)
· |MOPT |

≥ (1− ε) |MOPT |

�
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2.4.3. Locality. We prove that whether or not an edge e = (u, v) belongs to M
depends only on the vertices which are at most O

(
1/ε2

)
hops away from u or v.

First we need to give a technical lemma.

Lemma 2. Let R be a rectangle and G[R] the graph G restricted to R. For each
connected component C in G[R] it holds that diam(C) ≤ 22k2 + 58k + 39. Let R′
be a rectangle and G[R′] the graph G restricted to the vertices which are at most k
hops away from R′ (including the vertices in R′ itself). Then for each connected
component C ′ in G[R′] it holds that diam(C ′) ≤ 30k2 + 70k + 31.

Proof. First we derive an upper bound for the maximum size of an independent
set in G[R]. The area of R plus a surrounding belt of width 1/2 around it is
(2k+3) ·(4k+5) =

(
8k2 + 22k + 15

)
. So there can be at most

⌊
8k2+22k+15

π/4

⌋
centers

of non-overlapping discs of radius 1/2 in R. We compute that
⌊

8k2+22k+15
π/4

⌋
≤⌊

32k2

π

⌋
+
⌊

88k
π

⌋
+
⌊

60
π

⌋
≤ 11k2+29k+20. It follows that the cardinality of a maximum

independent set in G[R] is at most 11k2 + 29k + 20. Now consider a connected
component C in G[R] and two vertices u, v ∈ C such that d(u, v) = diam(C).
Denote by p the shortest path between u and v in C. If we take every alternating
vertex in p we get an independent set in R. As the size of such a set is bounded
by 11k2 + 29k + 20, the length of p is bounded by 22k2 + 58k + 39 and therefore
diam(C) ≤ 22k2 + 58k + 39.

Applying the same reasoning toR′ we derive an upper bound of 15k2+35k+16 for
an independent set in G[R′] (since

⌊
(2k+3+k)·(4k+4+k)

π/4

⌋
=
⌊

15k2+27k+12
π/4

⌋
≤
⌊

60k2

π

⌋
+⌊

108k
π

⌋
+
⌊

48
π

⌋
= 15k2 + 35k+ 16) and therefore we get diam(C ′) ≤ 30k2 + 70k+ 31

for any connected component C ′ in G[R′]. �

Proof. (of part 3 of Theorem 1): Denote by ai the maximum number of hops which
we need to explore around u and v in order to compute whether e ∈M after phase
i (for i ∈ {1, 2, 3}).

In order to determine the status of an edge e after phase 1, we need to explore
only the connected component of e in its rectangle if u and v are in the same
rectangles or nothing if u and v are in different rectangles. From Lemma 2 it
follows that a1 ≤ 22k2 + 58k + 39. For computing the status of e after phase 2
we need to explore the connected component V ′R with u ∈ V ′R and v ∈ V ′R (if it
exists) and what edges in V ′R were assigned to M after phase 1. It follows that
a2 ≤ a1 + 30k2 + 70k+ 31 (see Lemma 2). Analogously for computing the status of
e after phase 3 we need to explore the connected component V ′′R such that u ∈ V ′′R
and v ∈ V ′′R (if such a component exists) and what edges in V ′R were assigned to M
after phase 2. This implies that a3 ≤ a2 +30k2 +70k+31. So altogether we get that
a3 ≤ 22k2+58k+39+30k2+70k+31+30k2+70k+31 = 82k2+198k+101 ∈ O

(
k2
)
.

By definition k is the smallest integer such that ε ≥ 2
k+1 . This implies that

k ≥ 2
ε − 1 and thus k ∈ O (1/ε). It follows that a3 ∈ O

(
1/ε2

)
. �

2.4.4. Processing time. We want to show that the processing time of Algorithm 1
for a single edge e is in O

(
n̄(e)3

)
where n̄(e) is the number of vertices within the

locality distance of e (i.e. the number of vertices which we really need to explore
in order to compute the status of e).
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Proof. (of part 4 of Theorem 1): In phase 1 we need to compute a maximum
matching for edges in a single rectangle. This can be done in O

(
n̄(e)3

)
using any

algorithm for computing a maximum matching (e.g. Edmonds algorithm [5]). In
phase 2 we need to find augmenting paths in the subgraph induced by V ′R for several
class 1 rectangles R. Since in the locality distance of e there can be only a constant
number of class 1 rectangles this requires O

(
n̄(e)3

)
time (note that the number

of such class 1 rectangles does not depend on the desired approximation ratio).
Applying the same reasoning in phase 3 we need a processing time of O

(
n̄(e)3

)
.

This leads to an overall processing time of O
(
n̄(e)3

)
. �

3. Maximum Matching Without Location Awareness

In this section we present a local algorithm which computes a 1−ε approximation
for the maximum matching problem in growth-bounded graphs. In contrast to the
algorithm presented in Section 2 we assume a graph model in which the embedding
of the graph is unknown. We will specify this in the following section.

3.1. Graph Model. Let G = (V,E) be a growth-bounded graph. We assume that
every node has a unique identifier (ID). Apart from that there is no information
available to distinguish the nodes from each other.

3.2. The Algorithm. Let 1−ε be the desired approximation ratio. The algorithm
uses the same methodology as Algorithm 1 for ensuring the approximation ratio: We
will compute a maximal matchingM such that the length of each of the augmenting
paths that could turn M into a maximum matching is at least a certain constant
k. At the beginning of the algorithm we choose k according to ε.

The role of the rectangle classes in the algorithm above will be taken by a
maximal independent set which is also a dominating set. In order to organize
the computation distributively we use the same methods which were originally
presented in [10].

Similarly as in Algorithm 1 we define k to be the smallest even integer such that
ε ≥ 2

k+1 . We compute a maximal independent set I in G. This can be done locally
using the distributed algorithm [5]. Then we define the clustergraph Ḡ = (V̄ , Ē)
with radius 2k + 2 by V̄ := I and

(u, v) ∈ Ē ⇔ dG(u, v) ≤ 2k + 2

Since G is a growth-bounded graph, the maximum degree 4Ḡ of Ḡ is bounded by
a constant. This allows us to use the algorithm in [11] for coloring the vertices of
Ḡ with at most O

(
42
Ḡ

)
colors. We initialize our matching M with M := ∅. Then

we iterate over the different colors of Ḡ. For each color c we do the following: For
each vertex vc which was colored with color c we compute the subgraph induced
by Nk+1 (vc). Denote by Gc (vc) such a subgraph around a vertex vc. From the
definition of Ḡ we see that the subgraphs are all disjoint. In each subgraph Gc (vc)
we augment our matching M along augmenting paths until we cannot find any
more augmenting paths. This can be done using a standard matching algorithm,
e.g., the algorithm by Edmonds [5]. Since the subgraphs are disjoint this can be
done distributively. After having iterated over all colors, we output M . We refer
to this as Algorithm 2.
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Algorithm 2: Algorithm for finding a matching in a unit disk graph G =
(V,E)
// Let 1− ε be the desired approximation ratio;
Define k to be the smallest integer such that k+1

k+3 ≥ 1− ε;
Compute a maximal independent set I for G;
Construct cluster graph Ḡ with radius 2k + 2;
Color Ḡ with γ = O

(
42
Ḡ

)
colors;

M := ∅;
for i := 1 to γ do

foreach vertex vc with color c do do
compute subgraph Nk+1 (vc);
augment M along augmenting in Nk+1 (vc);

end
end

Theorem 2. Algorithm 1 has the following properties:
(1) The computed matching M is a maximal matching for G.
(2) Let MOPT be an optimal matching for G. It holds that |M | ≥ (1 − ε) ·
|MOPT |.

(3) The algorithm requires at most O
(

log4 log∗ n+ 1
ε

O(1) · log∗ n
)
communi-

cation rounds.

3.3. Proof of Correctness. We will prove the four parts of this theorem in four
steps.

3.3.1. Validity and Maximality. We want to prove that M is a matching and that
it is maximal.

Proof. (of part 1 of Theorem 2): For the correctness of the subroutines for comput-
ing the maximal independent set and the vertex coloring we refer to their respec-
tive articles [9, 11]. In each iteration the matching is augmented along augmenting
paths. This clearly constructs a valid matching. Now we want to prove that M is
maximal. Assume on the contrary that there is an edge e = (u, v) with e /∈M but
such that M ∪ {e} is a valid matching. Since I is a maximal independent set it is
also a dominating set. So there is a vertex u′ ∈ I which is adjacent to u. Let c be
the color of u′. There is an iteration in which u′ was considered. Since we always
augment our matching along augmenting paths, both u and v were unmatched in
this iteration (in Gc (u)). Since e is in Gc (u) and we augment M along all aug-
menting paths in Gc (u), the edge e is added to M . In all future iterations u and v
will always be matched (adjacent to a matching edge). This is contradiction. �

3.3.2. Approximation Ratio. We want to prove that for a maximummatchingMOPT

for G it holds that |M | ≥ (1− ε) · |MOPT |.

Proof. (of part 2 of Theorem 2): Like in the proof of Theorem 1 we show that there
are no augmenting paths for M whose length is shorter or equal to k. Denote by
Ii ⊆ I all vertices in I which were colored with color i. Denote by Pi all vertices
which are either in Ii or adjacent to a vertex in Ii and denote by Mi the computed
matching after the ith iteration. In the ith iteration of the algorithm we check for
augmenting paths in the subgraphs Gc (v) (for each v ∈ Ii). Thus after the ith
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iteration there are no more augmenting paths which start with an isolated vertex
in Pi and whose length is at most k.

Now consider M ′i := Mi4MOPT . The edges in M ′i form either circles of even
length or augmenting paths. When we compare M ′i with M ′j for j > i we see that
in Mj the paths from Mi are either unchanged, eliminated (because we augmented
the matching along them), or two paths are connected (because we augmented
along a path that connected these two paths). In both cases it still holds that all
augmenting paths starting with an isolated vertex in Pi are longer than k edges.

Since I is a dominating set for G it holds that
⋃
Pi = V . Thus after all iterations

there are no augmenting paths left which have at most k edges. So with the
same argumentation as in part 2 of Theorem 1 we can show that |M | ≥ (1 − ε) ·
|MOPT |. �

3.3.3. Locality. We show that we need at most O
(

log4 log∗ n+ 1
ε

O(1) · log∗ n
)

communication rounds.

Proof. (of part 3 of Theorem 2): Computing the maximal independent set I can
be done in O(log4 log∗ n) communication rounds [9]. The coloring of the cluster
graph takes O (k · log∗ n) rounds [11]. The computation of the matchings needs
O
(
k · 42

Ḡ

)
communication rounds since we have O

(
42
Ḡ

)
different colors and we

explore the vertices which are at most k+1 hops away from each vertex v ∈ I. The
maximum degree of the cluster graph Ḡ is bounded by O (f (2k + 2)) where f(n)
is the growth-bounding-function of G. By definition k is the smallest integer such
that ε ≥ 2

k+1 . This implies that k ≥ 2
ε − 1 and thus k ∈ O (1/ε).

Altogether this implies that Algorithm 2 needs at mostO
(
TMIS + 1

ε

(
log∗ n+ f

(
2
ε + 2

)2))
communication rounds where TMIS are the communication rounds needed for com-
puting a maximal independent set. Using the algorithm in [9] for this task we need
O
(

log4 log∗ n+ 1
ε

O(1) · log∗ n
)
communication rounds in total. �

4. Vertex Cover

In this section we present local approximation algorithms for the minimum vertex
cover problem. We use the local matching algorithms presented in Sections 2 and
3 respectively as subroutines. First we compute a maximum matching. Then we
assign all vertices which are adjacent to matched edges to the vertex cover. Using
a well-known reasoning we prove that this gives a factor 2 approximation for vertex
cover.

4.1. The Algorithm. LetG = (V,E) be a unit disk graph. First we use Algorithm
1 or Algorithm 2 in order to compute a maximal matching M . We modify the
algorithm as follows: Since we are not interested in a good approximation for
the matching problem we choose k := 1. In order to improve the runtime of
the algorithm, we consider only augmenting paths of length 1 in each phase (this
is effectively a greedy-algorithm for the matching problem). Then we define our
vertex cover V C as follows: V C := {u, v| (u, v) ∈M}.

Remark 1. Using Algorithms 1 and 2 we cannot only compute maximal matchings,
but also maximal matchings which are not much smaller that maximum matchings.
However, for this algorithm, we could not prove a better performance ratio if we
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computed a matching with a certain performance guarantee. So in order to achieve
a small locality distance we just compute a maximal matching.

Algorithm 3: Algorithm for finding a vertex cover in a unit disk graph G =
(V,E)
Define k := 1;
Compute a maximum matching M using Algorithm 1 or Algorithm 2 and
only augmenting along paths of length 1;
Define V C := {u, v| (u, v) ∈M};
Output V C;

Depending an which algorithm we use for computing the matching we get a
different algorithm for vertex cover. Theorem 3 represents the algorithm that we
get by using Algorithm 1, Theorem 4 the algorithm which is the result of using
Algorithm 2 as a subroutine.

Theorem 3. There is an algorithm for location aware unit disk graphs which com-
putes a set V C with the following properties:

(1) The computed set V C is a vertex cover for G.
(2) Let V COPT be an optimal vertex cover for G. It holds that |V C| ≤ 2 ·
|V COPT |.

(3) If a vertex v is in V C depends only on the vertices which are at most 381
hops away from v, i.e. Algorithm 3 is local.

(4) The processing time for a vertex v is bounded by a linear polynomial in the
number of edges whose adjacent vertices are both at most 381 hops away
from v.

Theorem 4. There is an algorithm for growth-bounded graphs with unique vertex-
IDs which computes a set V C with the following properties:

(1) The computed set V C is a vertex cover for G.
(2) Let V COPT be an optimal vertex cover for G. It holds that |V C| ≤ 2 ·
|V COPT |.

(3) The algorithm requires at most O
(

log4 log∗ n+ 1
ε

O(1) log∗ n
)

communi-
cation rounds.

4.2. Proof of Correctness. Here we only prove Theorem 3. The proof of Theorem
4 can be done similarly.

Proof. (of Theorem 3): From Theorem 1 we know that M is a maximal matching.
Now let e = (u, v) be an edge. If e ∈M then u ∈ V C and v ∈ V C and therefore e
is covered. If e /∈ M then either u or v is adjacent to a matching edge (since M is
maximal). Thus either u ∈ V C or v ∈ V C.

The cardinality of any matching in a graph forms a lower bound for the cardinal-
ity of a minimum vertex cover. This holds since every vertex of an optimal vertex
cover can cover at most one edge of the matching. As we assign two vertices to V C
for each edge in M we conclude that |V C| ≤ 2 · |M | ≤ 2 · |V COPT |.

For the locality distance we need to check only the locality distance of Algorithm
1 for k = 1. From the proof of Theorem 1 we conclude that this is 381.

Now we want to show the processing time for Algorithm 3. In the part where we
compute the matching M we compute maximal matchings for certain subgraphs
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using a greedy method. This can be done in O (|E|) where E is the number of
edges in this subgraph. Note that for a single edge e the number of such subgraphs
is constant. For the computation of a single vertex v only edges whose adjacent
vertices are both at most 381 hops away from v need to be considered. Denote
their cardinality by Ē. So the overall processing time for v is O

(
Ē
)
. �

5. Conclusion

We presented local 1 − ε approximation algorithms for matching in the setting
of location aware unit disk graphs and growth-bounded graphs without positional
information. They are the first local approximation algorithms for matching in their
respective settings. Since a local algorithm cannot perform optimally in all graph
instances our approximation factors are the best possible. It remains open to find
local algorithms which achieve the same approximation ratios but which need lower
locality distances. For real applications low localities are always desirable since they
reduce the size of the area that needs to be explored when computing the status
of an edge. For Algorithm 2 the locality distance needed for computing a maximal
independent set plays an important role. A local algorithm for this task with a lower
locality would immediately lead to a lower locality distance of our algorithm. Also
of interest would be lower bounds for the best possible approximation ratio of local
algorithms for matching in these settings (depending on their locality distance).

In Section 4 we used the two matching algorithms for getting factor 2 approxima-
tion algorithms for vertex cover in the respective settings. Our algorithms achieve
the best known locality distances for this approximation factor. For the setting of
growth-bounded graphs without positional information, our algorithm is even the
first non-trivial local algorithm for vertex cover. It remains open to fully analyze
the price for good approximation ratios in terms of required locality distance. The
first lower bounds on this are [13]. All improvements for the matching algorithms
regarding locality distance would immediately lead to better locality distances for
the vertex cover algorithms.
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