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Abstract

We study the problem of maintaining connectivity in a wireless network where the
network nodes are equipped with directional antennae. Nodes correspond to points on
the plane and each uses a directional antennae modeled by a sector with a given angle
and radius. The connectivity problem is decide whether or not it is possible to orient
the antennae so that the directed graph induced by the node transmissions is strongly
connected. We present algorithms for simple polynomial-time solvable cases of the prob-
lem, show that the problem is NP-complete in the 2-dimensional case when the sector
angle is small, and present algorithms that approximate the minimum radius to achieve
connectivity for sectors with a given angle. We also discuss several extensions to related
problems. To the best of our knowledge, the problem has not been studied before in the
literature.
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1 Introduction

Various types of antennas are used in wireless networking. For our purposes we distinguish
between directional and omnidirectional. The former emit greater power in one direction thus
allowing for increased transmission range and performance at the receiver’s end as well as
reduced interference from unwanted sources. They are different from the latter which radiate
power uniformly in all directions in the plane. The set of neighbors of an omnidirectional
antenna with transmission radius r consists of all points within a disk of radius r centered
at the source. In addition to the range r, directional antennas have a transmission angle ¢
(measured in radians) that specifies how wide from the source is the spread of the antenna.
The neighborhood of a node is determined by which nodes appear in the resulting sector of
the disk (which in turn depends upon its orientation on the plane).

An important issue in wireless networking is attaining connectivity with minimum com-
munication cost. Regardless of the type of antenna being used the communication cost is
determined by the transmission cost of each antenna, which in turn is proportional to the
coverage area of the antenna. For omnidirectional antennas the coverage area is 772, while for
directional antennas it is proportional to the square of the range r multiplied by ¢. Therefore
for the same coverage area a directional antenna can reach further than an omnidirectional
antenna in the direction of a target node. Moreover, the smaller the transmission spread ¢
the lower the communication cost. This is a great advantage of directional antennas over
omnidirectional ones in terms of single edge cost. However, maintaining network connectivity
in this scenario becomes more complex. For omnidirectional antennae of the same range,
the resulting network has bi-directional links, while in the case of directional antennae this
may not be the case and the resulting network has to be modeled by a directed graph. To
ensure connectivity the antenna orientations of the individual nodes must be chosen so that
the resulting directed graph is strongly connected.

Directional antennas in use today have a variety of capabilities that enable them to vary
their transmission range and orientation. In this paper we model our antennae after those
such as the ESPAR (Electronically Steerable Passive Array Radiator) antenna [13] which
consists of a steerable central source that can radiate in a region reasonably approximated
by a sector of a circle. (The number of sector sizes is fixed by the choice of the number
of radiator elements typically set at six, i.e., in this case only multiples of /3 are possible.
In the problems we consider the sector size is part of the input.) We consider the problem
of maintaining connectivity using the minimum possible range for a given angular spread.
Specifically, for a set of sensors located in the plane at established positions and with a given
angular spread we are interested in providing an algorithm that minimizes the range required
so that by an appropriate rotation of each of the antennae the resulting network becomes
strongly connected.

Preliminaries and notation. In the sequel we introduce the formal model and basic
definitions that will be used throughout the paper. Given a set X of points on the plane
and r > 0, consider the prozimity graph G,(X) containing a node for each point of X and
an edge for each pair of nodes if the distance of the corresponding points is at most r. Lets
call the transmission graph the directed graph defined by containment of sectors of radius r
and angle ¢ at the nodes with a given orientation. In particular, the proximity graph is an
undirected graph representing the communication network underlying a set of sensors with
identical transmission range 7, while the transmission graph is obtained from the proximity



graph by taking into account the orientation of the antennas at the nodes and as such it is a
directed graph. Given a set of points X on the plane, denote by r*(X, ¢) the smallest radius
such that there exists an orientation of sectors of angle ¢ and radius 7*(X, ¢) so that the
resulting transmission graph is strongly connected.

Given a set of points X on the plane consider the minimum spanning tree MST(X)
connecting the points. Denote by r(MST (X)) the edge of MST(X) of maximum distance.
Clearly, MST(X) is also spanning tree on the proximity graph G, (X). Also, for any ' < r,
the proximity graph G, (X) is disconnected, otherwise M ST (X) would not be a minimum
spanning tree for X. It follows that given any angle ¢, 7*(X, ¢) must be bounded from below
by r(MST(X)).

Related work There has been a fair deal of research on employing directional antennas
for routing and topology control in wireless ad hoc networks [5, 12, 14, 15, 17]. Since nodes
in such networks are energy constrained, energy efficiency is an important parameter along
which these algorithms are compared. The connectivity problem for omni-directional anten-
nae has been studied extensively by a number of authors including [1, 2, 7, 11]. For the
case of directional antennae, [9] makes a direct comparison of the energy consumption of di-
rectional and omnidirectional antennas for achieving k-connectivity for randomly distributed
nodes in the unit square and [8] looks at coverage and connectivity problems in the same
scenario. Directional antennae seem to have wide applicability not only for improving energy
consumption but also in security of adhoc networks. They have been used for preventing
wormhole attacks [3] and for mitigating the broadcast storm problem [4].

The problem studied in this paper concerns how to maintain connectivity in a network
with directional antennae with a given angular spread while achieving the minimum possible
transmission range. To the best of our knowledge the problem explored here has not been
proposed in the literature before.

Outline and results of the paper. In this paper, we provide a first set of results for
the connectivity problem in wireless networks using directional antennae. We present simple
polynomial time algorithms for the linear case and the 2-dimensional case when the sector
angle of the antennae is large (i.e., at least 87/5). For smaller sector angles, we present
algorithms that approximate the minimum radius. When the sector angle is smaller than
27 /3, we show that the problem of determining the minimum radius in order to achieve
connectivity is NP-hard.

The rest of the paper is structured as follows. The two polynomial-time solvable instances
are presented in Section 2. Our NP-completeness result is proved in Section 3. We present
the approximation algorithm in Section 4. We conclude with interesting extensions and open
problems in Section 5.

2 Polynomial-time solvable cases

First we consider the simpler linear case whereby all the sensors are located on a straight
line. Observe that when X consists of points on a line and ¢ > m, there exists an orientation
of sectors of angle ¢ and radius (M ST (X)) at each point p in such a way that the sector of
each point covers both the left and the right closest point (if any) to p. The next theorem
gives a better bound for 0 < ¢ < 7 and its proof can be found in the Appendix.



Theorem 1 Consider a set of n > 2 points i = 1,2,...,n sorted according to their location
on the line. For any ¢ > 0 and r > 0, there exists an orientation of sectors of angle ¢ and
radius T at the points so that the transmission graph is strongly connected if and only if the
distance between points v and i + 2 is at most r, for any i =1,2,...,n — 2.

An important ingredient of the construction is related to the minimum spanning tree
MST(X) of the set of points X. The following theorem turns out to be easy to prove and its
proof can be found in the Appendix.

Theorem 2 Given ¢ > 8x/5, r > 0 and a set of points on the plane, an orientation of
sectors of angle ¢ and radius r so that the transmission graph is strongly connected can be
computed (if it exists) in polynomial time.

3 The complexity of the 2-dimensional case

In this section we prove that the problem on the 2-dimensional case is NP-complete for sector
angles smaller than 27/3. A weaker statement for sector angles smaller than 7 /2 follows by
the same reduction used by Itai et al. [6] in order to prove that the hamilton circuit problem
in grid graphs is NP-complete. Consider an instance of the problem consisting of points with
integer coordinates on the euclidean plane (these can be thought of as the nodes of the grid
proximity graph between them). Then, if there exists an orientation of sector angles of radius
1 and angle ¢ < 7/2 at the nodes so that the corresponding transmission graph is strongly
connected, then this must also be a hamilton circuit of the proximity graph. The construction
of [6] can be thought of as reducing the hamilton circuit problem on bipartite planar graphs of
maximum degree 3 (which is proved in [6] to be NP-complete) to an instance of the problem
with a grid graph as a proximity graph such that there exists a hamilton circuit in the grid
graph if and only if the original graph has a hamilton circuit. Below we use a slightly more
involved reduction with different gadgets in order to show that the problem is NP-complete
for sector angles smaller than 27 /3. In particular, we prove the following statement.

Theorem 3 For any constant € > 0, given ¢ such that 0 < ¢ < 2w/3 — €, r > 0, and a set
of points on the plane, determining whether there exists an orientation of sectors of angle ¢
and radius r so that the transmission graph is strongly connected is NP-complete.

In order to prove Theorem 3 we will show that the hamilton circuit problem in a special
class of (bipartite) planar graphs of degree 3 having a particular embedding on the euclidean
plane; these graphs are called e-hexagon graphs.

Definition 4 Let ¢ > 0. An e-hexagon graph G = (V,E) is a bipartite planar graph of
mazimum degree 3 which has an embedding on the plane with the following properties:

e Fach node of the graph corresponds to a point in the plane.

o The euclidean distance between the points corresponding to two nodes vi, vy of G is in
[1 —€1] if (v1,v2) € E and larger than /3 — 3¢ otherwise.

o The angle between any two line segments corresponding to edges adjacent to the same
node of G is at least 27 /3 — €/2.



Clearly, an e-hexagon graph is the proximity graph for an instance of the problem and
any orientation of sector of radius 1 and angle ¢ = 27/3 — e that induces a strongly connected
transmission graph actually corresponds to a hamiltonian circuit of the proximity graph. The
opposite also holds, i.e., given a hamilton circuit in the proximity graph, there exist (two)
orientations of sectors of radius 1 and angle 27 /3 — € that induce the hamilton circuit as
a transmission graph (with the two possible opposite directions). Hence, in order to prove
Theorem 3, it suffices to prove that the hamilton circuit problem in e-hexagon graphs is
NP-complete.

Theorem 5 For any constant € > 0, the hamilton circuit problem in e-hexagon graphs is
NP-complete.

Proof. We will use a reduction from the hamilton circuit problem on bipartite planar
graphs of maximum degree 3 which is known to be NP-complete [6]. Given such a graph
G = (Vp, V1, E) with n nodes, we will construct an e-hexagon graph H (together with its
embedding) which has a hamilton circuit if and only if G has a hamilton circuit.

Edges of G are simulated by necklaces in H. The main building block of a necklace is
a cell, i.e., a 6-node cycle with nodes labeled 0, 1, 2, 3, 4, and 5. A necklace consists of
consecutive cells so that nodes 4 and 5 of the i-th cell coincides with nodes 0 and 1 of the
(i + 1)-th cell, respectively. We note that the node labels in consecutive cells have opposite
(clockwise or counter-clockwise) orders. The endpoints of a necklace with k cells are nodes
0 and 1 of the first cell and node 5 of the last cell (see Figure 1). Observe that the only
hamilton path of a necklace ending at node 5 of its last cell originates from node 0 of its first
cell. We call this a cross path. Also, the only hamilton path of a necklace ending at node 1
of its first cell originates from node 0 of the first cell. Such a path is called a return path.

The representation of a necklace with regular hexagons as cells (with nodes corresponding
to the corners of the hexagons) has a particular orientation (see Figure 1). We use regular
hexagons of side 1 to represent the first and the last cell of a necklace and irregular hexagons
with sides of length in [1 — ¢, 1] and angle between adjacent sides in [27/3 — €/2,27/3 + €/4],
to represent the intermediate cells of a necklace. In this way, we can implement turns of
necklaces and achieve different orientations provided that there is enough space for them (see
Figure 1). We also note that the distance between points corresponding to non-adjacent nodes
is more than v/3 — 3e.

Each node of G is simulated by a diamond, i.e., by the 13-node construction of Figure
2 consisting of three mutually adjacent regular hexagons of side 1. The three nodes p1, p2,
and p3 as well as their incident edges e1, ez, and eg are used to connect the diamond to
the necklaces corresponding to edges of G incident to the node of G corresponding to the
diamond. Observe that any hamilton path between node p; to p; (with 1 < i # j < 3) crosses
all the three edges e, ez, and es.

The connection of edges to nodes of G are simulated by connecting necklaces to diamonds.
The special edges of diamonds corresponding to nodes of Vj are used to connect to necklaces
(the different necklaces that are connected to the same diamond use different special edges).
The edge between nodes 0 and 1 of a necklace coincides with edge e; so that node p; coincides
in with 0 (see Figure 2). Similarly, the special nodes of diamonds corresponding to nodes
of V} are used to connect to necklaces (again, the necklaces that are connected to the same
diamond use different special nodes). Node 5 of the last cell of a necklace is located at distance
1 from node p; of the diamond so that the angle between the edge between p; and node 5 of



Figure 1: The first figure shows the fixed orientation of a necklace represented with regular
hexagons of side 1. The second and third figures show the cross and return path, respectively.
The fourth figure shows the representation of the necklace using irregular hexagons of sides
between 0.95 and 1 and with angles between sides from 115° to 125°.

the last cell of the necklace and any of its four adjacent edges is exactly 27/3 (see Figure 2).
We also note that since each necklace has an odd number of cells, the order of the node labels
in the first and the last cell of each necklace is the same. Hence, the points of the cell of the
necklace attached to the last one (and any other point of the necklace) will be at distance
more than /3 — 3¢ from any point of a diamond (see the dotted lines in Figure 2).

Now, in order to embed the whole graph on the euclidean plane, we first use an embedding
of G on the rectangular grid n x n. Such constructions are well-known in the literature. The
nodes of G are embedded on points of the grid and edges correspond to vertex-disjoint paths
on the grid. Each grid point can correspond to a node of Vj, a node of V;, a edge corner,
an horizontal segment of an edge, or a vertical segment of an edge, or not used at all. Now,
we use a square of the Euclidean plane with side k¢n where k. is a constant depending on
e. This square is divided into n? squares of side k., one square for each grid point. Squares
corresponding to grid points serving as edge corners, horizontal or vertical segments of edges
of G host segments of necklaces crossing the square. Squares corresponding to grid points
corresponding to nodes of V) host a diamond and the beginning of necklaces connected to it
while squares corresponding to grid points corresponding to nodes of Vj host a diamond and
the end of necklaces connected to it. Squares corresponding to unused grid points are empty.
See Figure 3 for an example.

We have completed the description of the construction. In order to complete the proof,
first observe that given a hamilton circuit in GG, we can construct a hamilton circuit in H as
follows. Edges of G which are included in the hamilton circuit of G are covered by a cross path
in the corresponding necklace in H. Edges of G which are not included in the hamilton circuit
of G are covered by a return path in the corresponding necklace in H. In this way, we have



Figure 2: A diamond (left) and its connection to necklaces when it corresponds to a node of

Vo (middle) or V; (right).
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Figure 3: A bipartite planar graph of maximum degree 3, its embedding on the rectangular
grid, and the corresponding e-hexagon graph. Each thick line represents a necklace.



constructed the part of a hamilton circuit which enters each diamond of H through two cross
paths of necklaces connected to it. It remains to complete the hamilton circuit by covering
all the nodes of the diamond. The reader may see Figure 2 again in order to be convinced
by the following argument. If a diamond corresponds to a node of 1}, assume without loss
of generality that the two necklaces whose nodes are covered by cross paths are connected to
the special edges e; and es and there is possibly a return path on the third necklace starting
at node 0 and ending at node 1 of its first cell (which are the endpoints of e2). In order to
complete the hamilton circuit and cover all nodes of the diamond, we use the hamilton path
from node p; to node p3 which starts with the special edge e; (and, in this way, is connected
to the hamilton path that covers the nodes of the necklace connected to the special edge e;)
and ends with the special edge e3 (and, in this way, is connected to the hamilton path that
covers the nodes of the necklace connected to the special edge e3). We replace edge ez with
the return path in the necklace (if any) connected to edge e of the diamond. If a diamond
corresponds to a node in V7, assume assume without loss of generality that nodes 5 of the two
necklaces connected to nodes p; and po are the endpoints of the corresponding cross paths.
Then, in order to complete the hamilton circuit and cover the nodes of the diamond we use
the hamilton path covering the nodes of the diamond that starts with p; and ends with ps
and the edges connecting p; and ps to nodes 5 of the last cells of the two necklaces adjacent
to them.

By our construction, in any hamilton circuit in H, for each diamond, the nodes of exactly
two necklaces connected to it are covered by cross paths and the nodes of the third necklace (if
any) are covered by a return path. Then, the tour obtained by the edges of G corresponding
to necklaces of H covered by cross paths in the hamilton circuit of H is a hamilton circuit in
G. ]

Recall that Definition 4 states that the distance between any two points corresponding
to non-adjacent nodes of an e-hexagon graph is larger than /3 — 3e. Hence, Theorem 5 also
implies the following statement.

Corollary 6 For any constant € > 0, given ¢ such that 0 < ¢ < 2w/3 —€, and a set of points
X on the plane, determining whether there exists an orientation of sectors of angle ¢ and
radius (v/3 — 3€)r*(X, ¢) so that the transmission graph is strongly connected is NP-complete.

4 Approximating the minimum radius

In this section we present algorithms that uses sectors of slightly larger radius than the optimal
one. In particular, we prove the following theorem.

Theorem 7 Given an angle ¢ with 1 < ¢ < 8w/5 and a set of points in the plane, there

exists a polynomial time algorithm that computes an orientation of sectors of angle ¢ and

radius 2 sin <7r — %) -1*(X, ¢) so that the transmission graph is strongly connected.

Proof. Consider a set X of nodes on the Euclidean plane and let T" be a minimum spanning
tree of X. Let r = (M ST (X)) be the longest edge of . We will use sectors of angle ¢ and

radius d(¢) = 2rsin <7r — %) and we will show how to orient them so that the transmission

graph induced is a strongly connected subgraph over X. The theorem will then follow since
r is a lower bound on r*(X, ¢).



We first construct a matching M consisting of (mutually non-adjacent) edges of T" with
the following additional property: any non-leaf node of T' is adjacent to an edge of M. This
can be done as follows. Initially, M is empty. We root T' at an arbitrary node s. We pick an
edge between s and one of its children and insert it in M. Then, we visit the remaining nodes
of T in a BFS manner. When visiting a node u, if u is either a leaf-node or a non-leaf node
such that the edge between it and its parent is in M, we do nothing. Otherwise, we pick an
edge between u and one of its children and insert it to M.

We denote by A the leaves of T" which are not adjacent to edges of M. We also say that
the endpoints of an edge in M form a couple. We use sectors of angle ¢ and radius d(¢) at
each point and orient them as follows. At each node u € A, the sector is oriented so that it
induces the directed edge from w to its parent in 7" in the corresponding transmission graph
G. For each two points u and v forming a couple, we orient the sector at u so that it contains
all points p at distance d(¢) from u for which the counter-clockwise angle vip is in [0, ¢]. See
Figure 4.

Figure 4: The orientation of sectors at two nodes u, v forming a couple, and a neighbor w of
u that is not contained in the sector of u. The dashed circles have radius r and denote the
range in which the neighbors of u and v lie.

We first show that the transmission graph G defined in this way has the following property
(P): for each two points u and v forming a couple, G contains the two opposite directed edges
between u and v, and, for each neighbor w of either u or v in T, it contains a directed edge
from either u or v to w. Consider a point w corresponding to a neighbor of u in T (the
argument for the case where w is a neighbor of v is symmetric). Clearly, w is at distance
luw| < r from u. Also, note that since ¢ < 8r/5, we have that the radius of the sectors is

d(¢) = 2rsin (77 — %) > 2rsing > 2rsing = r. Hence, w is contained in the sector of u if

the counter-clockwise angle vidw is at most ¢; in this case, the graph G contains a directed
edge from u to w. Now, assume that the angle viw is z > ¢ (see Figure 4). By the law of



cosines in the triangle defined by points u, v, and w, we have that

lvw| = V/]uw|? + [uww|? — 2Juw||uv| cos z

< rv2-—2cosx

x

fr 2 in —

rsin 5
: ¢
< 9 _?
< 2rsin <7T 5

= d(9).

Since the counter-clockwise angle vdw is at least m, the counter-clockwise angle utw is at
most m < ¢ and, hence, w is contained in the sector of v; in this case, the graph G contains a
directed edge from v to w. In order to complete the proof of property (P), observe that since
|luv| < r < d(¢) the point v is contained in the sector of u (and vice-versa).

Now, in order to complete the proof of the theorem, we will show that for any two neighbors
u and v in T, there exist a directed path from u to v and a directed path from v to w in
G. Without loss of generality, assume that u is closer to the root s of T" than v. If the
edge between u and v belongs in M (i.e., v and v form a couple), property (P) guarantees
that there exist two opposite directed edges between u and v in the transmission graph G.
Otherwise, let wy be the node with which u forms a couple. Since v is a neighbor of u in T,
there is either a directed edge from u to v in G or a directed edge from w; to v in G. Then,
there is also a directed edge from u to w; in G which means that there exists a directed path
from u to v. If v is a leaf (i.e., it belongs to A), then its sector is oriented so that it induces
a directed edge to its parent u. Otherwise, let wy be the node with which v forms a couple.
Since v is a neighbor of v in T', there is either a directed edge from v to u in G or a directed
edge from ws to v in G. Then, there is also a directed edge from v to wy in G which means
that there exists a directed path from v to u. [ |

As corollaries we obtain approximation ratios 2, v/3, v/2, and approaching 2 sin 5~ 1.1756
from below for angles 7, 47/3, 37/2, and slightly smaller than 87 /5, respectively.

A 3-approximation algorithm of the minimum radius for any angle ¢ > 0 follows by
a folklore result that any n-node ring can be embedded on a n-node connected tree with
dilation 3. This result is attributed to Sekanina [16] in [10] (Theorem 3.15, page 470). Hence,
given the minimum spanning tree among a set of points X on the plane, we can compute in
polynomial time a hamilton tour over the points in X such that the distance between any two
consecutive points in the tour is at most 3r(MST(X)). We obtain the following corollary.

Corollary 8 Given an angle ¢ > 0 and a set of points in the plane, there exists a polynomial
time algorithm that computes an orientation of sectors of angle ¢ and radius 3 -r*(X, $) so
that the transmission graph is strongly connected.

We note that the results of Theorem 7 cannot be significantly improved by using only
r(MST (X)) as a lower bound for (X, ¢). Figures 5a, 5b, 5¢, and 5d show examples where
r*(X, ¢) is at least 2, /3, V2, and 2sin ¥ ~ 1.1756 times r(M ST (X)) for sector angles ¢
smaller than m, 47/3, 37/2, and 87/5, respectively. For angles smaller than 7/3, Figure 5e
shows an example where r*(X, ¢) = /7 - r(MST(X)).
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Figure 5: Examples indicating that our results cannot be significantly improved by using
r(MST(X)) as lower bound for r*(X,¢). The figures show the minimum spanning tree
among sets of points and all edges are equal to 1. The angles between edges incident to the
central point are m, 27/3, /2, and 27/5 in (a), (b), (¢), and (d), respectively. Hence, using
sectors of angle ¢ smaller than 7, 47/3, 37/2, and 87 /5, respectively, at the central node
at least one of the leaves must be reached directly by another leave. Such a transmission

requires a sector of radius at least 2 sin (7r — %) In (e), the angle between two edges incident

to the central node is 27/3 and any other angle is 7. It is not difficult to see that if sectors
have angles smaller than 7/3 (i.e., if no node adjacent to the central one can transmit to the
other two nodes adjacent to the central one), then transmission from some leaf that reaches
a point which is 3 hops away (i.e., at distance v/7) is necessary.

5 Extensions and open problems

Our work has revealed several interesting open questions: The most challenging one is to
determine the threshold on the sector angle above which the connectivity problem can be
solved in polynomial time and below which the problem is NP-complete. Our results indicate
that this threshold is between 27/3 and 87/5.

Designing more efficient algorithms for approximating (or even achieving) the minimum
radius is an interesting problem as well. The approximation algorithms presented in Section
4 use r(MST(X)) as lower bound on the minimum radius. Although there is a small gap
between 3 and /7 for the case of small sector angle (see Corollary 8 and the example in Figure
5e), improving the approximation ratios further will require new techniques since there are
instances where our results are tight (see Figure 5).

We have considered the case where there is a single antenna per node. We may define
interesting combinatorial problems by having more antennae per node. The antennae may
have the same sector angles or the sum of the sector angles of the antennae of each node is
fixed. It is interesting to investigate the complexity of these variants of the problem.

The related problem of broadcasting from a single node to any other node of the network
also deserves investigation. The problem can be shown to be NP-complete for sector angle
smaller than 27/3 using a proof similar to that of Theorem 5 (and using a reduction from
the hamilton path problem instead of hamilton circuit) while the problem can be proved to
be solvable in polynomial time for sector angles at least 47/3 (using a slightly more involved
argument than that used in the proof of Theorem 2). Again, algorithms that approximate the
minimum radius sufficient to perform broadcasting can be designed using minimum spanning
trees like those presented in Theorem 7 for the connectivity problem.
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Appendix

Proof. (of Theorem 1) Assume d(z;,x;y2) > r, for some ¢ < n — 2. Consider the antenna at x;.
There are two cases to consider. First, if the antenna at z;y; is directed to the left then the portion
of the graph to its left cannot be connected to the portion of the graph to the right; second, if the
antenna at x;41 is directed to the right then the portion of the graph to its right cannot be connected
to the portion of the graph to the left. In either case the graph becomes disconnected. Conversely,
assume d(z;, x;12) < r, for all i <n — 2. Consider the following antenna orientation:

1. antennas z1,x3, s, ... labeled with odd integers are oriented right, and
2. anntennas xo, x4, Tg, ... labeled with even integers are oriented left.

It is easy to see that the resulting orientation leads to a strongly connected graph. This completes the
proof of Theorem 1. [

Proof. (of Theorem 2) If the proximity graph is not connected, then clearly no orientation of the
sectors that defines a strongly connected transmission graph can be found. If the proximity graph is
connected, consider a minimum spanning tree on it. Since the edge costs are Euclidean, each node
on this spanning tree has degree at most 5 (it may also have 6 but in this case we can transform it
to a spanning tree of the same cost and degree 5). Hence, for each node u, there are two consecutive
neighbors v, w in the spanning tree so that the angle Z(vuw) is at least 2w /5. Hence, by using sectors
of angle 87/5 at each node and by orienting it so that it covers all neighbors in the spanning tree,
we obtain a transmission graph that contains two opposite directed edges per undirected) edge of the
spanning tree and thus, it is strongly connected. This completes the proof of Theorem 2. ]
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