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Abstract. We consider the problem of providing full coverage of a planar region with
sensors. Likewise, we consider the connectivity of the sensor network of directional antennas
formed by sensors in this region. Suppose that n sensors with coverage angle (also known
as beam width) a(n), and reachability radius r(n) are thrown randomly and independently
with the uniform distribution in the interior of the unit square. Let p(n) be the probability

log(n/r(n)?sin?(a(n)/4))
nr(n)2a(n)sin(a(n)/4) ) then

the probability the sensors provide full coverage of the unit square is at least 1 — n
Likewise, we consider the connectivity of the resulting sensor network. We show that if

22
p(n) > N2 (125((%;&%)2'1’;2((‘;(&))//2)) then the probability that a connected subnetwork of
-0(1)

sensors provides full coverage is at least 1 — n

that a given semsor is active. We prove that if p(n) > .Q(
—o(1)

1 Introduction

Sensors are low-power communication and sensing devices that can be embedded in the physical
world and spread throughout our environment (see Kahn et al [7], Sohrabi et al [14], Estrin et al [5],
Hollar [6]). Large scale sensor networks are formed by sensors that can be automatically configured
after being dropped over a given region. Such networks are deployed in order to handle various
services over remote and/or sensitive regions, including monitoring, structural stability of build-
ings, quality of air, etc, and form the basis of numerous military and civilian applications. It is
expected that the cost of such devices will drop significantly in the near future (see the study
in [12], Agre et al [1], and Warneke et al [15]). Sensor nodes enable autonomy, self-configurability,
and self-awareness. Sensor networks are built from such sensor nodes that create spontaneously
an adhoc network. They can assemble themselves automatically, adapt dynamically to failures,
manage movement, react to changes in network requirements, etc.

In this paper we are concerned with sensor networks formed in an adhoc manner from unreliable
sensors dropped, e.g., from an airplane, on a given planar region, e.g., a unit square region. A
sensor is a device that can sense events within a certain reachability radius if they are within a
given coverage angle. The purpose of such a sensor network is to report events, e.g., to a certain
base station located within the unit square region. To ensure that all events within this region are
reported, it is important that coverage of the entire region is guaranteed as well as that the resulting
sensor network is connected. There have been several studies on routing and location identification
in adhoc networks in which sensors use only constant memory and local information. Several such
interesting studies include Bose et al [2], Braginsky et al [3], Doherty et al [4], Kranakis et al [8],
Kuhn et al [9], Meguerdichian et al [10], Ye et al [16]).

The first study on the coverage and connectivity problem we consider in this paper appeared in
Shakkottai et al [13] for a restricted model in which the sensors are assumed to occupy the vertices
of a square grid the size of a unit square, the reachability radius of the sensors is r, and the angular
coverage of the sensors is 360 degrees. We follow closely the model of Shakkottai et al [13]. To
accomodate faults we assume there is a probability p that a given sensor is active. However our



sensor model is more general. First, unlike Shakkottai et al [13] where sensors may occupy only
the vertices of a square unit grid, our sensors may occupy any position inside the unit square
randomly and independently with uniform distribution. In addition to the position of the sensors,
their orientation is also random and may occupy any angular position in the range from 0 to 360
degrees. Second, our sensors have limited angular visibility. Thus our sensors can be thought of
as flood-lights with a given coverage angle of size a that can see every point in the part of the
region subtended by their visibility angle, and reachability radius r. Equivalently, we can think of
the sensors as antennas that can communicate provided they are within range and angle of each
other.

Consider n sensors in the interior of a unit square. In order to study the limits of the coverage
and connectivity problem we find it convenient to parametrize the characteristics of the sensors
as a function of n. More specifically, let a := a(n) be the coverage angle, and r := r(n) the
reachability radius of the sensor, respectively. Let p := p(n) be the probability that a given sensor
is active, in which case 1 — p(n) is the probability that the sensor is inactive.

We are interested in the problem of using sensors in order to cover every point of the given
region, which for simplicity is assumed to be a unit square in the plane over which sensors are
dropped, say from an airplane. More specifically we can formulate the following problem.

Problem 1. n sensors (i.e., directional antennas) are dropped randomly and independently with
the uniform distribution (i.e., in position and rotation) over the interior of a unit square. How do
we achieve full coverage of the region delimited by the unit square as well as connectivity of the
resulting network? What is the probability that n sensors cover the interior of the unit square?

We want to ensure that the network of directional sensors is connected, i.e., there is a commu-
nication path between any pair of sensors in the network. Note that since the placement and
orientation of the sensors is random there is a reasonable probability that some sensors will be
unable to communicate with any other sensors. Rather than achieve full connectivity we require
that a connected subnetwork exists that achieves full coverage. In particular, we can formulate the
following problem.

Problem 2. n sensors (i.e., directional antennas) are dropped randomly and independently with
the uniform distribution (i.e., in position and rotation) over the interior of a unit square. What
relation between p, a,n must exist in order to ensure the existence of a connected subnetwork of
sensors that provides full coverage?

Our approach is sufficiently general to solve the coverage problem for a unit square region
when the sensors can be placed only on its perimeter. In this case we assume that the reachability
radius of the sensors is equal to 1. More specifically we consider the following problem.

Problem 3. n sensors (i.e., directional antennas) of reachability radius 1 are dropped randomly and
independently with the uniform distribution (i.e., in position and rotation) over the perimeter of
a unit square. How do we achieve full coverage of the region delimited by the unit square,? What
is the probability that n sensors cover the interior of the unit square?

1.1 Results of the paper

In this paper we prove the following results. We show that if p(n) > 2 (107%(8{)7«2(5();2?;((3((:))//;1))))

then the probability that the sensors provide full coverage of the unit square is at least 1 —n =9,

Conversely, if the sensors provide full coverage of the unit square with probability at least 1—1/n,
2
then p(n) > 12 (%) Likewise, we consider the probability that the resulting sensor

network is connected. We show that if p(n) > 2 (125((%;&23851:52((‘;(&))/&)))) . then the probability
—o(1)

that a connected subnetwork of sensors provides full coverage is at least 1 — n




2 The Network of Sensors

Consider two sensors at A, B. If the coverage angle is 2 and A is reachable from B then also B
is reachable from A. Clearly, this makes the sensor network an undirected graph. The situation is
different when the coverage angle a of the sensors is less than 27. Two sensors at A and B may
well be within reachability range of each other but either A or B or both may not be within the
coverage angle of the other sensor. Clearly, this makes such a sensor network a directed graph.

2.1 Covering a circle with a sensor

Consider a sensor at A. We would like that a circle of radius R fits inside the coverage range of A
(see Figure 1) and is visible from A with an angle of size a/4. Let d be the distance of the sensor

Fig. 1. A circle of radius R within the coverage range of the sensor at A.

from the center K of this circle. Since the reachability radius of the sensor is r, the circle at K is
entirely visible from the sensor at A if d + R < r. Since d = R/ sin(a/4) the above inequality is
equivalent to ﬁ + R < r. It is now easy to see that the following result is true.

Lemma 1. A circle of radius R may lie within the coverage range of sensor if and only if

sin(a/4)
R< TF sin(a/d) -7 (1)

Moreover, the probability that a given sensor at distance d from a given circle of radius R such
that d+ R < r is active and covers the circle, is O(pa). [ ]

2.2 Chernoff bounds

Since the sensors are dropped from an airplane randomly and independently with uniform distri-
bution we want to ensure that a given subregion of the unit square contains enough sensors with
high probability. This can be done using Chernoff bounds.

Consider a given circle C' of radius r that lies inside the unit square. We are interested in
estimating the expected number of sensors that drop inside this circle. The random variables we are
concerned are sums of independent Bernoulli trials. Let X1, X»,..., X, be independent Bernoulli
trials such that X; = 1 if the i-th sensor falls inside the circle C' and is 0, otherwise. Since the
sensors are dropped in the unit square randomly and independently with the uniform distribution
we observe that Pr[X; = 1] = nr?. If X = X;+ X5+ - -+ X, is the sum of these n random variables
then u := E[X] = nmr?, and using Chernoff bounds (see Motwani et al [11]) we derive that for

any d >0, Pr[X > (14 )] < (ﬁ)u, and for any 0 < 6 < 1, Pr[X < (1 —0)p] < e—H8 /2,

It follows that with high probability the expected number of sensors that drop within any given
circle C' is proportional to the area of the circle.



3 Achieving Coverage

We are interested in specifying conditions on the three main parameters a := a(n),r :=r(n),p :=
p(n) so that the active sensors in the unit square provide full coverage. Using Lemma 1 we are
interested in finding sensors that with high probability cover a given set of circles of radius R =

sin(a/4
1+si(n(é/)4) -O(r).

Fig. 2. Covering a given circle at A from a sensor within the strip, with high probability.

As depicted in Figure 2 any sensor within a strip of thickness R/2 at distance 2(r) can
potentially cover a circle of radius R. The probaility that a given sensor within this strip will cover
fully such a circle is at least 2(pa). The expected number of sensors within the strip at distance
0(r) from A is at least @(nrR). It follows that up to a constant

Pr[An active sensor in the strip covers the circle at A]

=1 — Pr[No active sensor in the strip covers the circle at A]
O(nrR)
>1- [ Q-0@pa)>1-e Crwarh)

i=1

It is now easy to see that in order to ensure that 1 — e~ @(mparf) > 1 _ =0 it is enough to
assume that p > 2 (1—"5&) .

narR
To obtain coverage of the whole unit square we decompose the given region into circular over-

lapping subregions C1, Cs, . ..,Cy each of radius R, where N = 7z = o Sinz(a/4)}(1+sin(a/4))2) ~

(G (W) . (see Figure 3). This overlap is necessary in order to guarantee that if each such
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Fig. 3. Decomposition of the unit square region (square with thick perimeter) with smaller overlapping
circles of equal radius.

circle is fully covered by a sensor. The whole unit square will then be also covered by the sensor



network. Each circular subregion can be covered by a sensor with high probability. Let E; be the
event that C; can be covered by a sensor. It follows that

Pr[Sensors provide full coverage] > Pr[Each Cj is covered by a sensor]

N N N N
=Pr lﬂ E;| =1—Pr U E Z 1— ZPr[E] 2 1— Zefe(nparR)
i=1 i=1 i=1 i=1

1
>1—N —O(nparR) >1— —@(nparR).
= ¢ =T 00z sin(a)d))

It is now easy to see that in order to ensure that 1 — G o (a/4))e_@(””°”’R) >1-n"9M it is

log(n/r? sin%(a/4))
nr2asin(a/4)

enough to assume that p > 2 ( ) . We have proved the following theorem.

Theorem 1. Suppose that n sensors with coverage angle a(n) and reachability radius r(n) are
thrown randomly and independently in the interior of a unit square. If the probability p(n) that a

given sensor is active satisfies p(n) > 12 (lofr(?T{)Z(:g;)s;?j((g((:))//:)))) then

Pr[Sensors provide full coverage of the unit square] > 1 — n~ 00,

As a special case we also obtain the result of Shakkottai et al [13] for a = 2x. If p(n) >

P (%) then Pr[Sensors provide full coverage of the unit square] > 1 — n=0),

It is also interesting to look at the reverse problem: if coverage is assured with high probability
asymptotically in n, what is an upper bound on the probability p(n) that a sensor is active?

Partition the square into N pairwise disjoint circles each of radius r as depicted in Figure 4.
If any given of these circles has no active sensor (say the circle centered at K) then K cannot
be covered by any sensor lying in a neighboring circle. Consider the event E: the center of a
circle is covered by an active sensor. It is clear that p§ < Pr[E] < pa. There are approximataly
N = ©(1/r?) such circles. It follows that

Fig. 4. Partitioning of the unit square region (square with thick perimeter) with smaller circles of equal
radius.

Pr[Unit square is covered] < Pr[Centers of all the circles are covered]

N
=[] PrlE] = (1 = PrEDY < (1 - (1 - Opa)*" )N

<exp (~(1-0(pa))?"IN) = exp (~(1 - O(pa))® ") /0(r?))
It follows from the inequalities above that if Pr[Unit square is covered] > 1 — 1/n then also
exp (—(1 - O(pa))@("T2)/@(r2)) > 1—1/n, which in turn implies that % <log (n—ﬁl) <

nr2a

ﬁ. It follows that p > 2 (M) We have proved the following theorem.



Theorem 2. Suppose that n sensors with coverage angle a(n) and reachability radius r(n) are
thrown randomly and independently in the interior of a unit square. If

Pr[Sensors provide full coverage of the unit square] >1—1/n

as n — 0o, then the probability p(n) that a given sensor is active satisfies

o > 2 (log<n/r(n>2>) |

nr(n)2a(n)

3.1 Achieving coverage only from the perimeter

Our approach in this section is sufficiently general to solve the coverage problem for a unit square
region when the sensors can be placed only on its perimeter. In this case we assume that the
reachability radius of the sensors is equal to 1. We mention without proof the following result
whose proof is similar to the proofs of Theorems 1 and 2 above.

Theorem 3. Suppose that n sensors with coverage angle a(n) and reachability radius 1 are thrown
randomly and independently on the perimeter of a unit square. If the probability p(n) that a given

sensor is active satisfies p(n) > 2 (%) then

Pr[Sensors provide full coverage of the unit square] > 1 —n~°W). (2)
Similarly, we can prove that if Inequality 2 is valid then p(n) > 2 (le‘;g(z)) . [ |

4 Achieving Coverage and Connectivity

Connectivity is not always assured in a network of directional antennas. For example, it can happen
that a sensor lying in the convex hull formed by the sensors is such that its angle of coverage points
outside of the convex hull. Thus it cannot connect to any other sensor. We resolve this problem by
showing in the sequel that there exists a connected subgraph of the graph of sensors that provides
complete coverage of the unit square. We also provide an efficient routing algorithm in this setting.

Fig. 5. For each circle we can find with high probability four sensors within the circle whose directional
antennas fully cover a circle in the up, down, left, right directions, respectively.

Condider the configuration decomposing the unit square into circles of radius R = % .

O(r) and depicted in Figure 3. Recall that the coverage range of each sensor is r and consider



the radius R. For each circle in this configuration we can find with high probability four active
sensors within the circle whose directional antennas fully cover a circle in the up, down, left,
right directions, respectively (see Figure 5). For example, for the two circles at distance < r — 2R
depicted in Figure 6 we can find with high probability a sensor in C' to cover the circle C".

)

Fig. 6. Finding a sensor in C in order to cover the circle C”.

Pr[An active sensor in C covers the circle C']
=1 — Pr[no active sensor in C' covers the circle C']
©(nR?)
>1- J[ (1-6@a) >1- e Omrar®),

i=1

It is now easy to see that in order to ensure that 1 — e=®ParR®) > 1 _ n=0(1) it ig enough to

assume that p > 2 (:L‘;g];;) =10 <ﬁ§m) .

The same idea as before can now be used to achieve full coverage of the unit square by a
connected subgraph of the resulting network of sensors. The circles must be such that there is
sufficient overlap in order to guarantee connectivity. To obtain coverage of the whole unit square
we partition the given region into circular subregions Ci,Cs,...,Cn each of radius R, where

N = 3 = srsramamsneny = © (T2 sin%(a/4)) . (see Figure 3). Each circular subregion
can be covered by a sensor with high probability. Let E; be the event that C; can be covered by
a sensor. It follows that

Pr[Sensors provide full coverage] > Pr[Each C; is covered by a sensor]

N N N N 2
=Pr [ﬂE;| =1—-Pr UE ZI—ZPr[E]Zl_Ze—Q(nz)aR)
=1 i=1 =1 =

2 1 2
>1—-N —O(npaR?) >1— —O(npaR )
= ¢ =T 00 sin(a/a)

It is now easy to see that in order to ensure that 1 — @(Tsiiﬁme_@(nmm) >1-n"9W it is
enough to assume that p > 2 (%ﬁ#) .

It remains to prove that a connected subgraph of the sensor network provides full coverage of
the unit square. Consider the set S of active sensors that fully cover at least one of the circles
of radius R depicted in Figure 3. The previous argument shows that this set of sensors indeed
provides full coverage of the unit square. It remains to prove that it is also connected. Let s,t be
two arbitrary active sensors in S. It is enough to show that there is a path from s to ¢ with high
probability asymptotically in n. By definition of S there is a circle, say C, of radius R in Figure 3
which is fully covered by the sensor s. Let C’ be a circle of radius again in Figure 3 in whose
interior the sensor ¢ belongs. It was shown before (see also Figure 5) that we can find a path from
circle C to circle C' like in the Manhattan routing on a two dimensional mesh in order to reach
every node at C' (and hence also the target node ¢. Summing up we have proved the following
theorem.



Theorem 4. Suppose that n sensors with coverage angle a(n) and coverage radius r(n) are thrown

randomly and independently in the interior of the unit circle. If p(n) > 2 (‘;’Li((%;ggi)S;;Z((C;Y;})//‘i))))

then Pr[3 a connected subnetwork of sensors which provides full coverage] > 1 — n—O0), ]

As a special case we also obtain the result that for @ = 2m, if p(n) > 2 (nl—&g#) then
—0@1)

Pr[A connected subnetwork of sensors provides full coverage] > 1 —n

5 Conclusion

We have considered the problem of coverage and connectivity of a sensor network established
over a unit square. We established conditions on the probability that a given sensor is active in
order to guarantee that a subnetwork of the resulting sensor network is connected and provides
full coverage of the unit square. We also note that a similar approach will work for coverage and
connectivity of sensor networks in more general planar regions.
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