
Channel Selection Using a Multiple Radio Model1

Michel Barbeaua, Gimer Cerverab, Joaquin Garcia-Alfaroc, Evangelos
Kranakisa

a School of Computer Science, Carleton University, K1S 5B6, Ottawa, Ontario, Canada
Email: {barbeau,kranakis}@scs.carleton.ca

b Universidad Tecnológica Metropolitana, 97279, Merida, Yuc., Mexico Email:
gimer.cervera@utmetropolitana.edu.mx

c Telecom SudParis, CNRS Samovar UMR 5157, Evry, France Email:
joaquin.garcia-alfaro@acm.org

Abstract

How can a group of distributed secondary users make rendezvous on one
among a set of available channels, whose exact content is a priori unknown
to the participants? Let us assume that secondary users scan the set of chan-
nels, attempting to make rendezvous with each other. Each user has several
radios that are concurrently used to achieve rendezvous. We propose two
rendezvous algorithms for users equipped with several radios each. We study
in detail the multiple user case and the asymmetric case, where the users
have different but overlapping channel sets. The performance of the algo-
rithms are analyzed and evaluated through simulation. Equations modeling
the worst case performance and expected performance are developed.

Keywords: Channel selection, cognitive radio network, cognitive wireless
network, dynamic spectrum access, rendezvous.

1. Introduction

The demand for wireless continues to grow. Wireless traffic is increasing.
Devices, such as smart phones and tablets, are numerous and bandwidth hun-
gry. The numbers of wireless users, devices and applications are all booming
as occupants of some of the segments of the radio spectrum. Radio spec-
trum is a limited natural resource. Lack of available radio spectrum is an

1This work is an extended and revised version of our former paper that developed a
solution for a two-user, two-radio per user model [1].
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issue with respect to the introduction of new applications. Indeed, the radio
spectrum from nine KHz to 275 GHz has been entirely allocated to various
services. In theory, there is no room for new services and accommodating
growth. This is dubbed the spectrum crunch problem. Nevertheless, not
all allocated bandwidth is currently being intensively used. For instance, a
limited number of frequencies allocated to television, space exploration and
defense are occupied every-time, everywhere. Measurement experiments ob-
served a remarkably low usage of the radio spectrum. For example, McHenry
et al. [2] have concluded that over 80% of the allocated spectrum is unused.
The cognitive radio paradigm aims at improving the radio spectrum usage
efficiency and support of the expected growth of wireless traffic.

Opportunistic spectrum access is a cognitive radio approach. It works on
the assumption that certain radio bands are allocated to a primary service
(e.g., television) and a secondary service (e.g., computer networks). There are
primary users and secondary users. A secondary user cannot cause harmful
interference to the transmissions of a primary user. Opportunistic spectrum
usage is a medium access model for secondary users. Primary users may
access the wireless medium anytime. Secondary users must always monitor
activities of primary users. They can only use residual air time. Secondary
users must relinquish channels to primary users when the latter become ac-
tive. Spectrum utilization can be improved by opportunistically transmitting
in spectrum holes. An important question is: where are the spectrum holes?
There are two approaches for finding them: database and sensing. In the
database approach [3, 4], secondary users query a database to find channels
that are available for their operation. This approach requires a database-
server infrastructure and a communication protocol between the secondary
users and servers. In the sensing approach, secondary users observe the spec-
trum. They uncover unoccupied channels.

To be able to network together, secondary users meet and agree on one
common channel. In the sequel, it is assumed that the secondary users are
synchronous. Time is divided in slots of equal length. A rendezvous occurs
within one time slot. There are two conditions for a successful rendezvous:
a successful protocol handshake and being on the same channel during a
time slot. These two conditions can be considered separately. They can be
modeled individually and independently. The probability of a successful ren-
dezvous is the product of the probability of a successful protocol handshake
and probability of being on the same channel during a time slot. The focus of
this paper is on the latter aspect. We address the problem of finding a com-
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mon channel by secondary users, on which they can network. The problem
of finding and selecting a common channel can be approached using either a
central controller, a dedicated common control channel or a distributed blind
rendezvous technique. A blind rendezvous technique may use channel scan-
ning. Each secondary user scans a set of channels looking for a rendezvous
with a peer. Participating users may all have a common channel set, in the
symmetric case, or a different, but non disjoint channel set, in the asymmet-
ric case. The goal is to make the secondary users rendezvous on a common
channel in a minimum number of time slots.

The problem addressed specifically in this paper is enabling communica-
tions for a group of secondary users by making rendezvous on an available
channel. We assume that each secondary user scans the set of channels, at-
tempting to make rendezvous with other secondary users. Time is divided
into equal length intervals called time slots. During one time slot, each user
is tuned into one or several channels, simultaneously. Two or several users
make rendezvous when they are all tuned into a common and same channel
during a time slot. Most of the research works conducted so far on this prob-
lem assume a single radio per user. We assume that each user has several
radios that are concurrently used to achieve rendezvous with other users.
With the current software-defined radio technology, multi-radio operation is
perfectly doable.

Three cognitive radio paradigms have been identified [5], namely, under-
lay, overlay and interweave. They refer to the model of spectrum usage by
secondary users with respect to primary users. In the underlay model, sec-
ondary users are allowed to transmit until interference created to primary
users remains below a threshold [6, 7, 8]. In the overlay model, because of
their transmission technique, secondary user transmissions have no impact on
the performance of primary users. In the interweave model, secondary users
detect non-occupied spectrum segments and use them to communicate. The
work presented in this paper falls into the interweave category.

We present two rendezvous algorithms, with a bidirectional behavior, for
users that have 2k radios each, where k is a non-null positive integer. The
algorithms differ in the way they are initialized. In the first algorithm, 2k-
point algorithm, each user picks 2k random starting channels. In the second
algorithm, k-point algorithm, each user chooses k random starting channels.
Let m be the number of available channels (assumed to be an odd number
without loss of generality). The performance of our algorithms is determined
by the Time-To Rendezvous (TTR) measure. We study first the two-user
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symmetric case, which means that the two users share exactly the same
channel set. For the two-user symmetric case, the first algorithm achieves
worst case performance in m− 1 time slots. The second algorithm achieves
worst case performance in (m − 1)/2 time slots, but at the expense of an
additional constraint, i.e., users must start running the algorithm at the
same time slot. Their expected performance is almost the same,

⌈
m

2k+1

⌉
or⌈

m
2k+2

⌉
time slots, asymptotically in k. Next we study, the more general

multiple-user asymmetric case, which means that users may hold different
channels sets, but with at least one channel in common. Equations modeling
the worst case performance and expected performance are developed for all
cases.

In Section 2, we review related work. We study a randomized algorithm
in Section 3. The bidirectional algorithm exploiting several radios per user
is described in Sections 4 and 5. We compare the theoretical performance of
our algorithms with related algorithms in Section 6. Simulation results are
presented in Section 7. We conclude with Section 8.

2. Related Work

The problem of finding and selecting a common channel, by secondary
users, can be approached using either a central controller, a dedicated com-
mon control channel or a distributed blind rendezvous technique. The blind
rendezvous technique may use channel scanning. Each secondary user scans
a set of channels looking to make rendezvous with a peer. Participating
users may have a common channel set, under the symmetric model, or dif-
ferent, but non disjoint, channel sets, under the asymmetric model. The
performance of the channel scanning algorithms is evaluated using the TTR
metric. In the two users case, from the moment both users are running, it is
the number of time slots required to achieve rendezvous. An algorithm with
a finite maximum TTR is said to be guaranteed rendezvous. Related work
includes the random channel and orthogonal-sequence-based algorithms of
Theis et al. [9, 10]. The random channel algorithm visits all channels in a
random order. For each time slot, a channel is selected among the available
channels with uniform probability. The user is tuned on to that channel for
the whole time slot. Rendezvous is not guaranteed. The asynchronous user
ring-walk algorithm has been proposed by Lin et al. [11, 12]. Preference is
given to channels with low interference to primary users. Rendezvous is not
guaranteed to take place. Bahl et al. proposed an approach for WiFi/802.11
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networks [13]. Rendezvous is guaranteed to take place under the symmetric
model. Krishnamurthy et al. proposed a two-phase algorithm [14]. The first
phase is for neighbor discovery. It is conducted on common local channels.
In the second phase, a global common channel is determined among the par-
ticipating users. Bian et al. use a quorum principle [15, 16, 17]. Rendezvous
is guaranteed. They have a solution for a two-channel case. Yang et al. have
proposed an algorithm based on the k-shift-invariant concept that guarantees
rendezvous [18]. Lin et al. authored the (enhanced) jump-stay rendezvous
algorithm [19, 20, 21]. It is designed for multiple users with guaranteed ren-
dezvous. The modular clock algorithm was originally proposed by Theis et
al. [9]. It is based on ideas initially introduced by DaSilva and Guerreiro [10].
It is analogous to the jump-stay rendezvous algorithm, but the stay pattern
is not performed [22]. Two-node rendezvous is guaranteed when they scan
using different step increments. Practical evaluations of the modular clock
algorithm, and random algorithm, have been conducted by Robertson et al.
using the GNU radio framework [23]. More recent related contributions in-
clude the ones described in the papers of Chang and Huang [24], Reguera et
al. [25], Gu et al. [26] and Chang et al. [27].

All the aforementioned works assume a single radio per user. In this
paper, we assume that each user has two or more radios that can be used
simultaneously to achieve rendezvous. Yu et al. [28] have conducted research
in that direction. They proposed the role-based parallel sequence (RPS) algo-
rithm where users are equipped with multiple radios. In fact, each user has
one dedicated radio and several general radios. The dedicated radio stays on
a specific channel for a number of time slots. Then, switches to another one
in a round-robin manner. The remaining general radios scan all the avail-
able channels, in parallel. For example, when a user has k general radios,
k channels are simultaneously scanned per time slot. All available channels
are scanned in a parallel round-robin manner. The number of radios may
vary from user to user. The greater the number of general radios, the faster
the scan of all available channels. Given a pair of users, it is expected that
rendezvous is made between the dedicated radio of one user and one of the
general radios of the other. Both the asymmetric and symmetric models are
considered. Our work is compared with the work of Yu et al. in Sections 6
and 7.
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3. Randomized Algorithm

Let m, a non-null positive integer, be the number of channels. Let C be
the set of m channels {0, 1, . . . ,m − 1}. Let k, a non-null positive integer,
be the number of radios. Let {R1, . . . , Rk} be the set of k radios. Let c be a
non-empty subset of set C. The cardinal of c, i.e., |c|, is lower than or equal
to k. An assignment of channels to the k radios is a surjective function f
from the domain {R1, . . . , Rk} to the co-domain c. Function f determines
the channel to which each radio is tuned.

Lemma 1. Let f be a channel assignment surjective function from the do-
main {R1, . . . , Rk} to the co-domain c ⊆ C, with 1 < |c| ≤ k. The number
of different possibilities for channel assignment function f is determined by
the product S(k, |c|)|c|!, where2

S(k, |c|) =
1

|c|!

|c|∑
i=0

(−1)i
(
|c|
i

)
(|c| − i)k. (1)

Proof. It follows from the fact that the number of surjective functions from a
set of cardinal k to a set of cardinal |c| is equal to S(k, |c|)|c|!, where S(k, |c|)
is the Stirling number of the second kind. It counts the number of partitions
of a set of size k into |c| nonempty, disjoint subsets. Further, it is known
that S(k, |c|) is defined as in Equation (1).

Let us consider the following randomized algorithm. There are two users,
i = 1, 2. Each user i is equipped with k radios. Each radio is represented by
the symbol Ri,j, for j = 1, 2, . . . , k. The two users are synchronous. Time
is divided in slots of equal length. A rendezvous between the two users
occurs within one time slot. For every time slot, each user randomly and
independently selects a channel assignment function fi, defined from domain
{Ri,1, . . . , Ri,k} to a channel non-empty subset ci of C. We have that |ci|
is lower than or equal to k, that is to say, the number of channels is not
greater than the number of radios. Success is obtained when at least one
pair of radios (one from each user) are tuned to the same channel. That
is to say, f1(q) is equal to f2(r), for q and r in {1, 2, . . . , k}. Note that
if the number of channels m is lower than the total number of radios, i.e.,

2The symbol ”!” denotes the factorial operator.
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2k, then the problem can be solved in one time slot. It suffices to select
f1 and f2 such that they are injective. In that case, they map two radios,
one from each user, to a common channel because of the limited number of
possibilities. In the sequel, we are interested in the case where m is greater
than or equal to 2k. Intuitively, each radio may very well repeatedly select
channel assignment functions such that rendezvous is impossible, they do
not map two radios, from different users, to a common channel. By nature,
a randomized algorithm does not guarantee that all channels are visited,
including the ones where rendezvous might happen. The following theorem
formally shows the expected TTR of the randomized algorithm

Theorem 1. Le us consider two users i = 1, 2. Each user i is equipped
with k radios Ri,j, with j = 1, 2, . . . , k and 2k ≤ m. The two users are
synchronous. Time is divided in slots of equal length. For every time slot,
each user randomly and independently selects a channel assignment function
fi defined from domain {Ri,1, . . . , Ri,k} to a non-empty channel subset ci of
C, with |ci| ≤ k. The two users make rendezvous in a time slot when f1(q)
is equal to f2(r), for q and r in {1, 2, . . . , k}. The expected TTR (ETTR) of
the randomized algorithm is

1

1− 1
m2k

∑
i,j=1,...,k

(
m

i

)
S(k, i)i!

(
m− i

j

)
S(k, j)j!

time slots. (2)

Proof. Let us consider the following experiment. User 1 selects at random a
non-empty set of channels c1 ⊆ C, with |c1| ≤ k. User 2 selects at random
a non-empty set of channels c2 ⊆ C, with |c2| ≤ k. What is the probability
that c1 ∩ c2 6= ∅? That is to say, they succeed to make rendezvous. Observe
that the probability of failing to make rendezvous is

q = Pr[c1 ∩ c2 = ∅] (3)

= Pr[c1 ∩ c2 = ∅ & |c1| = i & |c1| = j] (4)

=
1

m2k

∑
i,j=1,...,k

(
m

i

)
S(k, i)i!

(
m− i

j

)
S(k, j)j!. (5)

The factor 1/m2k counts the number of possible functions pairs, i.e., f1 and
f2, where each function is from a domain of cardinal k to a co-domain of
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cardinal m. In the summation, the first two multiplicands count the number
of subsets of cardinal i, chosen form a set of cardinal m, times the number
of injective functions from a domain of cardinal k to a co-domain of cardinal
i. The last two multiplicands count the number of subsets of cardinal j,
chosen form a set of cardinal m− i, times the number of injective functions
from a domain of cardinal k to a co-domain of cardinal j. The summation
counts the total number of surjective functions pair f1 and f2 with empty
co-domain intersection. Therefore, we conclude that the probability of a
successful rendezvous is

p = Pr[c1 ∩ c2 6= ∅] (6)

= 1− q (7)

= 1− 1

m2k

∑
i,j=1,...,k

(
m

i

)
S(k, i)i!

(
m− i

j

)
S(k, j)j!. (8)

Each time slot can be seen as a Bernoulli trial with probability of success,
i.e., rendezvous, p and probability of failure q. The sequence of Bernoulli
trials is continued until the first success, the TTR, which counts the number
of trials, is a geometric random variable with Pr[TTR = t] = qt−1p. The
average TTR is then,

E[TTR] =
1

p
=

1

1− 1
m2k

∑
i,j=1,...,k

(
m

i

)
S(k, i)i!

(
m− i

j

)
S(k, j)j!

time slots.

(9)
This proves the theorem.

Our analysis of the randomized case is consistent with the conclusions of
Yu et al. [29]. In their paper, although, they analyze a randomized algorithm
where the channel assignment function is always injective. In contrast, our
analysis does not make this assumption. The maximum TTR of the random-
ized algorithm is infinity, since we have shown in Theorem 1 that during every
trial, the probability of failing to make rendezvous (q) is always nonzero. In
terms of ETTR, the randomized algorithm outperforms all other algorithms.
However, it does not guarantee rendezvous. In the sequel, we concentrate on
algorithms that guarantee rendezvous. Their ETTR is not better than the
ETTR of the randomized algorithm because they implement some exhaus-
tive search strategies to achieve the guaranteed rendezvous property. In that
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context, the performance of the randomized algorithm is a baseline case for
the purposes of comparisons. Using Equation 2, Figure 1 plots the ETTR
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Figure 1: ETTR (in time slots) for the randomized algorithm, for one, two, four, eight
and 16 radios per user.

(in time slots) for the randomized algorithm, for one, two, four, eight and
16 radios per user. This plot highlights the benefits of using simultaneously
multiple radios. Each time, doubling the number of radios increases the
performance by more than a factor of two.

It is assumed that users are synchronized on time slots. Practically, this
can be achieved using the clock signal from the global positioning system.
The start of every new time slot can be marked by the start of every second,
decisecond, centisecond or millisecond.

9



a 0 

a 2 

a 4 a 1 

a 3 

Radio 0	


Radio 1	


a 0 

a 2 

a 4 a 1 

a 3 

Radio 1	


Radio 0	


Figure 2: A ring with m equal to five channels.

4. Bidirectional Algorithms with Multiple Radios

We present our guaranteed rendezvous algorithms. Let m be the number
of available channels, a positive integer. With the bidirectional algorithm,
the channel numbers are arranged consecutively on a ring of size m, as in
Figure 2. In this example, there are five channels: 0, 1, 2, 3 and 4. Each radio
implements the following behavior. Scanning of the channels is done either
in the clockwise (CW) or counterclockwise (CCW) direction. Let us assume
that there are two users and that each user has two radios. Radio 0 of user
1 is tuned to channel zero, scanning the channel ring CW. Radio 1 of user 2
is tuned to channel three, scanning the channel ring CCW. The distance d is
the number of edges separating the two radios on the channel ring, scanning
toward each other. In this example, d is three edges, an odd number. With
m channels, d is in 0, 1, . . . ,m − 1. Each radio scans one channel per time
slot. In Figure 3, after two time slots, the two radios mutually crossover.
They are tuned to channels one and two. However, this time the distance
is four edges, an even number. After scanning for two additional time slots,
they make rendezvous on channel four.

In the sequel, we present two rendezvous algorithms for two users equipped
with 2k radios each, where k is a positive integer. The algorithms differ in the
way they are initialized. In the first algorithm, 2k random starting channels
are chosen. In the second algorithm, each user chooses k random starting
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Figure 3: Crossover after two time slots, rendezvous is made after scanning for two more
time slots.

channels.
The two users are indexed with variable i = 1, 2. Each user i is equipped

with radios, say Ri,2j−1 and Ri,2j, with j = 1, 2, . . . , k. Success is obtained
when at least one pair of radios (one from each user) accomplishes rendezvous,
i.e., they are tuned to a common channel.

Note that the TTR can be measured either in number of steps (denoted
with the random variable H) or in number of time slots (denoted with the
random variable TS). Regardless of the way it is being measured, the mag-
nitude of the TTR is not affected. H and TS differ only by a constant term,
namely TS = H + 1. This simple observation simplifies the proofs. We
tacitly make use of it in the sequel.

4.1. 2k−Point Algorithm

The first procedure is called the 2k-point algorithm (Algorithm 1). Each
user i in 1, 2, for each radio pair Ri,2j−1, Ri,2j, with j in 1, 2, . . . , k, randomly
and independently selects two start channels in 0, 1, 2, . . . ,m − 1, denoted
as ci,2j−1 and ci,2j. The radio Ri,2j−1 scans CW from channel ci,2j−1, while
the radio Ri,2j scans CCW from channel ci,2j. Scanning is performed until
rendezvous is achieved by the two users.

Theorem 2. Let us assume that m is an odd integer. Algorithm 1 (2k-
point algorithm) always accomplishes rendezvous in at most m−1 time slots.
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Algorithm 1 2k-Point Algorithm: User i = 1, 2

for j = 1, 2, . . . , k
select start channels ci,2j−1 and ci,2j randomly and independently
scan CW with radio Ri,2j−1 starting from ci,2j−1
scan CCW with radio Ri,2j starting from ci,2j

stop when meet on same channel with other user

Furthermore, rendezvous occurs in at most
⌈

m
2k+1

⌉
expected number of steps,

asymptotically in m.

Proof. Each user has 2k radios. For j = 1, 2, . . . , k, the radio pair R1,2j−1, R1,2j,
of the first user, is coupled with the radio pair R2,2j−1, R2,2j, of the second
user, in the following manner. Radio R1,2j−1 is paired with radio R2,2j and
radio R1,2j is paired with radio R2,2j−1. It follows that the radios in the pair
R1,2j−1, R2,2j scan in opposite directions starting from channels c1,2j−1, c2,2i,
respectively. Also, the radios in the pair R1,2j, R2,2j−1 scan in opposite direc-
tions starting from channels c1,2j, c2,2j−1, respectively. Let dj be the distance
in time edges between c1,2j−1 and c2,2i, and d′j be the distance in edges be-
tween c1,2j and c2,2j−1. We have that dj, d

′
j ∈ {0, 1, 2, . . . ,m− 1}. Because m

is odd, note that when dj, d
′
j are even, their maximum value is m− 1. When

they are odd, their maximum value is m− 2.
There are four cases to consider.

1. If both dj, d
′
j are even, then both pairs accomplish rendezvous in

dj
2

and
d′j
2

steps, respectively.

2. If dj is even and d′j is odd then one pair accomplishes rendezvous in
dj
2

steps. The other pair crosses over in
d′j+1

2
steps and makes rendezvous

in additional m−1
2

steps. Giving a total of
d′j+1

2
+ m−1

2
=

m+d′j
2

steps.

3. Similarly, if dj is odd and d′j is even, then one pair accomplishes ren-

dezvous in
m+dj

2
steps and the other in

d′j
2

steps.

4. Finally, if both dj, d
′
j are odd then the pairs accomplish rendezvous in

m+dj
2

and
m+d′j

2
steps.

In all cases, the number of steps is not greater than m − 1. We conclude
that rendezvous is accomplished within at most either m−1 steps or m time
slots.
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We now look at the expected number of time slots. Let Hj be a random
variable measuring the number of steps until rendezvous, as a function of the
initial distance dj in edges. The previous discussion shows that the following
identity is valid:

Hj =

{
dj/2 if dj is even
(m + dj)/2 if dj is odd

(10)

Equation (10) determines the value of Hj as a function of the distance dj in
edges. The random variables H ′j is defined analogously.

The random variables H1, H2, . . . , Hk and H ′1, H
′
2, . . . , H

′
k are independent

and identically distributed. For any value h realized by the random variable
Hj (h in 0, 1, . . . ,m− 1), we have that

Pr[Hj = h] = Pr[Hj = h & h ≤ (m− 1)/2] + Pr[Hj = h & h ≥ (m + 1)/2]

=
1

2
Pr[Hj = h | h ≤ (m− 1)/2] +

1

2
Pr[Hj = h | h ≥ (m + 1)/2]

=
1

2m
+

1

2m

=
1

m
.

This implies that Pr[Hj ≥ h] = m−h−1
m

. Since the random variables Hj and
H ′j are independent and identically distributed, we have that

E

[
min
1≤i≤k

min{Hj, H
′
j}
]

=
m−1∑
h=0

Pr

[
min
1≤i≤k

min{Hj, H
′
j} ≥ h

]

=
m−1∑
h=0

k∏
j=1

Pr [Hj ≥ h] Pr
[
H ′j ≥ h

]
=

m−1∑
h=0

(Pr [H ≥ h])2k.
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We conclude that

E

[
min
1≤i≤k

min{Hj, H
′
j}
]

=
m−1∑
h=0

(
m− h− 1

m

)2k

=
1

m2k

m−1∑
h=0

(m− h− 1)2k

=
1

m2k

m−1∑
i=0

i2k

≤ m

2k + 1

≤
⌈

m

2k + 1

⌉
steps,

asymptotically in m.3 This completes the proof of Theorem 2.

The analysis in Theorem 2 implicitly assumes that both users start run-
ning the algorithm at the same time slot. This assumption simplifies the
analysis. It is not required. Although, in the following algorithm the same
assumption is present and required. The reward is a significant improvement
in the worst case performance, (m− 1)/2 steps, for the Algorithm 2, versus
m− 1 steps for Algorithm 1.

4.2. k-Point Algorithm

The second procedure is called the k-point algorithm (Algorithm 2). Each
user i in 1, 2, for each radio pair Ri,2j−1, Ri,2j, with j in 1, 2, . . . , k, randomly
and independently selects a start channel in 0, 1, 2, . . . ,m − 1, denoted as
ci,j. Both radios in the pair start on the same channel. The radio Ri,2j−1
scans CW, while the radio Ri,2j scans CCW. Scanning is performed until
rendezvous is achieved by the two users.

Theorem 3. Let us assume that m is an odd integer. Algorithm 2 (k-point
algorithm) accomplishes rendezvous in at most (m − 1)/2 steps. Further, it
accomplishes rendezvous in

⌈
m

2k+2

⌉
expected number of steps, asymptotically

in m.

3The lim
n→∞

∑n
i=0 ip

np+1/(p+1) is equal to one.
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Algorithm 2 k-Point Algorithm: User i = 1, 2

for j = 1, 2, . . . , k
select start channel ci,j randomly and independently
scan CW with radio Ri,2j−1 starting from ci,j
scan CCW with radio Ri,2j starting from ci,j

stop when meet on same channel with other user

Proof. For j = 1, 2, . . . , k, the radio pair R1,2j−1, R1,2j, of the first user, is
coupled with the radio pair R2,2j−1, R2,2j, of the second user, in the following
manner. Radio R1,2j−1 is paired with radio R2,2j. Radio R2,2j−1 is paired with
radio R1,2j. It follows that the radio pair R1,2j−1, R2,2j scan in opposite direc-
tions starting from channels c1,j and c2,j. Also, the radio pair R1,2j, R2,2j−1
scan in opposite directions starting from channels c1,j and c2,j.

First, we look at the worst-case TTR. According to the direction of move-
ment, the start distance between the first radio pair is dj edges, with dj in
0, 1, . . . ,m − 1. It is m − dj steps for the second radio pair. Let us first
assume that dj is even. Note that in this case the maximum value for dj is

m − 1. The first pair accomplishes rendezvous in
dj
2

steps. The second pair

crosses over in
m−dj+1

2
steps and make rendezvous in additional m−1

2
steps,

thus giving a total of
m−dj+1

2
+ m−1

2
= m− dj

2
steps. Because the maximum

value for dj is m − 1, we have that the term
dj
2

is smaller than or equal to

the term m− dj
2

. The first pair meets first in a maximum of m−1
2

steps.
Similarly, if dj is odd then m − dj is even. Note that in this case the

maximum value for dj is m − 2. Using the previous observations, the first

radio pair accomplishes rendezvous in
dj+1

2
+ m−1

2
=

m+dj
2

steps while the

second pair makes it in
m−dj

2
steps. The term

m−dj
2

is smaller than the term
m+dj

2
. In all cases, the number of steps is not greater than m−1

2
. We conclude

that rendezvous is accomplished within at most m−1
2

steps.
We look at the expected number of time slots. As a function of the initial

distance dj in edges, let Hj be a random variable measuring the number
of steps until rendezvous. The previous discussion shows that the following
identity holds true:

Hj =

{
dj/2 if dj is even
(m− dj)/2 if dj is odd

(11)

Equation (11) determines the value of Hj as a function of the distance dj in
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edges. Let the random variable Dj be the distance between c1,j and c2,j.
The random variables H1, H2, . . . , Hk are independent and identically dis-

tributed. Similarly for the random variables D1, D2, . . . , Dk. For the sake of
simplicity, in the sequel we denote a pair of variables Hj, Dj as H,D. Observe
that Pr[D = d] = 2

m
, for any d ≤ (m−1)/2. However, since by assumption m

is odd, for any integer d ≤ m, d is even if and only if m−d is odd. Therefore
for any value h realized by the random variable H (h in 0, 1, . . . , (m− 1)/2),
either the event D = 2h or event D = m− 2h is valid, in other words:

H = h⇔
{

D = 2h if D is even
D = m− 2h if D is odd

That implies that Pr[H = h] = 2
m

, for all h. From this observation, we
calculate the distribution of H,

Pr[H > h] =

(m−1)/2∑
i=h+1

Pr[H = i]

=

(m−1)/2∑
i=h+1

2

m

=

(
m− 1

2
− h

)
2

m

=
m− 2h− 1

m
(12)

as well as the expected value of H,

E[H] =

(m−1)/2∑
h=0

h · Pr[H = h]

=
2

m

(m−1)/2∑
h=0

h

=
(m− 1)(m + 1)

4m

=
m

4
− 1

4m
steps.

We are interested in calculating the expected number of steps until ren-
dezvous by at least one radio pair. Rendezvous is accomplished when the first
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radio pair (one from each user) meets at a channel of the ring. Therefore
the expected number of steps until rendezvous does not exceed the following
quantity

E

[
min
1≤i≤k

Hj

]
.

Since the random variables Hj are independent and identically distributed,
we conclude that

E

[
min
1≤i≤k

Hj

]
=

(m−1)/2∑
h=0

Pr

[
min
1≤i≤k

Hj > h

]

=

(m−1)/2∑
h=0

k∏
i=1

Pr [Hj > h]

=

(m−1)/2∑
h=0

(Pr [H > h])k.

It remains to evaluate this sum. Using Equation (12), we conclude that

E

[
min
1≤i≤k

Hj

]
=

(m−1)/2∑
h=0

(
m− 2h− 1

m

)k

=
1

mk

(m−1)/2∑
h=0

(m− 2h− 1)k

=
1

mk

m−1∑
i=0

i even

ik

=
2k

mk

(m−1)/2∑
i=0

ik

≤ m

2k + 2
steps,

asymptotically in m. This completes the proof of the theorem.

For the k-point algorithm, Figure 4 plots the ETTR for 10 to 100 chan-
nels and two, four, eight and 16 radios. Here is why the k-point algorithm
worst case performance is better than the 2k-point algorithm worst case per-
formance. In the 2k-point case, given two pairs of coupled radios, one pair
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Figure 4: ETTR (in time slots) for the k-point algorithm.

from each user, the two distances can be both odd and require crossovers in
both cases before rendezvous is achieved. In the k-point case, because m is
assumed to be odd, given two pairs of coupled radios, if the distance is odd
for one pair (crossover required), it is even for the other pair (no crossover
required).

5. Asymmetric and Multiple-User Cases

In this section, we handle the asymmetric and multiple user cases. Under
the asymmetric model, the secondary users have different sets of available
channels. If the sets are overlapping, which we assume, they can eventually
make rendezvous. The goal is to make the secondary users rendezvous on a
common channel in a minimum amount of time.
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Referring to the scenario depicted in Figures 2 and 3, let us assume that
channel four is not available to user 1, all others are. There are no changes
for user 2. In these conditions, rendezvous on channel four fails. The users
repeatedly crossover and never make rendezvous. This cyclic behavior needs
to be broken. In this example, the initial distance is even. An analogous
behavior is obtained when the initial distance is odd.

When all channels are available, with the 2k-point algorithm (Algorithm 1)
we know that rendezvous does not require more than m−1 steps. Let ci,2j−1
and ci,2j be the start channels of Radio 0 of user 1 and Radio 1 of user 2.
After the completion of m− 1 steps, let the new start channel of Radio 0 be
(ci,2j−1 + m − 1) mod m. Let the new start channel of Radio 1 be ci,2j + 1
mod m. For the Figures 2 and 3 scenario, it means that after visiting chan-
nel four, Radio 1 jumps to channel two. After visiting channel four, Radio
0 does channel four again. After one step, they crossover again. After three
more steps, they finally meet on channel three. If the channel happens to
be also not available to both, then this procedure is repeatedly applied until
rendezvous is made.

Each sequence of start channel selection followed by m− 1 steps is called
a round. This procedure is called the 2k-point-asymmetric algorithm (Al-
gorithm 3). Each user i in 1, 2, for each radio pair Ri,2j−1, Ri,2j, with j in
1, 2, . . . , k, randomly and independently selects two start channels in the set
{0, 1, 2, . . . ,m− 1}, denoted as ci,2j−1 and ci,2j. The radio Ri,2j−1 scans CW
channel ci,2j−1, while the radio Ri,2j scans CCW from channel ci,2j. Scanning
is performed until rendezvous is achieved by the two users or m − 1 steps
have been completed. After the completion of a cycle of m−1 steps, for each
radio pair Ri,2j−1, Ri,2j the new starting channels are ci,2j−1 = (ci,2j−1+m−1)
mod m and ci,2j = ci,2j + 1 mod m. This is repeated m times.

Theorem 4. Let us assume that m is an odd integer and that w is the
number of channels that two users have in common, with 1 ≤ w ≤ m. The
2k-point-asymmetric algorithm (Algorithm 3) accomplishes rendezvous in at

most (m − w + 1) · (m − 1) steps and with a
⌈

m2

w(2k+1)

⌉
expected number of

steps, asymptotically in m.

Proof. Rendezvous is made in at most (m− w + 1) · (m− 1) steps, because
there is a maximum of m−w+1 rounds, due to the assumption on the range
of w, and each round takes at most (m− 1) steps.

We calculate the expected number of steps. With index r in 1, . . . ,m−w,
each round is a trial with probability of success, i.e., rendezvous, w

m−r+1
(the
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Algorithm 3 2k-Point-Asymmetric Algorithm: User i = 1, 2

for j = 1, 2, . . . , k
select start channels ci,2j−1 and ci,2j randomly and independently

for l = 1, 2, . . . ,m
for m− 1 steps

scan CW with radio Ri,2j−1 starting from ci,2j−1 and
scan CCW with radio Ri,2j starting from ci,2j
stop when meet on same channel with other user

ci,2j−1 = (ci,2j−1 + m− 1) mod m
ci,2j = ci,2j + 1 mod m

two users tune in a channel available to both) and probability of failure
1− w

m−r+1
(the two users tune in a channel not available to both). Due to the

assumption that w common channels exist (with 1 ≤ w ≤ m), the probability
of success in the (m− w + 1)th round is one. The algorithm stops there, at
the latest.

Let R be the random variable that counts the number of rounds until
success. At least one round is required and a maximum of m−w + 1 rounds
are needed. Then, we see that

Pr[R = r] =



r∏
r>1,s=2

(
1− w

m− s + 2

)
· w

m− r + 1
r = 1, . . . ,m− w

1−
m−w∑
s=1

Pr[R = s] r = m− w + 1.

The average of R is then

E[R] =
m−w+1∑

r=1

r Pr[R = r]

=
m−w∑
r=1

r Pr[R = r] + (m− w + 1) ·

(
1−

m−w∑
r=1

Pr[R = r]

)
.

For r = 1, . . . ,m− w, note that (see proof in Appendix A)(
1− w

m

)r−1 w

m
≤ Pr[R = r]. (13)
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Hence,

m−w∑
r=1

r Pr[R = r] + (m− w + 1) ·

(
1−

m−w∑
r=1

Pr[R = r]

)

≤
m−w∑
r=1

r

(
Pr[R = r]−

[
Pr[R = r]−

(
1− w

m

)r−1 w

m

])

+ (m− w + 1)

(
1−

m−w∑
r=1

(
Pr[R = r]−

[
Pr[R = r]−

(
1− w

m

)r−1 w

m

]))

=
m−w∑
r=1

r
(

1− w

m

)r−1 w

m
+ (m− w + 1)

(
1−

m−w∑
r=1

r
(

1− w

m

)r−1 w

m

)

=
m−w∑
r=1

r
(

1− w

m

)r−1 w

m
+ (m− w + 1)

∞∑
r=m−w+1

(
1− w

m

)r−1 w

m

≤
m−w∑
r=1

r
(

1− w

m

)r−1 w

m
+

∞∑
r=m−w+1

r
(

1− w

m

)r−1 w

m

=
∞∑
r=1

r
(

1− w

m

)r−1 w

m
=

m

w

The proof uses the fact that
(
1− w

m

)r−1 w
m

defines the probability mass
function and

∞∑
r=1

r
(

1− w

m

)r−1 m
w

defines the expected value of a geometric random variable with parameter
w/m, support {1, 2, 3, . . .} and mean m/w.

Similarly to Algorithm 3, it is possible to derive an algorithm for the
asymmetric case from the k-point algorithm (Algorithm 2). The following
can be concluded.

Theorem 5. Let us assume that m is an odd integer and w is the number
of channels that two users have in common, 1 ≤ w ≤ m. The k-point-
asymmetric algorithm accomplishes rendezvous in at most (m−w+ 1) · (m−
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1)/2 steps and with a
⌈

m2

w(2k+2)

⌉
expected number of steps, asymptotically in

m.

The proof is similar to the one of Theorem 4. It is omitted.
For the multiple-user case (asymmetric or symmetric), pairwise rendezvous

is repeatedly applied to make global rendezvous. We adapt an idea origi-
nally presented by Lin et al. [11, 12]. When two users i = 1, 2 succeed to
rendezvous, they exchange their parameters ci,2j−1 and ci,2j, j in 1, 2, . . . , k.
For j in 1, 2, . . . , k, the smallest channel number is adopted by both users. In
the sequel, the two users scan the same way. In the multiple-user case, this
is done repeatedly, pairwise, until all secondary users scan the same way.

Theorem 6. Let n be the number of users, an integer greater than one.
Using the 2k-point-asymmetric algorithm (Algorithm 3), all users rendezvous

in at most dlog2 ne · (m−w + 1) · (m− 1) steps and with a
⌈
log2 n · m2

w(2k+1)

⌉
expected number of steps, asymptotically in m. Using the k-point-asymmetric
algorithm, all users make rendezvous in at most dlog2 ne·(m−w+1)·(m−1)/2

steps and with an
⌈
log2 n · m2

w(2k+2)

⌉
expected number of steps, asymptotically

in m.

Proof. The multiplier log2 n comes from the fact that in each round the
number of entities to rendezvous is divided by two.

6. Comparison of Algorithms

We assume that each user has two or more radios that can be used si-
multaneously to achieve rendezvous. From a quantitative point of view, fair
performance comparisons are possible with algorithms also making this as-
sumption. To the best of our knowledge not much work has been published
in that direction. Yu et al. [28] have conducted research in that direction, the
role-based parallel sequence (RPS) algorithm. At the end, we have four com-
parable algorithms: RPS, randomized, 2k-point and k-point. The ETTR is
an evaluation metric applicable to all. Let p be the smallest primer number
greater than or equal to m. Let k be the number of radios. Assuming, a
homogeneous cognitive radio network, i.e., all nodes have the same number
of radios, for the RPS algorithm the ETTR (also the maximum TTR) is⌈

p

k − 1

⌉
time slots. (14)
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Figure 5: ETTR (in time slots) for the RPS algorithm.

For the RPS algorithm, Figure 5 plots the ETTR for 10 to 100 channels and
two, four, eight and 16 radios. The ETTR for the randomized and k-point
algorithms are shown in Figures 1 and 4. Note that k-point is slightly better
than 2k-point (see Theorems 2 and 3). They are both better than RPS. The
randomized algorithm does better than all, when the number of radios is
greater than four.

7. Simulations

Simulations have been conducted in the OMNeT++ environment [30].
The boxplots of Figures 6 and 7 show the performance of the simulated k-
point algorithm. Along the x-axis, the number of channels (m) varies from
41 to 201. The y-axis corresponds to the TTR. The analytic ETTRs for the
RPS [28], k-point and randomized algorithms are also plotted. The goal is
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Figure 6: Boxplots of performance results obtained with the OMNeT++ simulations of
the k-point algorithm for two and four radios. Curves depict the analytic ETTR for the
RPS [28], k-point and randomized algorithms.
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Figure 7: Boxplots of performance results obtained with the OMNeT++ simulations of
the k-point algorithm for eight and 16 radios. Curves depict the analytic ETTR for the
RPS [28], k-point and randomized algorithms.
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to compare the simulation results with the ETTR of the models discussed in
Sections 2, 3 and 4.

Each boxplot describes the statistical dispersion of the data. For each
value of number of channels, the ranked data is divided into four equal groups.
Each group, comprises a quarter of the data. They are delimited by three
values called quartiles. The box bottom indicates the first quartile. The
boxed horizontal bar corresponds to the second quartile, i.e., the median.
The box top indicates the third quartile. The lowest bar corresponds to
the lowest datum still within 1.5 of the interquartile range (i.e., difference
between the second and first quartiles) down of the first quartile. The high-
est bar corresponds to the highest datum still within 1.5 the interquartile
range (i.e., difference between the third and second quartiles) up of the third
quartile. Crosses correspond to extremities, i.e., outliars. The ETTR of the
k-point model discussed in Section 4 predicts results slightly better than the
simulation results.

The boxplots of Figures 8, 9 and 10 show the results of the simulated 2k-
point asymmetric algorithm. The upper-side boxplots are for a two user-eight
radios each (k is 8) case. The number of channel varies from 11 to 101. The
number of common channels (w) is one in Figure 8, three in Figure 9 and 10 in
Figure 10. The common channels are selected randomly. The non-common
channels are also selected randomly, without repetition. The bottom-side
boxplots are for a four user-eight radios each (k is 8) case. The number of
channel also varies from 11 to 101. The number of common channels (w)
is also one, three or 10. The band inside each boxplot corresponds to the
median. The ETTR, according to Theorem 6, is shown. The simulation
results match well the theoretical performance, in particular for the three
and ten common channel cases.

Figure 11 plots the simulation average TTR for the k-point symmetric
algorithm with multiple users, from two to 64. Each user has 16 radios.
The number of channels varies from 11 to 101. The number of common
channels (w) is 10. For multiple user and multiple radio cases, the simulation
results are better than what is predicted by the theory. Indeed, there are
opportunities for rendezvous across pairs that are not captured by Theorem 6.
For the multiple user case, we hypothesize function⌈

log2 n ·
m2

w(2k · log2 log2(n) + 1)

⌉
. (15)

With respect to the equation of Theorem 6, note the presence of term
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Figure 8: Boxplots depicting the performance results obtained with the OMNeT++ simu-
lations of the 2k-point-asymmetric algorithm. Upper-side boxplots are for the two user-one
channel in common case (k is 8). Bottom-side boxplots are for the four user-one channel
in common case (k is 8). Curves depict the analytic ETTR for the 2k-point-asymmetric
algorithm.
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Figure 9: Boxplots depicting the performance results obtained with the OMNeT++ sim-
ulations of the 2k-point-asymmetric algorithm. Upper-side boxplots are for the two user-
three channels in common case (k is 8). Bottom-side boxplots are for the four user-three
channels in common case (k is 8). Curves depict the analytic ETTR for the 2k-point-
asymmetric algorithm.
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Figure 10: Boxplots depicting the performance results obtained with the OMNeT++
simulations of the 2k-point-asymmetric algorithm. Upper-side boxplots are for the two
user-ten channels in common case (k is 8). Bottom-side boxplots are for the four user-ten
channels in common case (k is 8). Curves depict the analytic ETTR for the 2k-point-
asymmetric algorithm.
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Figure 11: Simulation average TTR for the k-point-asymmetric algorithm. There are
multiple users, from two to 64. Each user has 16 radios. The number of channels varies
from 11 to 101. The number of common channels (w) is 10.

log2 log2(n) in the denominator. Figure 12 shows, for the 64 user case, the
simulation average TTR, ETTR according to Theorem 6 and ETTR accord-
ing to Equation (15). The number of common channels (w) is 10. We ran
the Kolmogorov-Smirnov goodness-of-fit statistical test [31] on the sample
data and Equation (15). The statistical test yields to acceptance of the null
hypothesis that the distribution follows Equation (15), at the 5% level of
significance.

8. Conclusion

We have addressed the problem of secondary users with multiple radios
making rendezvous on any of the available channels. We have introduced
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Figure 12: TTR for the k-point-asymmetric algorithm. There are 64 users. Each user
has 16 radios. The number of channels varies from 11 to 101. The number of common
channels (w) is 10.

two bidirectional algorithms, the 2k-point and k-point procedures. We have
addressed the two-user case, with a common channel set (the symmetric
condition) or with different but overlapping channel sets (the asymmetric
condition). The results have been generalized to an arbitrary number of
secondary users. Equations have been developed to model the worst case
and expected performance. A performance model has also been developed
empirically using simulation data. Homogeneous secondary users have been
assumed, i.e., they all have the same number of radios. This assumption is
present for the purposes of the analysis. The algorithms work also in the
heterogeneous case, where secondary users might have different numbers of
radios.
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Appendix A.

Lemma 2. For m, r, w ∈ {1, 2, 3, . . . }, with w ≤ m and r ≤ m− w + 1,(
1− w

m

)r−1 w

m
≤

r∏
r>1,s=2

(
1− w

m− s + 2

)
· w

m− r + 1
.

Proof. The proof is by induction on r.
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Basis (r = 1).(
1− w
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Induction (r + 1, with 1 ≤ r ≤ m− w). The proof uses the fact that
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