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Abstract

A network is k-connected if it remains connected after the removal of any k − 1 of its
nodes. Assume that n sensors, modeled here as (omni)directional antennas, are dropped
randomly and independently with the uniform distribution on the interior of a unit length
segment or a unit square. We derive sufficient conditions on the beam width of directional
antennas so that the energy consumption required to maintain k-connectivity of the re-
sulting network of sensors is lower when using directional than when using omnidirectional
antennas. Our theoretical bounds are shown by experiment to be accurate under most
circumstances. For the case of directional antennae, we provide simple algorithms for
setting up a k-connected network requiring low energy.

1 Introduction

Communications networks are eliminating the barriers of distance and time by providing
rapid access to information. New sensor systems currently under development add to these
characteristics by providing the ability to function, autonomously, in unusually extreme and
complex environments. They also have numerous applications in tele-medicine, transporta-
tion, tracking endangered species, detecting toxic agents, as well as monitoring the security
of civil and engineering infrastructures.

Sensors are low power communication and sensing devices that can be embedded in the
physical world (see Kahn et al [8], Sohrabi et al [21], Estrin et al [5]). Large scale sensor
networks are formed by sensors that can be automatically configured after being dropped
over a given region. It is expected that the cost of such devices will drop significantly in the
near future (see [14], Agre et al [1], and Warneke et al [24]). Sensor nodes enable autonomy,
self-configurability, and self-awareness, in the sense that they can assemble themselves auto-
matically, adapt dynamically to failures, manage movement, and react to changes in network
requirements. However, malfunctioning of individual sensors may well lead to operational
failures resulting either in a disconnected network or failing to monitor a certain subregion.
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Our paper addresses the problem of comparing the energy consumption between networks
of omnidirectional and directional sensors under the assumption of maintaining network con-
nectivity. Assume n sensors are dropped randomly and independently with the uniform
distribution over a region (which here we consider either a unit length segment or a unit
square). A network is k-connected if it remains connected after the removal of any k−1 of its
nodes. We investigate the impact of the size of the reachability radius of the sensors (given as
a function of the total number n of sensors and the number k of faults) on the k-connectivity
of the sensor system. We use this analysis to compare the energy consumption required for the
k-connectivity of the resulting sensor network when using omnidirectional versus directional
sensors. Our results show that significant savings are possible when directional antennae are
used over omni-directional antennae, assuming the beam width of the directional antennae is
sufficiently small. We compute theoretical bounds on the maximum beam width allowable in
order to save energy and compare our theoretical results to experimentally derived bounds.
As part of the derivation of our upper bound for directional antennae, we present simple
algorithms for achieving k-connectivity in sensor networks.

1.1 Model of sensors

We consider two types of antennas: omnidirectional and directional. The former transmit
their signal over a 360 degree angle and, for the purposes of this paper, any sensor within the
reachability radius of this sensor will receive the signal. The latter are directional antennas
that can be aimed and have a given beam width α. They can be thought of as either being
on a “swivel” that can be oriented towards a target or equivalently that each such sensor has
multiple antennas each occupying a sector with beam width α so as to cover a 360 degree angle
(in fact d2π/αe of these antennas would suffice). However, the sensor does not necessarily
have to activate all these antennas at the same time. Instead, it will aim at a neighboring
“target region or node” by activating the appropriate antenna so as to cover a region in a
given direction.

1.2 Energy consumption

In any wireless network signals must be transmitted and received with sufficient strength in
order to be properly detected and interpreted. For any kind of unguided, wireless media
the signal disperses and falls off with distance over the transmission medium. Although
attenuation is in general a complex function of the distance and the makeup of the atmosphere,
a significant cause of signal degradation is simply free space loss which is due to the fact that
the signal spreads over an ever larger area. For an ideal isotropic antenna free space loss is

measured as the ratio of the transmitted to received power and is equal to (4πd)2

λ2 , where λ is
the carrier wavelength, and d is the propagation distance between antennas. In particular,
the energy required by an antenna to reach all hosts within its radius is proportional to the
area covered. Thus, with a reachability radius r an omnidirectional antenna will consume
power proportional to πr2 (the area of a circle with radius r) while a directional antenna with
beam width α radians will consume power proportional to α

2 r2, whereby we assume that the
signal is transmitted over the primary lobe and the power consumed by the remaining lobes
is negligible. For additional information on antenna performance see Ramanathan [18] and
on antenna theory see Balanis [2].
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1.3 Results of the paper

The core of the paper is divided into two sections. First, in Section 2 we consider the case
where the sensors are dropped on a unit length line segment. In Section 3 we consider the
case where the sensors are dropped on a unit square. In both cases first we provide a sensor
orientation algorithm and subsequently we study the energy consumption of the resulting
sensor network. We also give a sufficient condition on the beam width of the antenna so that
directional sensors consume less energy to achieve the same connectivity of the resulting sensor
network. Table 1 summarizes our theoretical results. In Section 4 we provide experimental
analysis.

Threshold beam width

Unit Segment π

2 ·
(

ln n+k ln ln n+ln(k!)−c

ln n+(2k+1) ln lnn+c

)2

Unit Square 2
5(k+1) ·

(

ln n+k ln ln n+ln(k!)−c

ln n+k ln ln n+c

)

Table 1: For the threshold value of the beam width indicated in the right column the energy
consumption of a sensor network of n directional sensors is below the energy consumption
of a sensor network of n omnidirectional sensors so as to achieve (k + 1)-connectivity with
probability at least e−e

−c − e−e
c

.

1.4 Related work and preliminaries

Directional antennas have not been explored widely in the context of ad-hoc networks. Some
recent papers exploring multiple beam antennas in order to increase throughput, and reduce
delay and routing overhead include [9, 13, 18, 22]. To date, however, we are not aware of
any work that has considered a comparison of the energy efficiency of omnidirectional versus
directional antennas with respect to connectivity properties of the network. Related to our
work is the paper of Shakkottai et al [20] which addresses coverage and connectivity for a
restricted model of omnidirectional sensors occupying the vertices of a unit square grid and
to the paper of Kranakis et al [10] which investigates the more general model of directional
sensors with given beam width occupying arbitrary positions (as opposed to grid points) in
the interior of the unit square.

Useful for our analysis is the coupon collector’s problem and its extensions. In particular,
an extension of the coupon collectors problem is that of determining the threshold for the
number (denoted by X (k)) of selections (coupons) required in order to collect at least k + 1
copies of each coupon type. It is well-known (see Motwani et al. [12][Exercise 3.11]) that the
sharp threshold is centered at n(lnn + k ln lnn), i.e., for any integer k ≥ 0 and constant c,

lim
n→∞

Pr[X(k) > n(lnn + k ln lnn + c)] = e−e−c

. (1)

It is useful to note for c > 0 large enough the term e−e
−c

in the righthand side of Equation 1
is arbitrarily close to 1 and for c < 0 large enough it is arbitrarily close to 0.

Valuable for our theoretical analysis are also the studies on thresholds for the connectivity
and minimum node degree, as well as general thresholds for monotone properties in geometric
disk graphs that can be found in the work of Penrose [15, 16, 17]. Related bounds can be
found in [6, 7, 19, 23]
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2 Sensors on a Unit Length Line Segment

In this section we limit our region to the unit length segment. We consider (k+1)-connectivity
and contrast the energy consumption of omnidirectional versus directional antennas. For
clarity of exposition, we separate the connectivity analysis for omnidirectional and directional
antennas.

2.1 Omnidirectional sensors

Assume that n omnidirectional sensors are dropped randomly and independently with the
uniform distribution on the interior of a unit segment. For any integer k ≥ 1 and real number
constant c let the sensors have identical radius r, given by the formula

r =
lnn + k ln lnn + ln(k!) − c

n
. (2)

The main result of Penrose [15][Theorems 1.1 and 1.2] states that for the toroidal distance

metric on a unit segment and the radius given by Identity 2

limn→∞ Pr[network is (k + 1)-connected] = e−ec

. (3)

The toroidal distance metric differs from the usual distance metric on a unit segment only
in the wraparound boundary effects. Therefore Formula 3 gives an upper bound on the
probability of achieving (k+1)-connectivity on a unit segment with the usual distance metric.
Therefore we have the following theorem.

Theorem 1 Consider omnidirectional antennas, with reachability radius r given by For-

mula 2, and suppose that k ≥ 0 is an integer and c > 0 is a real. Assume n omnidirec-

tional antennas are dropped randomly and independently with the uniform distribution on the

interior of a unit segment. Then

limn→∞ Pr[network is (k + 1)-connected] ≤ e−ec

. (4)

Thus, for the radius chosen by Formula 2 the network is (k + 1)-connected with probability
as indicated by Equation 4.

2.2 Directional sensors

Consider the case of directional sensors each with a single antennae of beam width α that
may be oriented in any direction. (We note that in the case of multiple antennae, an energy
saving is trivially possible for any beam width by using two opposing antennae that cover the
segment using the same radius as required by the omnidirectional case.) It is fairly easy to
show that by aiming alternately k + 1 antennae to the right along the segment followed by
k + 1 antennae to the left and insuring that each sensor reaches at least 2k + 2 other sensors,
the resulting network is k-connected. For each sensor, we choose the radius to be

r = 2 · lnn + (2k + 1) ln lnn + c

n
(5)

and partition the unit interval into 2
r

subintervals each of length r

2 . We must aim their beam
in such a way that k-connectivity of the resulting network is guaranteed. Using Equation 1,
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Subinterval

rightleft

Figure 1: Alternating the beam direction of the sensors from one subinterval to the next.

it is easy to establish that each subinterval contains 2k + 2 sensors with probability at least
e−e

−c

. Next we divide the sensors in each subinterval into two (approximately) equal size
parts: the leftmost half and the rightmost half (see Figure 1). For each subinterval we direct
the leftmost half of the sensors (at least k + 1) to the right and the rightmost half of the
sensors (also at least k + 1) to the left. We can prove the following theorem.

Theorem 2 Consider directional antennas with given beam width α, reachability radius r
given by Formula 5, and suppose that k ≥ 0 is an integer and c > 0 is a real. Assume n
directional antennas are dropped randomly and independently with the uniform distribution

on the interior of a unit length segment. Then

lim
n→∞

Pr[network is (k + 1)-connected] ≥ e−e
−c

. (6)

2.3 Comparison of energy consumption

Omnidirectional sensors transmit the signal over an angle 2π. In order to achieve (k + 1)-

connectivity the resulting energy consumption E (k)
omni of the network satisfies

E (k)
omni

≥ n · π ·
(

lnn + k ln lnn + ln(k!) − c

n

)2

,

asymptotically in n with probability at least 1−e−ec

. This can be contrasted with the energy

consumption E (k)
dire required to achieve k + 1-connectivity of a network of directional sensors

with beam width α (measured in radians). In particular, E (k)
dire satisfies

E (k)
dire

≤ n · α

2
·
(

2 · lnn + (2k + 1) ln lnn + c

n

)2

,

asymptotically in n with probability at least e−e−c

. A simple calculation yields that asymp-
totically in n if

n · α

2
·
(

2 · lnn + (2k + 1) ln lnn + c

n

)2

≤ n · π ·
(

lnn + k ln lnn + ln(k!) − c

n

)2

then E (k)
dire ≤ E (k)

omni. We get the following result.

Theorem 3 Consider an experiment in which n sensors are dropped randomly and indepen-

dently in the interior of a unit length segment. Suppose that k ≥ 0 is an integer and c > 0 is

a real. Then

α ≤ 2π ·
(

lnn + k ln lnn + ln(k!) − c

lnn + (2k + 1) ln lnn + c

)2

(7)
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is a sufficient condition so that E (k)
dire ≤ E (k)

omni asymptotically in n with probability at least

e−e
−c − e−e

c

.

3 Sensors on a Unit Square

In this section we limit our region to the unit square. We consider (k + 1)-connectivity and
contrast the energy consumption of omnidirectional versus directional antennas. We consider
connectivity separately for omnidirectional and directional antennas.

3.1 Omnidirectional sensors

Assume that n omnidirectional sensors are dropped randomly and independently with the
uniform distribution on the interior of a unit square. For any integer k ≥ 0 and real number
constant c let the sensors have identical radius r, given by the formula

r =

√

lnn + k ln lnn + ln(k!) − c

nπ
. (8)

The main result of Penrose [15][Theorems 1.1 and 1.2] states that for the toroidal distance

metric on a unit square and the radius given by Identity 8

limn→∞ Pr[network is (k + 1)-connected] = e−ec

. (9)

The toroidal distance metric differs from the usual distance metric on a unit square only in the
wraparound boundary effects. Therefore Formula 9 gives an upper bound on the probability
of achieving (k + 1)-connectivity on a unit square with the usual distance metric. Therefore
we have the following theorem.

Theorem 4 Consider omnidirectional antennas, with reachability radius r given by For-

mula 8, and suppose that k ≥ 0 is an integer and c > 0 is a real. Assume n omnidirec-

tional antennas are dropped randomly and independently with the uniform distribution on the

interior of a unit square. Then

limn→∞ Pr[network is (k + 1)-connected] ≤ e−ec

. (10)

Thus, for the radius chosen by Formula 8 the network is (k + 1)-connected with probability
as indicated by Equation 10.

3.2 Directional sensors

Consider the case of directional sensors with k + 1 beams, where k ≥ 0 is an integer. Fix k
and a constant c > 0. Partition the unit square into 1

r2 subsquares or blocks each of side r,
where

r =

√

lnn + k ln lnn + c

n
. (11)

Let the reachability radius r′ of the directional sensors be equal to the length of the diagonal
of a rectangle with dimensions r × (2r) (see Figure 2), i.e.,

r′ =

√

5(ln n + k ln lnn + c)

n
= r

√
5. (12)
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Let N (k) be the random variable that counts the number of sensors to be dropped so that
each subsquare contains k + 1 sensors. In view of Identity 1,

lim
n→∞

Pr

[

N (k) >
1

r2

(

ln

(

1

r2

)

+ k ln ln

(

1

r2

)

+ c

)]

= e−e−c

. (13)

Now assume that n sensors each of radius r (given in Equation 11) are dropped on the interior
of the unit square. Since n > 1/r2, we have that

n =
n

lnn + k ln lnn + c
· (ln n + k ln lnn + c) >

1

r2

(

ln

(

1

r2

)

+ k ln ln

(

1

r2

)

+ c

)

.

By Equation 1 we have that each subsquare will have k + 1 sensors with probability at least
e−e

−c

. Now we must provide an “antenna orientation” algorithm to direct the sensor beams
in such a way that connectivity in the unit square is guaranteed.

Number the sensors in a given square 1, . . . , t+1. (Assume sensors have unique identities
and so they can order themselves. This set up phase can be done using broadcast in all
directions.) For i = 1, . . . , t +1 the sensors numbered i in each square form themselves into a
hamiltonian cycle that visits every square using one of their k + 1 antennae. Sensor i in each
square then uses its k remaining antennae to point at sensor j 6= i in its square. We claim
the result is k + 1-connected. Say sensor i in block B wants to talk to sensor j in block C.
If k sensors fail, there is still a hamiltonian cycle (say nodes numbered m) that is completely
alive. Node i sends its message to node m in block B, node m in block B sends the message
to node m in block C, which in turn sends it to node j in block C. Therefore the network is
(k + 1)-connected. Two important points are the following

1. Some blocks have more than k sensors. These sensors can be distributed arbitrarily
among the cycles.

2. The longest any antennae has to reach is r
√

5, where r is the side length required to
have k + 1 nodes per square. (Note: in the worst case an antennae must reach across
the diagonal of a 2r by r rectangle.)

r r

r

r’

α

Figure 2: The radius r′ of the directional sensors is determined by the geometry of two adjacent

subsquares. in particular it must be chosen so that r′ ≥ r
√

5.

In particular, regardless of the beam width, the resulting system of directional antennas must
be k + 1-connected with high probability. We can prove the following theorem.

Theorem 5 Consider directional antennas with given beam width α, reachability radius r
given by Formula 12, and suppose that k ≥ 0 is an integer and c > 0 is a real. Assume n
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directional antennas are dropped randomly and independently with the uniform distribution

on the interior of a unit square. Then

lim
n→∞

Pr[network is (k + 1)-connected] ≥ e−e−c

. (14)

We note that if we assume that the nodes have unique identities (e.g., if they can compute
their geographic location through a GPS system) then the algorithm in Theorem 5 can be
implemented fairly easily in a distributed manner. We further note that by using a small
number of extra antennae aimed at sensors in the other adjacent subsquares can lead to an
improvement in the diameter of the resulting sensor system from approximately n/k to

√

n/k.

3.3 Comparison of energy efficiency

In this section we compare the energy consumption of a sensor network of n omnidirec-

tional versus n directional sensors to attain (k + 1)-connectivity. Let E (k)
omni and E (k)

dire be the
energy consumption in the omnidirectional and directional case respectively, to attain (k+1)-
connectivity.

Omnidirectional sensors transmit the signal over an angle 2π. In order to achieve (k +1)-
connectivity n omnidirectional sensors are necessary and the resulting energy consumption of
the network satisfies

E (k)
omni

≥ n · π · lnn + k ln lnn + ln(k!) − c

nπ
,

asymptotically in n with probability at least 1−e−e
c

. This can be contrasted with the energy

consumption E (k)
dire of a network of directional sensors with beam width α (measured in radians)

which may transmit the signal over an angle α. In this case, E (k)
dire satisfies

E (k)
dire

≤ n(k + 1) · α

2
· 5(ln n + k ln lnn + c)

n
,

asymptotically in n with probability at least e−e−c

. It is clear that, with high probability
asymptotically in n if

5(k + 1)α

2
· (lnn + k ln lnn + c) ≤ lnn + k ln lnn + ln(k!) − c

then E (k)
dire ≤ E (k)

omni. A simple calculation yields the following theorem comparing the energy
consumption of a sensor network of n omnidirectional versus n directional sensors to attain
(k + 1)-connectivity.

Theorem 6 Consider an experiment in which n sensors are dropped randomly and indepen-

dently in the interior of a unit square. Assume k ≥ 0 is an integer and c > 0 is a real.

Then

α ≤ 2

5(k + 1)
·
(

lnn + k ln lnn + ln(k!) − c

lnn + k ln lnn + c

)

(15)

is a sufficient condition so that E (k)
dire ≤ E (k)

omni asymptotically in n with probability at least

e−e
−c − e−e

c

.
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4 Experimental Results

The theoretical results presented above, while providing a true bound on α, are based in
part upon approximations and hold only asymptotically in n. In order to get an idea of how
accurate our estimates are we provide the results of some simulations we performed on our
simple model.

For both the one dimensional and two dimensional cases we considered values of k ranging
from 1 to 10 and values of n ranging from 100 to 1000 by 100. Figure 3 depicts simulation
results for unit segments. Figure 4 depicts simulation results for unit squares. Each experi-
ment consisted of dropping n sensors at random on either the unit segment or the unit square.
For a given k, a lower bound on the radius required to achieve k-connectivity for omnidirec-
tional antennae was obtained by finding the distance to the k-th nearest neighbor and an
upper bound on the radius required to achieve k-connectivity using directional antennae was
obtained using the algorithms described above. Each experiment was repeated 10,000 times
and the average of all 10,000 runs along with error estimates were reported. The energy
requirements in each case were computed using the model above and the ratios of the energy
were plotted and compared to the theoretical result. We present the results of plotting α
(the maximum beam width allowable to achieve energy savings) versus n for k = 5 as well as
plotting α versus k for n = 1000. Plots for the other values of k and n are similar.

We observe that the theoretical bounds predict the shape of the curves quite well although
for small values of n and k they significantly underestimate the value of α sufficient to ensure
lower energy for the directional case. For the two dimensional case, we see that the theoretical
curve approximates the experimental results quite well as k increases. While the theoretical
predictions should improve in accuracy as n increases, it seems clear that a gap will always
exist. We suspect that this is due to approximations made in our upper bounds for the
directional case that may be improved using a better analysis.
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