

Chapter 10

Shared Data

What is in This Chapter ?
This chapter discusses the notion of sharing data in your programs. It explains situations in
which sharing of data can be useful to simplify your program and be memory efficient. The
chapter also explains how sharing of data is sometimes necessary in order for your program to
run and then gives an example showing potentially unpleasant consequences of not being
careful when dealing with shared data.

COMP1405 – Shared Data Fall 2015

 - 308 -

 10.1 Sharing Data Can Be Useful

Recall in our discussion of variables that a variable is bound to (i.e., attached to) a value when
we assign something to it using the = operator.

x = 100;
name = "Bob";

When we create our own data structures (i.e., objects) we need to remember that the data that
makes up the object (i.e., the object's attributes) is stored in the computer's memory. The
object itself is simply just a reference (i.e., a pointer) to the location in memory where the
object's attributes are actually being stored. Each object created is a unique reference (i.e.,
memory location in the computer's memory).

Consider creating two ball objects as
follows:

Ball aBall;
Ball anotherBall;

aBall = new Ball();
anotherBall = new Ball();

Since each ball is stored in a different
memory location, each has its own set of
unique attribute values. That is, each ball
has its own (x,y) location, direction and
speed.

Sometimes, however, we can end up in a
situation in which two balls share the same
memory location. Consider adding another
ball variable as follows:

Ball bBall;

bBall = aBall;

Now, bBall and aBall are actually references to the same object ... that is ... they are pointing
to the same memory location and therefore share the same attributes.

Having two objects share the same memory can be advantageous
since they can share the same information together, using up less
memory space. For example, consider a "family car" in which many
members of the same family drive the exact same vehicle, thereby
reducing the need to buy another car and saving space in the
laneway.

COMP1405 – Shared Data Fall 2015

 - 309 -

Of course, sharing does have some disadvantages. For example, if someone borrows the car
and brings it back with no gasoline, then it affects the next person
who will use the car. Also, the seat and mirrors may all need to
be adjusted for the next driver. Worse yet, if one person in the
family crashes the car, then the car is ruined for everyone.

When programming, it is important to understand when data
structures are being shared so that efficient programs can be
written, while ensuring that the data from one object does not
interfere with the data from other objects unexpectedly.

Example:

Consider simulating a swarm of insect-like robots that are attracted towards a beacon such as
a light source. We can define a beacon as having a particular (x,y) location on the window
and perhaps a randomly-chosen color:

import java.awt.Color;

public class Beacon {
 public static final int RADIUS = 15; // The radius of the beacon (in pixels)

 int x, y; // location of the beacon at any time
 Color col; // color of the beacon

 public Beacon(int bx, int by) {
 x = bx;
 y = by;
 col = new Color(55 + (int)(Math.random()*200),
 55 + (int)(Math.random()*200),
 55 + (int)(Math.random()*200));
 }
}

Now to simulate the robots, let us define a robot as having an (x, y) location, a direction and a
speed. We will also assign a Beacon to each robot to be the particular location to head
towards. The definition is very similar to the Ball data structure that we defined previously:

public class Robot {
 public static final int RADIUS = 5; // The radius of the robot (in pixels)

 int x, y; // location of the robot at any time
 float direction; // direction of the robot at any time
 float speed; // the robot’s speed
 Beacon beacon; // the beacon to head towards

 public Robot(int rx, int ry) {
 x = rx; y = ry;
 direction = (float)(Math.random()*Math.PI*2); // a random direction
 speed = 3 + (float)(Math.random()*4); // a random speed from 3 to 6
 beacon = null; // not set yet
 }
}

COMP1405 – Shared Data Fall 2015

 - 310 -

Notice that each robot stores their own Beacon object (i.e., their own place to head towards).

Here is a JPanel that we will use to display the robots and their beacons. It is very similar to
the BallPanel class in our BallSimulation. Do not worry about the actual drawing code.

import java.awt.*;
import javax.swing.*;

// This code is responsible for displaying the Robots in their environment
public class RobotEnvironmentPanel extends JPanel {
 public static final int WIDTH = 800;
 public static final int HEIGHT = 600;

 private static Robot[] robots;

 public RobotEnvironmentPanel(Robot[] rArray) {
 robots = rArray;
 setPreferredSize(new Dimension(WIDTH, HEIGHT));
 }

 // Display the image
 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Display the beacons first
 for (int i=0; i<robots.length; i++) {
 g.setColor(robots[i].beacon.col); // Get the beacon from the robot
 g.fillOval(robots[i].beacon.x-Beacon.RADIUS,
 robots[i].beacon.y-Beacon.RADIUS,
 Beacon.RADIUS*2,
 Beacon.RADIUS*2);
 g.setColor(Color.BLACK);
 g.drawOval(robots[i].beacon.x-Beacon.RADIUS,
 robots[i].beacon.y-Beacon.RADIUS,
 Beacon.RADIUS*2,
 Beacon.RADIUS*2);
 }
 // Now display the robots
 for (int i=0; i<robots.length; i++) {
 // Display the robot
 g.setColor(robots[i].beacon.col); // Robot has same color as beacon
 g.fillOval(robots[i].x-Robot.RADIUS,
 robots[i].y-Robot.RADIUS,
 Robot.RADIUS*2,
 Robot.RADIUS*2);
 g.setColor(Color.BLACK);
 g.drawOval(robots[i].x-Robot.RADIUS,
 robots[i].y-Robot.RADIUS,
 Robot.RADIUS*2,
 Robot.RADIUS*2);
 }
 }
}

Notice how the Beacon.RADIUS and Robot.RADIUS constants are used in the drawing.
Also notice that the robot is drawn according to the color of the beacon that it is following.

COMP1405 – Shared Data Fall 2015

 - 311 -

Here is the main Simulation code:

import java.awt.*; // Needed for window and graphics (explained in COMP1406)
import javax.swing.*; // Needed for window and graphics (explained in COMP1406)

// This application simulates robots attracted to beacons in a window
public class RobotSimulation {
 // This variable stores the panel that displays the robots and beacons
 // (This is a topic discussed in COMP1406 course)
 public static RobotEnvironmentPanel envPanel;
 public static Robot[] robots; // array to hold robots

 public static void startSimulation() {
 while(true) {
 for (int i=0; i<robots.length; i++)
 move(robots[i]);
 envPanel.repaint();
 try { Thread.sleep(10); } catch(Exception e){};
 }
 }

 // Code for moving a robot towards its beacon
 public static void move(Robot r) {
 /* ... code has been left out ... described later ... */
 }

 // Create a window, add beacons and robots, then start simulating
 public static void main(String args[]) {
 // Make some robots with unique beacons
 robots = new Robot[10];
 for (int i=0; i<robots.length; i++) {
 robots[i] = new Robot(RobotEnvironmentPanel.WIDTH/2,
 RobotEnvironmentPanel.HEIGHT/2);
 robots[i].beacon = new Beacon((int)(Math.random() *
 RobotEnvironmentPanel.WIDTH),
 (int)(Math.random() *
 RobotEnvironmentPanel.HEIGHT));
 }

 JFrame frame = new JFrame("Robot Simulation");
 frame.add(envPanel = new RobotEnvironmentPanel(robots));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);

 startSimulation();
 }
}

Notice in the main() method that an array of 10 robots is created and each robot starts at the
center of the window. Each robot is given a new beacon whose location is chosen randomly.
The simulation itself is simply an infinite loop in which each robot is moved forward a bit one at
a time and then the window is repainted and a small 10ms delay is used to slow down the
simulation.

The code for moving the robot has been left out, but will be described later. For now, assume
though that it steers the robot towards its beacon location.

COMP1405 – Shared Data Fall 2015

 - 312 -

Consider drawing the array of robots and their beacons as follows ... notice how each robot
has its own Beacon object, allowing them all to head in different directions:

In our code, each robot has its own unique beacon to head towards. But now, we will adjust
the code to allow multiple robots to head towards the same beacon, thereby causing a swarm-
like simulation. We will alter the code so that instead of having a unique beacon for each
robot, we will generate only a few beacons and have the robots share the same exact Beacon
object as their target destination. Here is how the data structure will change:

There will be less Beacon objects created since multiple robots will share the same one. Is
there any advantage to having less/shared Beacons ?

COMP1405 – Shared Data Fall 2015

 - 313 -

One important advantage to having shared beacons like this is that memory storage
requirements are reduced. Imagine for example, that it takes 4 bytes each to store the x and
y values of the beacon location and an additional 3 bytes to store the color. That means,
each beacon requires a minimum of 11 bytes of storage. If we simulated N robots each storing
their own unique beacons, this would require ((11+4) x N) bytes of storage in memory just to
store the beacons (the extra 4 bytes storing the pointer to the beacon in the memory).

Now, assume that we create M beacons. This would require (11 x M) bytes of storage. If
each robot now kept only a single pointer (i.e., 4 bytes) to one of the M beacons, the total
storage requirements for the beacon storage would be ((4 x N) + (11 x M)) bytes.

This seems a little abstract. Assume then that we have 5 beacons and 1000 robots. Then
this works out to be 15,000 bytes for the non-shared beacon version and 4,055 bytes for the
shared beacon version. That is a significant difference of less than 1/3 of the storage space
requirements!! This is often the reason for having shared data and shared objects ... to
reduce storage space requirements for the program.

However, in addition to reduced storage space, there is another important advantage to having
shared beacons. Consider having just 5 beacon locations, but over 100 robots who all head
to one of the 5 beacons. If a beacon's location was to change (e.g., manually moved by the
user), we would simply need to alter the (x,y) location of the single Beacon object, and since
all same-swarm robots share this same Beacon object in memory, they will all be able to
access (i.e., when heading towards) the newly changed (x,y) location immediately. Therefore,
by changing a single variable (e.g., a beacon's x location), we are automatically modifying the
behavior of multiple robots. This allows us to simulate the objects efficiently.

Conversely, if we had used unique beacon objects with many overlapping at the same location
and then stored a unique (i.e., non-shared) beacon within each robot, it would be harder to
simulate. When a beacon changes locations, we would need to find all robot's that have
beacons that share that beacon location and update all of their x coordinates. This would be
a slower process since it would require us to loop through all robots, checking their beacons
for a match as to which ones the user is trying to move.

To verify this, consider altering the code to produce a newly-defined array of 5 beacons and
then adjust the robot's to choose one of these 5 beacons as their destination. First, we will
produce a new RoboEnvironmentPanel that will allow us to pass in beacons for display
purposes:

import java.awt.*;
import javax.swing.*;

// This code is responsible for displaying the Robots in their environment
public class RobotEnvironmentPanel2 extends JPanel {
 public static final int WIDTH = 800;
 public static final int HEIGHT = 600;

 private static Robot[] robots;
 private static Beacon[] beacons;

COMP1405 – Shared Data Fall 2015

 - 314 -

 public RobotEnvironmentPanel2(Robot[] rArray, Beacon[] bArray) {
 robots = rArray;
 beacons = bArray;
 setPreferredSize(new Dimension(WIDTH, HEIGHT));
 }

 // Display the image
 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Display the beacons first
 for (int i=0; i<beacons.length; i++) {
 g.setColor(beacons[i].col);
 g.fillOval(beacons[i].x-Beacon.RADIUS,
 beacons[i].y-Beacon.RADIUS,
 Beacon.RADIUS*2,
 Beacon.RADIUS*2);
 g.setColor(Color.BLACK);
 g.drawOval(beacons[i].x-Beacon.RADIUS,
 beacons[i].y-Beacon.RADIUS,
 Beacon.RADIUS*2,
 Beacon.RADIUS*2);
 }
 // Now display the robots
 for (int i=0; i<robots.length; i++) {
 g.setColor(robots[i].beacon.col);
 g.fillOval(robots[i].x-Robot.RADIUS,
 robots[i].y-Robot.RADIUS,
 Robot.RADIUS*2,
 Robot.RADIUS*2);
 g.setColor(Color.BLACK);
 g.drawOval(robots[i].x-Robot.RADIUS,
 robots[i].y-Robot.RADIUS,
 Robot.RADIUS*2,
 Robot.RADIUS*2);
 }
 }
}

Now, for the main RobotSimulation program, we will simply alter the main method to share
the beacons:

import java.awt.*; // Needed for window and graphics (explained in COMP1406)
import javax.swing.*; // Needed for window and graphics (explained in COMP1406)

// This application simulates robots attracted to beacons in a window
public class RobotSimulation2 {
 // This variable stores the panel that displays the robots and beacons
 // (This is a topic discussed in COMP1406 course)
 public static RobotEnvironmentPanel envPanel;

 public static Robot[] robots; // an array to hold the robots
 public static Beacon[] beacons; // an array to hold the beacons

 public static void startSimulation() {
 /* ... same code as before ... */
 }

COMP1405 – Shared Data Fall 2015

 - 315 -

 public static void move(Robot r) {
 /* ... same code as before ... */
 }

 // Create a window, add beacons and robots, then start simulating
 public static void main(String args[]) {
 // Make some beacons
 beacons = new Beacon[5];
 for (int i=0; i<beacons.length; i++) {
 beacons[i] = new Beacon((int)(Math.random() *
 RobotEnvironmentPanel2.WIDTH),
 (int)(Math.random() *
 RobotEnvironmentPanel2.HEIGHT));
 }
 // Make some robots with shared beacons
 robots = new Robot[1000];
 for (int i=0; i<robots.length; i++) {
 robots[i] = new Robot(RobotEnvironmentPanel2.WIDTH/2,
 RobotEnvironmentPanel2.HEIGHT/2);
 robots[i].beacon = beacons[(int)(Math.random()*beacons.length)];
 }

 JFrame frame = new JFrame("Robot Simulation");
 frame.add(envPanel = new RobotEnvironmentPanel2(robots));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);

 startSimulation();
 }
}

Notice now how each robot is assigned one of the 5
beacons at random. With 1000 robots, you can see
how they are grouped into 5 swarms now because
roughly 200 are assigned to each beacon.

For added enjoyment, we can add the following to
allow beacons to be grabbed and moved around on the
screen. Do not worry about understanding this code
... as it will be discussed in another course:

import java.awt.*; // Needed for window and graphics (explained in COMP1406)
import javax.swing.*; // Needed for window and graphics (explained in COMP1406)

// This application simulates robots attracted to beacons in a window
public class RobotSimulation3 {
 // This variable stores the panel that displays the robots and beacons
 // (This is a topic discussed in COMP1406 course)
 public static RobotEnvironmentPanel envPanel;

 public static Robot[] robots; // an array to hold the robots
 public static Beacon[] beacons; // an array to hold the beacons
 public static Beacon grabbed; // Beacon that user just grabbed

COMP1405 – Shared Data Fall 2015

 - 316 -

 public static void startSimulation() {
 /* ... same code as before ... */
 }
 public static void move(Robot r) {
 /* ... same code as before ... */
 }

 // Handle the pressing of the mouse button
 public static void handleMousePress(int mouseX, int mouseY) {
 for (int i=0; i<beacons.length; i++) {
 if (java.awt.geom.Point2D.distance(beacons[i].x, beacons[i].y,
 mouseX, mouseY) < Beacon.RADIUS) {
 grabbed = beacons[i];
 return;
 }
 }
 }

 // Handle the releasing of the mouse button
 public static void handleMouseRelease(int mouseX, int mouseY) {
 grabbed = null;
 }

 // Handle the dragging of the beacon
 public static void handleMouseDragged(int mouseX, int mouseY) {
 if (grabbed != null) {
 grabbed.x = mouseX;
 grabbed.y = mouseY;
 }
 }

 // Create a window, add beacons and robots, then start simulating
 public static void main(String args[]) {
 // Make some beacons
 beacons = new Beacon[5];
 for (int i=0; i<beacons.length; i++) {
 beacons[i] = new Beacon((int)(Math.random() *
 RobotEnvironmentPanel2.WIDTH),
 (int)(Math.random() *
 RobotEnvironmentPanel2.HEIGHT));
 }
 // Make some robots with shared beacons
 robots = new Robot[1000];
 for (int i=0; i<robots.length; i++) {
 robots[i] = new Robot(RobotEnvironmentPanel2.WIDTH/2,
 RobotEnvironmentPanel2.HEIGHT/2);
 robots[i].beacon = beacons[(int)(Math.random()*beacons.length)];
 }

 JFrame frame = new JFrame("Robot Simulation");
 frame.add(envPanel = new RobotEnvironmentPanel2(robots));

 // Plug in the methods that allow handling of the mouse events
 // Do not worry about this, event handling will be discussed in
 // a later course
 envPanel.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 handleMousePress(e.getX(), e.getY()); }
 public void mouseReleased(MouseEvent e) {
 handleMouseRelease(e.getX(), e.getY());

COMP1405 – Shared Data Fall 2015

 - 317 -

 }});
 envPanel.addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) {
 handleMouseDragged(e.getX(), e.getY());
 }});

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);

 startSimulation();
 }
}

As a beacon is moved around, you will see a subset of the robots following it around. Clearly,
by allowing robot's to share Beacon objects we gain the advantages of saving storage space
and also easy of updates when we change a beacon's location.

The only missing component of our code is the move() procedure...which is responsible for
moving the robot towards the beacon. Recall from our ball-moving example that to move a ball
(or robot) forward, we simply apply trigonometry using the robot's location and direction:

public static void move(Robot r) {
 r.x = r.x + (int)(r.speed * Math.cos(r.direction));
 r.y = r.y + (int)(r.speed * Math.sin(r.direction));
}

The code above simply moves the robot forward in its current direction. The harder part is to
determine and update the direction of the robot so that it heads towards the beacon location.
All we need to do is to look at the where the robot is heading and decide whether or not it
needs to turn right or left to get towards the beacon:

Above, (rx, ry) is the robot's current location and (r'x, r'y) would be the robot's next location if it
were to travel in its current direction without turning (for this next location we could simply use
the new value for r.x and r.y that we computed in our code above).

The beacon location is represented as (gx,gy). In order to determine whether or not the robot
should take a left or right turn to get to the beacon from its current direction, we can examine
the type of turn from (rx, ry) → (r'x, r'y) → (gx,gy). If this is a left turn, the robot should turn left.
If it is a right turn the robot should turn right. If it is a straight line, the robot will need to either
move straight ahead, or straight backwards (depending on where the beacon location is).

COMP1405 – Shared Data Fall 2015

 - 318 -

To determine the type of turn, we can make use of the cross
product of the vector from (rx, ry) → (r'x, r'y) and the vector
from (rx, ry) → (gx,gy). You may recall that the cross product
a X b is a vector that is perpendicular to the plane containing
the two vectors a and b. The cross product will either be
positive, negative or zero. You can visualize the cross
product by using the right-hand rule as shown in the picture
here.

If the cross product is positive, this indicates a left turn. If
negative, then a right turn. If the cross product is zero, then
there is no turn (i.e., the two vectors form an angle of 180°).

The cross product can be computed as follows:

crossProduct = (r'x - rx)(gy - ry) - (r'y - ry)(gx - rx)

So, we can just plug this into our program and check for the sign of the result. Once we
determine whether to turn left or right, we simply add some degree amount to the robot's
direction. If we use a large degree amount (e.g., 90°) then the robot will make only right-
angled turns ... not too realistic. If we use a smaller amount (e.g., 45°), then the robot will
make sharp turns and will orient towards the beacon quickly. Smaller amounts (e.g., 30° or
15°) will provide a more smooth motion. Very small amounts (e.g., 1°) will cause the robot to
always makes large arcing motions, taking a while to orient towards the beacon.

To make the swarm more realistic, instead of having a fixed turn amount, we could adjust it to
have a ±12.5% error as follows, given a desired turn amount of θ:

amountToTurn = θ + random(θ/4) - (θ/4)/2

As a result, here is the kind of movement pattern that a robot would produce for various values
of θ (note that the beacon location is not displayed, but is in the center if the window):

COMP1405 – Shared Data Fall 2015

 - 319 -

 As a result, here is the final move method:

public static void move(Robot r) {

 float nextX, nextY, crossProduct;

 nextX = r.x + (int)(r.speed*Math.cos(r.direction));
 nextY = r.y + (int)(r.speed*Math.sin(r.direction));

 crossProduct = (nextX - r.x)*(r.beacon.y - r.y)-
 (nextY - r.y)*(r.beacon.x - r.x);

 r.x = (int)nextX;
 r.y = (int)nextY;

 if (crossProduct < 0)
 r.direction -= (Robot.TURN_ANGLE + Math.random()*
 Robot.TURN_ANGLE/4 - (Robot.TURN_ANGLE/8))/180*Math.PI;
 else
 r.direction += (Robot.TURN_ANGLE + Math.random()*
 Robot.TURN_ANGLE/4 - (Robot.TURN_ANGLE/8))/180*Math.PI;
}

Here the Robot.TURN_ANGLE is a static constant in the Robot class:

 public static final int TURN_ANGLE = 15;

COMP1405 – Shared Data Fall 2015

 - 320 -

 10.2 When Shared Data is Necessary

In some cases, it is absolutely necessary to share data in order to have a working program.
Consider the area of computer animation. To animate something simple (i.e., 2D) in a
program, programmers often use what are called sprites.

A sprite is a 2D image that is integrated into a scene to form an
animated character.

Sprites are often displayed and animated by drawing a set of pictures in
sequence. Each of the individual pictures, called frames represent the
different "movements" of the object to be animated. So, by displaying these frames in
sequence, we achieve animation.

For example, consider a stick person walking. We can do this with only two frames and just
swap between them:

Frame 1

Frame 2

The animation, however, would have the undesirable characteristic of being very "jumpy", not
very smooth. The problem is that there is no smooth transition between the frames. We can
make a big improvement just by introducing one more picture and duplicating the 2nd frame
twice to produce a 4 frame sequence:

Frame 1

Frame 2

Frame 3

Frame 4

This animation would appear much smoother, but if we display the frames at the same rate,
the person would appear to walk much slower. Assuming that we display 1 frame every 1/4
second, the 2-frame case would take 1/2 second to complete a cycle while in the 4-frame
case, would take a full second. For the 4-frame case we can just reduce the inter-frame
display delay to 1/8 of a second and the speed will then appear to match the 2-frame case.
The number of frames that can be displayed in a second is known as the frame rate. So, by
using a delay of 1/8 seconds between frames, we have a frame rate for the animation of 8
frames per second (fps).

COMP1405 – Shared Data Fall 2015

 - 321 -

Example:

Consider a program that simulates birds flying across a
beach scene. To make this look somewhat realistic
(from a cartoon perspective), we would need to have
unique pictures (i.e., frames) to display that represent
the various "poses" of the bird as it flies.

We will make use of exactly 8 different poses (i.e.,
frames) for the birds as shown below. Each pose
must be stored in the folder that contains our code.

The indices below the images represent the frame
number:

0 1 2 3 4 5 6 7

We will need to maintain information for each bird in regards to its location on the screen, its
speed and perhaps which frame is being shown at any time. Here is how we can define such
a Bird data structure. Define the Bird class as follows:

public class Bird {
 float x, y; // bird's coordinate on the screen
 float speed; // bird's speed in pixel movements per frame
 java.awt.Image[] images; // frames/pictures of the bird in various poses
 int currentFrame; // current frame of the bird

 public Bird(float bx, float by) {
 x = bx;
 y = by;

 // Choose a random speed from 5 to 15 pixels/frame and random picture
 speed = (float)(Math.random()*10 + 5);
 currentFrame = (int)(Math.random()*8);

 // load up all 8 pictures for this bird
 images = new java.awt.Image[8]; // array to hold 8 pictures
 for (int i=1; i<=8; i++)
 images[i-1] = java.awt.Toolkit.getDefaultToolkit().
 createImage("Birdx" + i + ".gif");
 }
}

Here is the BirdPanel that will be used to display the birds with a beach background image.
You need not worry about understanding this. The code is quite similar to the code for
drawing the fire simulation, the balls and the robots.

COMP1405 – Shared Data Fall 2015

 - 322 -

import java.awt.*;
import javax.swing.*;

public class BirdPanel extends JPanel {
 public static final int WIDTH = 800;
 public static final int HEIGHT = 600;

 private static Image anImage;
 private static Bird[] birds;

 public BirdPanel(Bird[] b) {
 birds = b;
 anImage = Toolkit.getDefaultToolkit().createImage("beach.jpg");;
 setPreferredSize(new Dimension(WIDTH, HEIGHT));
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawImage(anImage, 0, 0, null);
 for (int i=0; i<birds.length; i++)
 g.drawImage(birds[i].images[birds[i].currentFrame],
 (int)birds[i].x, (int)birds[i].y, null);
 }
}

For the simulation, we can create an array of Bird objects and have them simply fly forwards.
The startSimulation() method is similar to our other simulation programs.

import java.awt.*;
import javax.swing.*;

// This application simulates birds flying in a window
public class BirdSimulation {
 public static BirdPanel birdPanel; // Panel to display the birds
 public static Bird[] birds; // an array to hold the birds

 public static void startSimulation() {
 while(true) {
 for (int i=0; i<birds.length; i++)
 move(birds[i]);
 birdPanel.repaint();
 try{ Thread.sleep(60); } catch(Exception e){};
 }
 }

 // Code for moving a bird forwards
 public static void move(Bird b) {
 // ... Discussed soon ... //
 }

 // Create a window, add birds, then start simulating
 public static void main(String args[]) {
 // Make some birds
 birds = new Bird[2000]; // an array to hold the birds
 for (int i=0; i<birds.length; i++) {
 birds[i] = new Bird((float)(Math.random()*BirdPanel.WIDTH),
 (float)(Math.random()*BirdPanel.HEIGHT/2));
 }

COMP1405 – Shared Data Fall 2015

 - 323 -

 JFrame frame = new JFrame("Bird Simulation");
 frame.add(birdPanel = new BirdPanel(birds));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack(); // Makes size according to panel's preference
 frame.setVisible(true);

 startSimulation();
 }
}

To animate the birds, we must now do two things: (1) Have them vary their images, and (2)
have them move horizontally.

The move() procedure must move the bird forward and this can be done simply by adding the
bird's speed to the x coordinate, making sure that when it reaches the right side of the window,
we cause a wraparound to the left side again. To do this, we simply set the x value to an
amount which is -width of the bird image so that the bird slowly flies back onto the window
again from the left.

To change the bird's image, we simply increment the currentFrame, making sure that when it
reaches 8, we set it back to 0 again ...using the modulus operator. Here is the code:

// Code for moving a bird forwards
public static void move(Bird b) {
 b.x = b.x + b.speed; // Move the bird 10 pixels forward

 if (b.x > BirdPanel.WIDTH)
 b.x = -102; // 102 is the width of the Bird image

 b.currentFrame = (b.currentFrame + 1) % 8;
}

Now the birds will appear to be flying nicely. Try changing the array to make 2500 birds.
Depending on your computer's memory ... the code may or may not run. My IDE crashed with
an error. What is the problem ?

The current code loads 8 images for each bird. Therefore, 2500 birds would require (2500 x 8
= 20,000) images to be loaded and stored in the program. However, it is easily seen that the
birds are all using the same 8 image files. Therefore, instead of having each bird store their
own images, it makes more sense to simply load the 8 images and have the birds "share" the
images.

We can make the images static instead of having them as instance variables. That way, the
single set of images is stored and shared by all Bird objects. Here is the code:

COMP1405 – Shared Data Fall 2015

 - 324 -

public class Bird {
 // Frames/pictures of the bird in various poses
 public static final java.awt.Image[] images = new java.awt.Image[8];

 float x, y; // bird's coordinate on the screen
 float speed; // bird's speed in pixel movements per frame
 int currentFrame; // current frame of the bird

 public Bird(float bx, float by) {
 x = bx;
 y = by;

 // Choose a random speed from 5 to 15 pixels/frame and random picture
 speed = (float)(Math.random()*10 + 5);
 currentFrame = (int)(Math.random()*8);

 // load up all 8 pictures for this bird
 for (int i=1; i<=8; i++)
 images[i-1] = java.awt.Toolkit.getDefaultToolkit().
 createImage("Birdx" + i + ".gif");
 }
}

Also, in our BirdPanel, we need to change this:

 g.drawImage(birds[i].images[birds[i].currentFrame],
 (int)birds[i].x, (int)birds[i].y, null);

 to this:

 g.drawImage(Bird.images[birds[i].currentFrame],
 (int)birds[i].x, (int)birds[i].y, null);

Now we can add 2500 birds no problem. In fact, we can add 50,000!

So in this example, we see that sharing is sometimes necessary in order to reduce memory
space requirements and have a running program. There are also examples in which sharing
is NOT even desired at all...

COMP1405 – Shared Data Fall 2015

 - 325 -

 10.3 Separating Shared Data Again

Example:

Even though sharing objects may be to our advantage, there are some
situations where we do not want shared objects. For example,
sometimes we need to make copies of objects and we would like the
copy to be a truly unique copy so that we can leave the original intact
and safe at all times. We may think of making photocopies of
important documents so that the original document can be stored away
safely.

Consider the following function which creates and returns a copy of a list of people:

public static Person[] makeCopy(Person[] aList) {
 Person[] theCopy = new Person[aList.length];

 for (int i=0; i<aList.length; i++)
 theCopy[i] = aList[i];

 return theCopy;
}

The code produces a new array containing the people from the original list. Consider testing
this function with an array of Person objects, which have a firstName, lastName, age, height
and retiredStatus as follows:

Person[] original = new Person[3];
original[0] = new Person("Hank", "Urchif", 21, 5.8, false);
original[1] = new Person("Holly", "Day", 32, 5.9, false);
original[2] = new Person("Bobby", "Pins", 87, 6.2, true);

Person[] copy = makeCopy(original);

Here is what we accomplish with this code …

COMP1405 – Shared Data Fall 2015

 - 326 -

Notice that when we add the Person objects to the copy, they are actually shared between the
two arrays. This is known as a shallow copy. The advantage is that we do not need to use
up additional memory space to store duplicate information for the copy. That is, we do not
need to store the first and last names twice (i.e., for the original and the copy) since they are
the same names. Normally this is not a problem when writing code as long as we know that
the items are shared.

We need to understand the consequences of having such shared data. Consider what
happens in the following example as we make changes to the copy:

Person[] original = new Person[3];
original[0] = new Person("Hank", "Urchif", 21, 5.8, false);
original[1] = new Person("Holly", "Day", 32, 5.9, false);
original[2] = new Person("Bobby", "Pins", 87, 6.2, true);

Person[] copy = makeCopy(original);

copy[0].firstName = "Steve";
copy[2] = new Person("April", "Rain", 15, 4.7, false);
copy[2].firstName = "Acid";

We are doing three things to the copy:

(1) changing a person's name,
(2) replacing one person entirely with a new one, and
(3) changing the new one's name.

Here is what happened:

COMP1405 – Shared Data Fall 2015

 - 327 -

When changing Hank's name in the copy to "Steve", the original list is modified as well since
the Person object, that both the original and copy lists were sharing, has now been altered.
This can have serious consequences in your program since you may end up with a part of your
code that unknowingly affects other parts of your program by modifying data structures that
were not meant to be changed.

Some modifications, however, can be made to the copy that do not affect the original. For
example, when replacing Bobby with the new person April in the copy, the original remains
unchanged since we are simply moving a "pointer" in the copy to a new memory location.
Then, when we replace April's name with "Acid", the original is not affected since nowhere
does it refer to that newly create Person object.

So you can see, by replacing, adding to or removing from a copied list, the original list remains
intact. However, when we access a shared object from the copy and go into it to make
changes to its attributes, then the original list will be affected.

To make a more thoroughly-separated copy, we could make what is known as a deep copy
of the list so that the Person objects are not shared between them (i.e., each list has their own
copies of the Person objects). To do this, we would need to make copies of the objects in the
lists. That means, we would need to create a new object for each item in the list and then
copy over all of the attributes so that they match the original objects.

COMP1405 – Shared Data Fall 2015

 - 328 -

Here is how we can modify the makeCopy function to accomplish this:

public static Person[] makeCopy(Person[] aList) {
 Person[] theCopy = new Person[aList.length];

 for (int i=0; i<aList.length; i++) {
 theCopy[i] = new Person();
 theCopy[i].firstName = aList[i].firstName;
 theCopy[i].lastName = aList[i].lastName;
 theCopy[i].age = aList[i].age;
 theCopy[i].height = aList[i].height;
 theCopy[i].retiredStatus = aList[i].retiredStatus;
 }
 return theCopy;
}

Notice that much more work is involved. The result for our test case would be as follows:

Notice that there are unique Person objects now and that changing the name of anyone in the
copy will not affect the original. You may notice though, that the Strings are still shared! That
means, if we altered any characters in one person's name in the copy, this would affect the
original (i.e., remember...replacing shared objects does not cause problems but modifying
shared objects does cause a problem).

COMP1405 – Shared Data Fall 2015

 - 329 -

Fortunately, in JAVA, it is not possible to modify characters in a String, so this would never be
a problem. However, to be safe, a truly deep copy can be made by copying these strings as
well by changing the following lines in the makeCopy function:

 theCopy[i].firstName = aList[i].firstName;
 theCopy[i].lastName = aList[i].lastName;

into these lines:

 theCopy[i].firstName = new String(aList[i].firstName);
 theCopy[i].lastName = new String(aList[i].lastName);

which will make unique Strings with the same characters. Then, we would have a true copy:

In fact, in order to make a truly deep copy, we would need to ensure that we thoroughly copy
each of the attributes of all objects. That is, if an object is made up of other objects ... we
must go into those other objects and make deep copies of them as well.

