
 

Chapter 1 

Programming Basics 
 

 

What is in This Chapter ? 
This first chapter gives a very brief introduction to what computer science is all about and what 
it means to program.   It then discusses how the JAVA programming language basically works 
as well as how to get a simple program up and running.   Also, since all programs should have 
some kind of input and output, we look here at how to write programs that display information 
and get information from the user.  The chapter then discusses JAVA's primitive data types 
and how they are used as variable types.  The Math class is also discussed, which allows for 
scientific calculations.  The chapter then concludes with information on how to format your 
output nicely. 
 
 

 
 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 5 - 

 

 1.1 What is Computer Science ? 

 
Computers are used just about everywhere in our society: 

• Communications:   internet, e-mail, cell phones 
• Word Processing:   typing/printing documents 
• Business Applications:  accounting, spreadsheets 
• Entertainment:   games, multimedia applications 
• Database Management:  police records, stock market 
• Engineering Applications:  scientific analysis, simulations 
• Manufacturing:   CAD/CAM, robotics, assembly 
• ... many more ... 

A computer is defined as follows (Wikipedia): 
 

A  computer is a programmable machine that receives input, stores  
and manipulates data, and provides output in a useful format. 

 
In regards to today’s computers, the “machine” part of the computer 
is called the hardware, while the “programmable” part is called the 
software. 
 
Since computers are used everywhere, you can get involved with 
computers from just about any field of study.  However, there are 
specific fields that are more computer-related than others.  For example. the fields of electrical 
engineering and computer systems engineering primarily focus on the design and 
manufacturing of computer hardware, while the fields of software engineering and computer 
science primarily focus on the design and implementation of software. 
 
Software itself can be broken down into 3 main categories: 
 

• System Software: is designed to operate the computer’s hardware and to provide and 
maintain a platform for running applications. (e.g., Windows, MacOS, Linux, Unix, etc..) 
 

• Middleware:  is a set of services that allows multiple processes running 
on one or more machines to interact.  Most often used to support and 
simplify complex distributed applications.  It can also allow data 
contained in one database to be accessed through another. Middleware 
is sometimes called plumbing because it connects two applications and 
passes data between them.  (e.g., web servers, application servers).   
 

• Application Software:  is designed to help the user perform one or more related 
specific tasks.  Depending on the work for which it was designed, an application can 
manipulate text, numbers, graphics, or a combination of these elements. 
(e.g., office suites, web browsers, video games, media players, etc…) 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 6 - 

The area of software design is huge.   In this course, we will investigate the basics of creating 
some simple application software.   If you continue your degree in computer science, you will 
take additional courses that touch upon the other areas of system software and middleware. 
 
Software is usually written to fulfill some need that the general public, private industry or 
government needs.  Ideally, software is meant to make it easier for the user (i.e., the person 
using the software) to accomplish some task, solve some problem or entertain him/herself.   
Regardless of the user’s motivation for using the software, many problems will arise when 
trying to develop the software in a way that produces correct results, is efficient and robust, 
easy to use and visually appealing.  That is where computer science comes in: 
 

Computer science is the study of the theoretical foundations of  
information and computation, and of practical techniques for their  
implementation and application in computer systems (Wikipedia). 

 
So, computer science is all about taking in information and then performing some 
computations & analysis to solve a particular problem or produce a desired result, which 
depends on the application at hand.    
 
Computer science is similar to mathematics in that both are used as a means of defining and 
solving some problem.   In fact, computer-based applications often use mathematical models 
as a basis for the manner in which they solve the problem at hand. 
 
In mathematics, a solution is often expressed in terms of formulas and equations.   In 
computer science, the solution is expressed in terms of a program:  

A  program is a sequence of instructions that can be executed by a 
computer to solve some problem or perform a specified task. 

 
However, computers do not understand arbitrary instructions written in 
English, French, Spanish, Chinese, Arabic, Hebrew, etc..   
 
Instead, computers have their own languages that they understand.  
Each of these languages is known as a programming language. 
 

A programming language is an artificial language designed 
to automate the task of organizing and manipulating information, and 
to express  problem solutions precisely.    

 
A programming language “boils down to” a set of words, rules and tools that are used to 
explain (or define) what you are trying to accomplish.   There are many different programming 
languages just as there are many different "spoken" languages.  

Traditional programming languages were known as structural programming languages (e.g., 
C, Fortran, Pascal, Cobol, Basic).   Since the late 80's however, object-oriented 
programming languages have become more popular (e.g., JAVA, C++, C#) 



COMP1405 – Programming Basics  Fall 2015 
 

  - 7 - 

There are also other types of programming languages such as functional programming 
languages and logic programming languages.  According to the Tiobe index (i.e., a good site 
for ranking the popularity of programming languages), as of January 2015 the 10 most actively 
used programming languages were (in order of popularity):  

C, Java, Objective-C, C++, C#, PHP, Javascript, Python, Visual Basic.NET and Perl.    
 
When it comes to computers and software, there are many roles to play: 

• System/Hardware Designers = design computers and related products. 
• Manufacturers    = actually build and assemble computers. 
• Software Designers    = design software to be used with the computers. 
• Programmers    = write the code to make the software work. 
• End Users    = buy and use the software when it is done. 

We are going to play the role of the Programmer in this course by writing our own programs to 
solve some simple problems.  In a way, we will also be playing the role of the End User when 
we test our programs.   Testing is an important part of programming to ensure that the program 
works properly for its intended purpose. 
 
When thinking of jobs and careers, many people think that 
computer science covers anything related to computers (i.e., 
anything related to Information Technology).   However, computer 
science is not an area of study that pertains to IT support, repairing 
computers, nor installing and configuring networks.   Nor does it 
have anything to do with simply using a computer such as doing 
word-processing, browsing the web or playing games.   The focus 
of computer science is on understanding what goes on behind the 
software and how software/programs can be made to operate more efficiently. 
 
The Computer Sciences Accreditation Board (CSAB) identifies four general areas that it 
considers crucial to the discipline of computer science:  
 

• theory of computation 
- investigates how specific computational problems can be solved efficiently 

 
• algorithms and data structures 

- investigates efficient ways of storing, organizing and using data 
 

• programming methodology and languages 
- investigates different approaches to describing and expressing problem solutions  

 
• computer elements and architecture 

- investigates the design and operation of computer systems 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 8 - 

COMP 2404 
(C++) 

COMP 2401 
(C) 

COMP 1406 
(Java) 

COMP 1405 
(Java) 

1st Year 

You are 
here. 

2nd Year 

However, in addition, they also identify other important fields of computer science: 
 

• software engineering 
• artificial intelligence 
• computer networking & communication 
• database systems 
• parallel computation 

• distributed computation 
• computer-human interaction 
• computer graphics 
• operating systems 
• numerical & symbolic computation 

 
There are aspects of each of the above fields can fall under the general areas mentioned 
previously.   For example, within the field of database systems you can work on theoretical 
computations, algorithms & data structures, and programming methodology. 
 
As you continue your studies in computer science, you will be able to specialize in one or more 
of these areas that interest you.   This course, however, is meant to be an introduction to 
programming computers with an emphasis on problem solving. 
 
This is your first programming course here in the School of Computer Science at Carleton.   
You have some more core programming courses coming up after this one.   Here is a break-
down of how this course fits in with your first 2 years of required programming courses: 
 
This is your first programming course here 
in the School of Computer Science at 
Carleton.   You have some more core 
programming courses coming up after this 
one, as shown here. 
 
After this course is over, you should 
understand how to write computer 
programs to solve problems.   We will 
discuss the basics of programming 
including variables, loops, conditional 
statements, functions & procedures, data 
types, arrays, recursion, objects and 
classes.   In the winter term, you will take 
COMP1406 which is like a continuation of 
this course but deals with object-oriented 
programming concepts as well as more 
advanced use of data structures and 
recursion as well as aspects of building 
applications with user interfaces.   
Together, these two courses will give you 
a solid programming background in JAVA 
and you will be able to learn other 
computer languages easily afterwards … 
since they all have common features.   If 
you want to do well in this course, attend 
all lectures and tutorials and do your 
assignments.     



COMP1405 – Programming Basics  Fall 2015 
 

  - 9 - 

 1.2 The JAVA Programming Language 

JAVA is a very popular object-oriented programming language from SUN Microsystems.  It has 
become a basis for new technologies such as:  Enterprise Java Beans (EJB’s), Servlets and 
Java Server Pages (JSPs) , etc.   In addition, many packages have been added which extend 
the language to provide special features: 

• Java Media Framework (for video streaming, webcams, MP3 files, etc) 
• Java 3D (for 3D graphics)  
• J2ME (for wireless communications such as cell phones, PDAs) 

 
JAVA is continually changing/growing.  Each new release fixes bugs and adds features.  New 
technologies are continually being incorporated into JAVA.  Many new packages are available.  
Just take a look at the www.oracle.com/java website for the latest updates. 
 
There are many reasons to use JAVA:  

• architecture independence 
o ideal for internet applications 
o code written once, runs anywhere 
o reduces cost $$$ 

• distributed and multi-threaded 
o useful for internet applications 
o programs can communicate over network (e.g., web) 
o uses RMI (Remote Method Invocation) API 

• dynamic 
o code loaded only when needed 

• memory managed 
o automatic memory allocation / de-allocation 
o garbage collector releases memory for unused objects 
o simpler code & less debugging 

• robust 
o strongly typed 
o automatic bounds checking 
o no “pointers” (you will understand this in COMP2401) 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 10 - 

The JAVA programming language itself (i.e., the SDK that you 
download from SUN) actually consists of many program pieces 
(or object class definitions) which are organized in groups called 
packages (i.e., similar to the concept of  libraries in other 
languages) which we can use in our own programs.  

When programming in JAVA, you will usually use:  

• classes from the JAVA class libraries (used as tools) 
• classes that you will create yourself 
• classes that other people make available to you 

Using the JAVA class libraries whenever possible is a good idea since: 

• the classes are carefully written and are efficient. 
• it would be silly to write code that is already available to you. 

We can actually create our own packages as well, but this will not be discussed in this course. 
 

How do you get started in JAVA? 
We will be using the latest version of JAVA (see course outline) which you can download from 
the Oracle website (www.oracle.com/java) if you are working at home.  
 
When you download and install the latest JAVA SDK (i.e., JAVA Software Development Kit), 
you will not see any particular application that you can run which will bring up a window that 
you can start to make programs in.   That is because the Oracle "guys", only supply the JAVA 
SDK which is simply the compiler and virtual machine.   JAVA programs are just text files, they 
can be written in any type of text editor.  Using a most rudimentary approach, you can actually 
open up windows NotePad and write your program ... then compile it using the windows 
Command Prompt window.  This can be tedious and annoying since JAVA programs usually 
require you to write and compile multiple files. 
 
A better approach is to use an additional piece of application software called an Integrated 
Development Environment (IDE).   Such applications allow you to:  

• write your code with colored/formatted text 
• compile and run your code 
• browse java documentation 
• create user interfaces visually  
• and use other java technologies (e.g.  Java Beans, EJB's, Servlet programming etc...) 

There are many IDE's that you can use.  You may choose whatever you wish.  Here are a few: 

• JCreator LE (Windows) - download from www.jcreator.com 
• JGrasp (Windows, Mac OS X, Linux) - download from www.jgrasp.com 
• Eclipse (Windows, Mac OS X, Linux) - download from www.eclipse.org 
• Dr. Java (Windows, Mac OS X) - download from drjava.sourceforge.net 



COMP1405 – Programming Basics  Fall 2015 
 

  - 11 - 

 1.3 Writing Your First JAVA Program 

 The process of writing and using a JAVA program is as follows:  

1. Writing: define your classes by writing what is called .java files (a.k.a. source code). 
2. Compiling: send these .java files to the JAVA compiler, which will produce .class files 
3. Running: send one of these .class files to the JAVA interpreter to run your program. 

 
 
The java compiler: 

• prepares your program for running 
• produces a .class file containing byte-codes (which is a program that is ready to run). 

 
If there were errors during compiling (i.e., called "compile-time" errors), you must then fix 
these problems in your program and then try compiling it again. 

 
The java interpreter (a.k.a. Java Virtual Machine (JVM)): 

• is required to run any JAVA program 
• reads in .class files (containing byte codes) and translates them into a language that 

the computer can understand, possibly storing data values as the program executes. 

Just before running a program, JAVA uses a class loader to put the byte codes in the 
computer's memory for all the classes that will be used by the program.   If the program 
produces errors when run (i.e., called "run-time" errors), then you must make changes to the 
program and re-compile again. 
 
As mentioned, the JAVA language consists of various class libraries that you can make use of.   
All of JAVA’s classes are arranged in packages.   There are MANY standard packages in 
JAVA, each with many classes.    
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 12 - 

Here are just some of the standard packages that you will likely use in this course:  
   

java.lang Basic classes and interfaces required by many JAVA programs.  It is 
automatically imported into all programs. 

java.util Utility classes and interfaces such as date/time manipulations, random numbers, 
string manipulation, collections ... 

java.io Classes that enable programs to input and output data. 

java.text Classes and interfaces for manipulating numbers, dates, characters and strings.  
Provides internationalization capabilities as well. 

When you want to make use of some of these classes, you will use the import keyword to tell 
JAVA that you want to use a class:  

import <packageName>.*; 
 
Basically, the import statement is used to tell the compiler which package (i.e., directory) the 
class files are sitting in.   You can always replace the * by a class name (where the class name 
is in the package) so that the readers of your code are more clear on which classes you are 
actually using.   Keep in mind though that the import statement does not load any classes, it 
merely instructs the compiler where to find them when you run your code. 
 

Our First Program 
The first step in using any new programming language is to understand how to write/compile 
and run a simple program.   By convention, the most common program to begin with is always 
the "hello world" program which when run ... should output the words "Hello World" to the 
computer screen.   We will describe how to do this now.    

All of your programs will consist of one or more files called classes.   That is, each time you 
want to make a program, you need to define a class. 

Here is the program that we will write: 

 
public class HelloWorldProgram {  
    public static void main(String[] args) {  
        System.out.println("Hello World");  
    } 
} 
 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 13 - 

Here are a few points of interest in regards to ALL of the programs that you will write in this 
course: 

• The program must be saved in a file with the same name as the class name (spelled the 
same exactly with upper/lower case letters and with a .java file extension). 

• The first line beings with words public class and then is followed by the name of the 
program (which must match the file name, except not including the .java extension). 

• The entire class is defined within the first opening brace { at the end of the first line and 
the last closing brace } on the last line. 

• The 2nd line (i.e., public static void main(String[] args) {) defines the starting place 
for your program and will ALWAYS look exactly as shown. 

• The 2nd last line will be a closing brace }. 

So … ignoring the necessary "template" lines,  the actual program consists of only one line: 
System.out.println("Hello World"); which actually prints out the characters Hello World to 
the screen.   The text between the double quotes is called a String.  In fact, we could replace 
the Hello World text with any characters that we want displayed.   Notice also that there is a 
semicolon character (;) at the end of the line.   All JAVA statements (i.e., lines of code) will end 
with a ; character. 
 
So to summarize, EVERY java program that you will write will have the following basic format: 

 
public class                   {  
    public static void main(String[] args) {  
                               ;  
                               ;  
                               ;  
    } 
} 
 
 
Just remember that YOU get to pick the program name (e.g., MyProgram) which should 
ALWAYS start with a capital letter.   Also, your code MUST be stored in a file with the same 
name (e.g., MyProgram.java).  Then, you can add as many lines of code as you would like in 
between the inner { } braces.   You should ALWAYS line up ALL of your brackets using the 
Tab key on the keyboard. 

Where do we write this code ?   In the DrJava IDE.   DrJava has a main window area into 
which we write the code and another area at the bottom where we view the results: 

 

 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 14 - 

Here are the steps to get your program ready to run: 

 
 
Once your code compiles without error ... 
 

 
 
Then you can then run it and view the output: 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 15 - 

 

 1.4 Displaying Information 

 
We have seen in our first program how to use the System.out.println() statement to output a 
simple line of text characters to the screen.  However, this JAVA statement can do much 
more.  For example, it can also output results of computations.  In this section we will look at a 
few more examples of what can be displayed on the screen. 
 
Here is another program which represents a calculator that can find the average of three 
numbers (e.g., 34, 89 and 17) and display the answer on the console window: 

 
public class CalculatorProgram {  
    public static void main(String[] args) { 
        // This code computes a simple calculation 
        System.out.print("The average of 34, 89 and 17 is ");  
        System.out.println((34 + 89 + 17) / 3.0);  
    } 
} 
 

There are some points of interest regarding the code: 

• In addition to displaying text characters, the System.out.println can display the 
"results" of mathematical computations. 

 
• The code in green (i.e., following the // characters) is called a comment.   JAVA 

ignores this when compiling.   You can place comments anywhere in your code to 
provide an explanation of what your code is doing.   This helps later on when you 
look at your code at a future date ... because we all tend to forget what we did in the 
past.    

o Generally, you should use // when you have a single line to comment (i.e., 
everything after the // characters on that line is ignored). 

o If you want to have a multiple line comment, you can alternatively begin the 
comment with /* characters and end it with */ characters.  For example: 

/* This is a multiple line comment 
   because it appears on more 
   than one line in the program. */ 

Of course, you can still use the // characters instead 3 times if you want: 

// This is a multiple line comment 
// because it appears on more 
// than one line in the program. 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 16 - 

• The first line uses print while the second line uses println.   When using just print, 
the next text to be printed will be immediately to the right of this text.  When using 
println, a line feed and carriage return is printed, which means that the text to follow 
will appear at the beginning of the next line of the console (i.e., output window).  

 
Here is the output when the CalculatorProgram is run:  

 
 

The average of 34, 89 and 17 is 46.666666666666664 
 
 
Of course, this program always computes the same average using the same 3 numbers, but in 
the next section, we will look at how to get different numbers from the user each time we run 
the code.  Notice as well that the calculations are not perfectly accurate … they are off a little 
after 15 decimal places. 

Can you tell how the output of the following piece of code will be formatted ? 

 
System.out.print("My name is ");  
System.out.println("Mark.");  
System.out.println("These strings " + "are" + " joined.");  
System.out.print("Numbers can be appended ... see: " + 54.342);   
System.out.println(" and even characters: " + 'A' + 'B' + 'C'); 
System.out.println();  
System.out.println("The line above was left blank.");  
System.out.println("Now leave 4 blank lines at the end. \n\n\n\n");  
System.out.println("Count the blanks above."); 
 

 
Here is the output:  
   
 

My name is Mark.  
These strings are joined. 
Numbers can be appended ... see: 54.342 and even characters: ABC 
 
The line above was left blank.  
Now leave 4 blank lines at the end. 
 
 
 
 
Count the blanks above. 

 
 
Notice that we can use the + to join:  

• two strings before display them 
• numbers or characters (defined between single quotes '  ') to the end of a String. 



COMP1405 – Programming Basics  Fall 2015 
 

  - 17 - 

Also notice that: 

• when the brackets () are left empty on a println(), then a blank line is printed.   
• we can use some \n characters at the end of the string to leave blank lines. 

 
Displaying results in a window  
The output of our programs above was displayed in the bottom part of the DrJava window 
(called the console).  However, we can also have our program results appear in a nice little 
window that pops up on the screen.   The code behind making a window can be a little 
confusing at this point in the course, so we will not make our own.   Instead, JAVA has some 
pre-defined windows called JOptionPanes which will allow us to display some simple test 
results. 

The simplest way to do this is to use one of the standard dialog boxes in JAVA.   We can use 
something called a JOptionPane which is in the javax.swing package.    

Consider for example, our CalculatorProgram that we wrote earlier.   We can bring up a little 
window with our answer in it as follows: 

 
 
The window would come up, wait for us to press the OK button and then close.    Here is the 
code that does this: 

import javax.swing.JOptionPane; 
 
public class WindowCalculatorProgram {  
    public static void main(String[] args) {  
        JOptionPane.showMessageDialog(null,  
                      "The average of 34, 89 and 17 is " + (34+89+17)/3.0);   
    } 
} 
 
 
Basically, it is a one-line-program again.   The JOptionPane.showMessageDialog(null, 
… ); "command" is a pre-defined JAVA function that brings up the window with the text that 
we choose (just replace the … characters with your text).   JOptionPane is actually the JAVA 
class that does this for us.  Remember that since we are using a pre-defined JAVA class, we 
need to tell the JAVA compiler where to find it.   That is why we write the following statement at 
the top of our program:  
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 18 - 

import javax.swing.JOptionPane; 
 
Another way to understand the import statement is to think of it as something you write at the 
top of your program to tell the compiler which "tools" you will be using in your program. 
 
The JOptionPane class has a function (officially known as a method) called 
showMessageDialog which contains code for displaying the window.   This method requires 
you to supply 2 pieces of information called parameters.  Each of these parameters is 
separated by a comma character and is shown on a separate line in the code to make things 
clearer: 

1. The 1st parameter is null.   We will discuss this later.    
2. The 2nd parameter is the information that you want to display in the middle of the 

window.  It can be any code, but is often a String. 

Experiment with the example above by trying to display various things in the window. 

Normally, JOptionPanes are meant to have a single line of text.  However, if you want to have 
multiple lines of text, you can do this by appending a \n character between the lines that you 
want.  This will tell JAVA to go to the next line before continuing.   For example, if we add 
some \n characters to our String as shown below, notice what the window will look like: 

 
JOptionPane.showMessageDialog(null,  
           "The average of \n34, 89 and 17\nis\n\n" + (34 + 89 + 17) / 3.0); 
 
 
Here is the window that is produced: 

 

Of course, the appearance is not as pleasant because everything is aligned to the left.   As is, 
there is no way to change this alignment.  Nevertheless, it is sometimes nice to be able to 
display text in our own windows as opposed to simply in the console window. 

In the follow-up course to this one (COMP1406), you will learn how to create your own 
windows and arrange everything as you want. 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 19 - 

Supplemental Information (Other MessageDialogs) 

There are variations for the showMessageDialog method that allow 2 more parameters so 
that you can change the title on the window as well as add a picture.  The format is: 
 
    JOptionPane.showMessageDialog(null,  
        "The average of 34, 89 and 17 is " + (34 + 89 + 17) / 3.0,  
        "Answer",  
        JOptionPane.PLAIN_MESSAGE); 
 
The 3rd parameter here is the title for the window, in this case "Answer".   The 4th parameter 
is the type of window to open.   Here we say JOptionPane.PLAIN_MESSAGE, but there are 
other options which will bring up the window but will also display a little picture (called an Icon) 
that allows you to distinguish between different kinds of messages.   Below is a table of the 
other options and their icons.   In fact, you can look at the JAVA documentation and see that 
you can also use your own pictures/icons. 

 
JOptionPane.WARNING_MESSAGE 
Use this when you want to warn the 
user about something in the program. 

 
JOptionPane.ERROR_MESSAGE 
Use this when you want to tell the user that 
an error has occurred in the program. 

 
JOptionPane.PLAIN_MESSAGE 
Use this when you do not want a 
picture. 

 
JOptionPane.INFORMATION_MESSAGE 
Use this when you want to tell the user 
something in the program. 

 

 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 20 - 

 

 1.5 Getting User Input  
 
In addition to outputting information to the console window, JAVA has the capability to get 
input from the user.  Unfortunately, things are a little "messier/uglier" when getting input.   Java 
has a pre-defined "tool" which allows you to get input from the keyboard in a simple manner.   
The tool is in a class called Scanner and it is available if you import the java.util package. 

So, to get input from the user, we need to create a new Scanner object for the System 
console.   We will talk much more at a later time about creating new objects, but for now, here 
is the line of code that gets a line of text from the user: 

new Scanner(System.in).nextLine(); 

This line of code will wait for the user (i.e., you) to enter some text characters using the 
keyboard.  It actually waits until you press the Enter key.   Then, it returns to you the 
characters that you typed (not including the Enter key).   You can then do something with the 
characters, such as print them out.   Here is a simple program that asks the user for his/her 
name and then says hello to him/her: 

import java.util.Scanner; 
 
public class GreetingProgram {  
    public static void main(String[] args) {  
        System.out.println("What is your name ?"); 
        System.out.println("Hello, " + new Scanner(System.in).nextLine()); 
    } 
} 
 
 
Notice the output from this program if the letters Mark are entered by the user (Note that the 
blue text (i.e., 2nd line) was entered by the user and was not printed out by the program): 
   
 

What is your name ?  
Mark  
Hello, Mark  

 
 
As you can see, the Scanner portion of the code gets the input from the user and then 
combines the entered characters by preceding it with the "Hello, " string before printing to the 
console on the second line. 

Interestingly, we can also read in integers from the keyboard as well by using: 

 new Scanner(System.in).nextInt(); 

For example, consider this modified calculator program that finds the average of three 
numbers entered by the user: 



COMP1405 – Programming Basics  Fall 2015 
 

  - 21 - 

import java.util.Scanner; 
 
public class BetterCalculatorProgram {  
    public static void main(String[] args) {  
        System.out.println("Enter three numbers:");  
        System.out.println("The average of these numbers is " +  
                           (new Scanner(System.in).nextInt() +  
                            new Scanner(System.in).nextInt() +  
                            new Scanner(System.in).nextInt()) / 3.0);  
    } 
} 
 
 
Here is the output when the BetterCalculatorProgram is run with the numbers 34, 89 and 17 
entered:  
   
 

Enter three numbers: 
34 
89 
17 
The average of these numbers is 46.666666666666664 

 
 

Supplemental Information (Bug) 

In some versions of JCreator, there was a bug when getting keyboard input from the  
output window.   The above code for example, when using the "Capture output"  
feature in JCreator (under the RunApplication tool option) will give the value of  
the first number entered (which is 34 here).   If this happens to you, you can  
avoid this problem by disabling (i.e., uncheck) the "Capture output" feature when  
running programs that require keyboard input. 
 

Of course, we can enter any numbers.   Here is the output from entering 10, 20 and 50: 

 
Enter three numbers: 
10 
20 
50 
The average of these numbers is 26.666666666666668 

 
 
As we will see in the next section, we do not need to make 3 Scanner objects, we can actually 
use the same Scanner each time.   There is much more we can learn about the Scanner 
class.   It allows for quite a bit of flexibility in reading input. 

For example, if we enter 10, 20 and then some junk characters ... an error will occur as follows: 



COMP1405 – Programming Basics  Fall 2015 
 

  - 22 - 

 
Enter three numbers: 
10 
20 
junk 
Exception in thread "main" java.util.InputMismatchException 
        at java.util.Scanner.throwFor(Scanner.java:819) 
        at java.util.Scanner.next(Scanner.java:1431) 
        at java.util.Scanner.nextInt(Scanner.java:2040) 
        at java.util.Scanner.nextInt(Scanner.java:2000) 
        at BetterCalculatorProgram.main(BetterCalculatorProgram.java:6) 

 
 
Woops!   That's not very nice.   This is JAVA's way of telling us that something bad just 
happened.   It is called an Exception. We will discuss more about this later.   For now, assume 
that valid integers are entered. 

Getting input from a window 
Getting input directly from the keyboard into a console is an obsolete task these days.  Most 
software has some kind of user interface that allows the user to enter text using dialog boxes, 
text fields, sliders, list boxes etc...   In JAVA, we can use also JOptionPane to get input from 
the user.   If we would like to ask the user for a simple piece of text, such as his/her name, we 
can use the following line: JOptionPane.showInputDialog("Please input your name"); 

This code will bring up the following window which will let us enter the name: 

 

So, the pre-defined JOptionPane class has a showInputDialog(…) method that brings up a 
window and waits for us to enter data.   The one parameter to that method allows us to give 
instructions to the user in the form of a sentence.   Consider now changing our 
GreetingProgram to use this new window instead: 

import javax.swing.JOptionPane; 

 
public class WindowGreetingProgram {  
    public static void main(String[] args) {  
        System.out.println("Hello, " +  
                        JOptionPane.showInputDialog("What is your name ?")); 
    } 
} 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 23 - 

Notice that the output from this program in the System.out console only displays the result: 
   
 

Hello, Mark  
 
 
We can actually combine this with the showMessageDialog method as follows: 

import javax.swing.JOptionPane; 
 
public class WindowGreetingProgram2 {  
    public static void main(String[] args) {  
        JOptionPane.showMessageDialog(null, "Hello, " +  
                       JOptionPane.showInputDialog("What is your name ?")); 
    } 
} 
 
 
Then we end up with windows for input and for output … with nothing printed to the console: 
 

 
 
There are other types of input windows.   For example, we can bring up a window that asks the 
user a YES/NO question as follows: 
 

JOptionPane.showConfirmDialog(null, "Are you sure you want to quit ?"); 
 
This method will bring up the following window: 

 

We will see later that we can find out which of the buttons the user pressed (i.e., Yes, No or 
Cancel) and then respond accordingly in our program.   We will not discuss any other types of 
input windows at this point because they require you to understand more about JAVA. 
 
So, you should now have a solid understanding of how to display information as well as get 
information from the user.   We will now continue to get a better understanding of the JAVA 
programming language. 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 24 - 

 1.6 Primitive Data Types and Variables 

 
Up until this point, we have done some simple programs that perform some simple 
calculations.   In general, a typical computer is only able to compute one piece of information 
at a time.  However, for big problems, there may be a lot of computations, number crunching, 
data organization, etc…   So, in order to write some more meaningful programs, we need to 
understand how to store information.   

A variable is a location in the computer’s memory that stores a single piece of data. 
 

A program may use many variables to store intermediate results.   For example, recall our 
example for averaging 3 numbers entered by the user:   
 
import java.util.Scanner; 
 
public class BetterCalculatorProgram {  
    public static void main(String[] args) {  
        System.out.println("Enter three numbers:");  
        System.out.println("The average of these numbers is " +  
                           (new Scanner(System.in).nextInt() +  
                            new Scanner(System.in).nextInt() +  
                            new Scanner(System.in).nextInt()) / 3.0);  
    } 
} 
 
In this example, there was no need to store the data that the user entered because it was used 
right away in the program.   However, what if we then wanted to find the maximum, the 
minimum and perhaps the sales tax on the total ?   We would need to store these numbers 
somewhere so that we can do multiple computations on the same numbers without having to 
re-enter them again. 

Sometimes students have a hard time knowing when a variable is needed.   Just remember 
that a variable is just storage space.   A typical computer program can only do one thing at a 
time because it has a single processor.  Imagine, for example, trying to pour yourself a glass of 
orange juice with just one hand.   You would likely do things in this order: 

1. get a glass 
2. put it down on the countertop  
3. get the orange juice carton 
4. put it down on the countertop 
5. open the orange juice carton 
6. pour the orange juice into the glass 
7. put down the orange juice carton 
8. pick up the glass and drink it 

 
 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 25 - 

You can see  that the counter itself represents the "space" that you can store things onto and 
pick them back up later.   The countertop is required in order for you to complete your one-
handed task.  Similarly variables are usually required in order to complete your program. 

The countertop is like the computer's memory and each object 
placed on it takes up space on the countertop.  All information in 
the computer is actually stored in the electronics as voltages … 
high and low voltages that can be thought of as billions of 1’s and 
0’s that have some kind of meaning to them.   That is, all user 
information (whether it is a name, phone number, picture, email, 
database, game, etc..) is stored as 1’s and 0’s which we call bits. 

As humans, we have a hard time working at such a low level.   We 
do better working with things like numbers, characters and real-
world objects.   So, rather than work with single bits, we group these bits into more abstract or 
higher-level packages.    

A group of 8 bits is known as a byte.  A byte can represent 256 
combinations of 1’s and 0’s.  That is, if we think of each bit as being 
a switch which is either on or off, we can flip the 8 switches in 256 
unique combinations.   This allows a single byte to store a number 
from 0 to 255. 

When two bytes are required to represent a number, the pair of bytes is called a word.  A word 
can store a number in the range from 0 to 65535.   We can continue to group bytes together to 
store even larger integer numbers.   
 
So, the bit and the byte are the two most 
primitive forms that a computer uses for 
number representation.  Most computers will 
use the term boolean to represent a 0 or 1, 
but instead of saying “0” or “1” the terms 
“false” and “true” are used.    
 
Bytes can also be used to represent letters, digits, punctuation, etc.  which are called 
characters.   How so ?  Well, back in 1968 it was decided that computers conform to a 
numbering standard called ASCII (American Standard Code for Information Interchange).   
That is, each combination of numbers in the range from 0 through 127 was mapped to (i.e., 
corresponds to) a particular keyboard character.   Here is the ASCII table (provided as a 
reference only … DO NOT try to memorize it): 
 

ASCII 
value 

Character(s) ASCII 
value 

Character(s) 

0 null 48-57 0123456789 
1-31 various special characters 58-64 :;?@ 
10 line feed 65-90 ABCDEFGHIJKLMNOPQRSTUVWXYZ 
13 carriage return 91-96 [\]^_` 
32 space 97-122 abcdefghijklmnopqrstuvwxyz 

33-47 !”#$%&'()*+,-./ 123-127 {|}~□ 



COMP1405 – Programming Basics  Fall 2015 
 

  - 26 - 

So, for example, the letter “A” corresponds to number 65 in the ACSII table which is number 
01000001 in binary bits (we will not discuss bit representation any further in this course). 
There are also versions of extended ACSII tables covering the numbers from 128 to 255.   In 
addition, since computers began to be used internationally, 256 combinations were not enough 
to represent the letters of various international languages.  Therefore, a new standard called 
Unicode has been developed (and continues to be expanded) to account for the other 
characters.   However, a single byte is no longer sufficient to represent the character … two or 
more bytes are required. 

In addition, we can actually use bytes to represent real numbers (also called floating-point 
numbers) such as 3.14159265.   Also, by making assumptions on one particular bit in a byte 
(i.e., the most significant bit, also called the sign bit), we can allow the numbers to be either 
negative or positive.   There are many details regarding number representation, but we will not 
discuss them further in this course. 
 
The point is that bits are grouped to form bytes (or characters) which are also grouped to form 
larger numbers.   Ultimately, this leads to what are known as primitive data types that are 
used in most programming languages.   Here are the four basic primitives that are available in 
most programming languages (although the names may differ in each language): 
 

• booleans – true or false 
• integers – positive or negative whole numbers 
• floating-point numbers – positive or negative real numbers with decimal places 
• characters – letters, digits, punctuations or some other keyboard character 

 
These are called primitive because they are the most basic types of data that we can store on 
the computer.   Some languages will further distinguish between various types of integers or 
floats.    

For example, the following are the four official primitive data types in JAVA  that can represent 
integers of various sizes: 

Type Bytes Used Can Store an Integer Within this Range 
byte 1 -128 to +127 
short 2 -32,768 to +32,767 
int 4 -2,147,483,648 to +2,147,483,647 
long 8 -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 

 
Notice that the various types take up a different amount of memory space.    
 
Similarly, there are two official primitive data types in JAVA to store floating-point numbers:   
 

Type Bytes Used Can Store a Real Number Within this Range 
float 4 -1038  to +1038 

double 8 -10308  to +10308 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 27 - 

Regardless of how we group the bytes, all information/data can be represented through the 4 
basic primitives of boolean, integer, floating point numbers and characters.    

The final two primitive types are for storing single characters and booleans: 

Type Bytes Used Stores Single Character 
char 2 Represented by single quotes (e.g.,  'a'   'B'    'c'    '$'    '>') 
Type Bytes Used Stores Boolean Value 
boolean 1 a value of either true or false 

So those are the 8 primitive data types that JAVA offers.   You may have noticed that Strings 
are not listed there.   That is because Strings are actually objects which are made up of 
multiple char primitives.   That is, Strings are nothing more than a group of characters. 

So why are we talking about this ?   Well, when programming, some languages (like JAVA) 
force you to specify the types for all of your variables.   That means, for every variable that 
you create, you must indicate its type as well as its name. 
 
In JAVA, for example, in order to use a variable to store a primitive kind of value (e.g., a 
boolean, integer, floating-point number or character), you must specify in your program the 
type followed by the name of the variable.   Each variable must be given a unique name so 
that it can be identified later.   That way, JAVA knows exactly which object you want from the 
countertop.  Just imagine that you are asking a robot to get the object off of the counter ... you 
need to tell it which object you want ... and you use the object's unique name to make that 
decision. 
 
 
 
 
 
 
 
 
 
 
 

Here are examples of variables declared with their type on the left 
and name on the right: 
 

boolean      hungry; 
int          days; 
byte         age; 
short        years;  
long         seconds; 
char         gender; 
float        amount; 
double       weight; 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 28 - 

The above examples show all 8 primitive types that you may use in JAVA programs.   Note 
that these will differ from language to language.   Notice as well that there is a ; character after 
each line, as with any line of programming code. 
 
Each line above is responsible for declaring a variable.   That means that a space is 
reserved in the computer’s memory (with the given label) that can hold a value of the given 
type.    
 
Declaring a variable, DOES NOT assign it any value, it only reserves space for the variable.  In 
JAVA, after you declare a variable, you MUST give it a value before you use it.   For example, 
suppose that tried to do this within one of your programs: 
 
 int days; 
 
 System.out.println(days); // prints out the days variable’s value 
 

You would get the following error, preventing your program from running: 

The local variable days may not have been initialized 

A note about variable names … make sure to pick meaningful names that are not too long !!    
The name must be unique and it is case-sensitive (i.e., Hello and hello would not be 
considered the same).  
 
Variable names may contain only letters, digits and the ‘_’ character (i.e., no spaces in the 
name).   As standard convention, multiple word names should have every word capitalized 
(except the first).    
 
Here are some good examples of variable names:  
 

• count 
• average 
• insuranceRate 
• timeOfDay 

• poundsPerSquareInch 
• aString 
• latestAccountNumber 
• weightInKilograms 

We use the term assigning to represent the idea of “giving a value” to a variable.   In JAVA, 
the assignment operator is the = sign.   So, we use = to put a value into a variable.    
 
Here are a few example of how we can do this with some of the variables that we declared 
earlier: 
 

hungry = true; 
days = 15; 
gender = 'M'; 
amount = 21.3f;  // floats must have an 'f' after them 
weight = 165.23; 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 29 - 

Something VERY important to remember when learning to program is that the value of the 
variable must be the same type of object (or primitive) as the variable’s type that was 
specified when you declared it earlier.   So for example, in the following table, make sure that 
you understand why the examples on the left are wrong, while the right examples are correct: 
 

int days; 
days = 10.2789; 
 

int days; 
days = 10; 
 

boolean hungry; 
hungry = 'y'; 
 

boolean hungry; 
hungry = false; 
 

char sex; 
sex = "F"; 
 

char sex; 
sex = 'F'; 
 

float weight; 
weight = 154.2; 
 

float weight; 
weight = 154.2f; 
 

 
To help cut down the number of lines of code in our program, we are allowed to both declare 
and assign a value to our variables all on one line.   So, from our earlier examples, we can do 
the following: 
 

boolean hungry = true; 
int  days = 15; 
char  gender = 'M'; 
float  amount = 21.3f; 
double weight = 165.23; 
 

A variable may be declared only once in the program, but we may assign a value to it multiple 
times.     
 
Can you determine the output of this piece of code: 
 

int days; 
 
days = 43; 
System.out.println(days); // prints out 43 
 
days = 15;  
System.out.println(days); // prints out 15 

 
So, variables can be re-assigned a value, but cannot be declared again.   Therefore, the 
following code will NOT compile: 
 

 int days = 365; 
System.out.println(days); 
int days = 7;   // cannot declare days a second time 
System.out.println(days); 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 30 - 

Here are some more pieces of code.  Do you know what the output is ? 

int x;  
int y;  
x = 34;  
y = 23;  
System.out.println(x + y); 

Here is a similar example.   Notice in JAVA that we are allowed to declare multiple variables of 
the same type on the same line, each separated by a ',': 

int x, y;  
x = 34;  
y = x;  
System.out.println(x + y); 

 
Here is another one: 
 

int x, y, z;  
 
x = 3*2*1;  
y = x + x;  
z = x;  
System.out.println(z); 

Note that even though we use x a few times, it does not change its value.    

Here is one that is a little more interesting: 

int    total;  
float  average;  
 
total = 12 + 25 + 36 + 15;  
average = total / 4;  
System.out.print("The average is "); 
System.out.println(average); 
 

Here is the output: 

The average is 22.0 

Keep in mind that each time we call System.out.print(), any further information displayed will 
appear on the same line, so it is important to have the extra space character at the end of the 
string above, otherwise the result would be crowded close to the text like this: 

The average is22.0 

We can also combine the two print statements into one line as follows: 

System.out.println("The average is " + average); 



COMP1405 – Programming Basics  Fall 2015 
 

  - 31 - 

This code will append the current value of the average variable to the string. 
 
 
Notice in our code so far we have used numbers directly (e.g., 34, 89, 34.52) as well as 
characters (e.g.,   'a', 'M', ‘\n’).   These are called literal values (a.k.a. literals or constants) 
because the value is literally what you see when you read it in the program. 
 
In JAVA, when you use a literal real number constant such as 34.685, JAVA assumes that you 
want this number to be used as a double.   If you just want it to be a float (which has half the 
precision), then you must supply an f character after the number as follows:  34.685f   … 
otherwise … JAVA may give you a compile error.   Similarly, long numbers must have an L 
after them to distinguish them from ints. 
 
There are some special pre-defined characters that have special meanings.  They are actually 
specified as 2 characters ... the backslash being the first.   Here is a list of just a few of them: 

• '\n'     (newline) 
• '\b'     (backspace) 
• '\''     (single quote) 
• '\t'     (tab) 
• '\\'     (backslash) 
• '\"'     (double quote) 

It is likely that sooner or later you will need to use these special characters in a String. 

If you have a value that will remain constant throughout your program you can use the 
keywords static final (implying that it has its final value and will not change again) before the 
variable’s type.   
 

A constant is a single piece of data that does not change throughout the algorithm 
 
In this case, you must assign the value to the constant when it is declared: 
 

static final int      DAYS = 365; 
static final float    INTEREST_RATE = 4.923f; 
static final double   PI = 3.1415965; 

 
Normally, constants use uppercase letters with underscores (i.e., _) separating words. 



COMP1405 – Programming Basics  Fall 2015 
 

  - 32 - 

Here is a simple test program that prints out some primitive values: 

 
public class PrimitiveTestProgram { 
 static final int      DAYS = 365; 
 static final float    INTEREST_RATE = 4.923f; 
 
 
    public static void main(String[] args) { 
        System.out.println(239);                // an integer 
        System.out.println(823100267876L);      // a long 
        System.out.println(3.141592653589793);  // a double 
        System.out.println(3.141592653589793f); // a float 
 
        System.out.println('A');  // a letter character 
        System.out.println('5');  // a digit character 
        System.out.println(' ');  // the space character 
        System.out.println('\"'); // the double-quote character       
        System.out.println('\n'); // the blank-line character 
 
        System.out.println(true);  // the boolean value true 
        System.out.println(false); // the boolean value false 
 
        System.out.println(DAYS);   // a constant 
        System.out.println(INTEREST_RATE/12); // a constant in a formula 
    } 
} 
 
 
Here is the resulting output: 
 
 

239 
823100267876 
3.141592653589793 
3.1415927 
A 
5 
        
" 
     
 
true 
false 
365 
0.41024998 

 
 
Do you remember doing new Scanner(System.in).nextLine() when getting user input ?   
Well, in place of nextLine(), we could have used any one of the following to specify the kind of 
primitive data value that we would like to get from the user: 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 33 - 

nextInt(), nextShort(), nextLong(), nextByte(), nextFloat(), 
nextDouble(), nextBoolean(), next() 

 
Notice that there is no nextChar() method available.   The next() method actually returns a 
String of characters, just like nextLine().   If you wanted to read a single character from the 
keyboard (but don't forget that we still need to also press the Enter key), you could use the 
following:   next().charAt(0).    We will look more into this later when we discuss String 
functions. 

 

Example: 
 
A team of n students work together painting houses for the summer. For 
each house they paint they get $256.00. Assume that the students work 
for 4 months of summer and their expenses (as a team) are $152.00 per 
month.   Write a program that asks the user for the number of students 
on the team and then computes and displays the total number of houses 
that they must paint (as a team) for each student to have one thousand 
dollars at the end of the summer. 
 
To begin, we will need to ask the user how many students are on the team: 
 
 
public class PaintHousesProgram { 
 public static void main(String[] args) { 
  System.out.println("How many students are on the team ? "); 
    } 
} 
 
 
We will then need to ask the user for the number and store this in a variable so that we can 
compute an answer afterwards.   We will need an integer variable to store the number.   It is 
often a good idea to declare input-related variables at the top of your program, and then assign 
them a value in your program as needed.    
 
import java.util.Scanner; 
 
public class PaintHousesProgram { 
 public static void main(String[] args) { 
  int n; 
   
  // Get the user input 
  System.out.println("How many students are on the team ? ");  
  n = new Scanner(System.in).nextInt(); 
    } 
} 
 
 
Now, we need to compute the answer and display it: 



COMP1405 – Programming Basics  Fall 2015 
 

  - 34 - 

 
import java.util.Scanner; 
 
public class PaintHousesProgram { 
 public static void main(String[] args) { 
  int n; 
   
  // Get the user input 
  System.out.println("How many students are on the team ? ");  
  n = new Scanner(System.in).nextInt(); 
 
  // Compute the answer 
  int goalAmount = (n * 1000) + (4 * 152); 
  int houses = goalAmount / 256; 
 
  // Display the answer 
  System.out.println(houses + " houses must be painted."); 
    } 
} 
 
 
 
 
 

Example: 
 
There are n kids in a room.  As it turns out, some kids have socks on (with or 
without shoes), some kids are wearing shoes (with or without socks), and 
some kids are wearing both socks & shoes.  See if you can come up with a 
program that asks the user for the information about the kids and then 
computes how many kids are barefoot (i.e., no socks, nor shoes). 
 
Again, we can begin by asking the user some questions to get the information of what the kids 
are wearing: 
 
 
public class BarefootProgram { 
 public static void main(String[] args) { 
  System.out.println("How many kids are there ? ");       
  System.out.println("How many are wearing socks ? ");       
  System.out.println("How many are wearing shoes ? ");       
  System.out.println("How many are wearing both socks AND shoes ? "); 
    } 
} 
 
 
For each of these questions, we will need to ask the user for the information and then store 
this so that we can compute an answer afterwards.   We will need 4 integer variables to store 
the above numbers.   Since we will need to get more than one input, we can also create a 
Scanner object and store it in a variable so that we can re-use it many times as follows: 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 35 - 

import java.util.Scanner; 
 
public class BarefootProgram { 
 public static void main(String[] args) { 
  int  numKids, withSocks, withShoes, withBoth; 
  Scanner  keyboard = new Scanner(System.in); 
 
  // Get the user input 
  System.out.println("How many kids are there ? ");     
  numKids = keyboard.nextInt(); 
   
  System.out.println("How many are wearing socks ? ");       
  withSocks = keyboard.nextInt(); 
   
  System.out.println("How many are wearing shoes ? ");       
  withShoes = keyboard.nextInt(); 
 
  System.out.println("How many are wearing both shoes and socks ? ");       
  withBoth = keyboard.nextInt(); 
    } 
} 
 
Now, we need to compute and display the answer: 
 
import java.util.Scanner; 
 
public class BarefootProgram { 
 public static void main(String[] args) { 
  int  numKids, withSocks, withShoes, withBoth; 
  Scanner  keyboard = new Scanner(System.in); 
 
  // Get the user input 
  System.out.println("How many kids are there ? ");     
  numKids = keyboard.nextInt(); 
   
  System.out.println("How many are wearing socks ? ");       
  withSocks = keyboard.nextInt(); 
   
  System.out.println("How many are wearing shoes ? ");       
  withShoes = keyboard.nextInt(); 
 
  System.out.println("How many are wearing both shoes and socks ? ");       
  withBoth = keyboard.nextInt(); 
 
  // Now compute the answer 
  int socksOnly = withSocks - withBoth; 
  int shoesOnly = withShoes - withBoth; 
  int barefoot = numKids - withBoth - socksOnly - shoesOnly; 
 
  // Finally, display the results nicely 
  System.out.println("There are " + barefoot + " barefoot kids.");                 
    } 
} 



COMP1405 – Programming Basics  Fall 2015 
 

  - 36 - 

Note that we could have simplified the above code with a different formula that does not 
require intermediate variables socksOnly and shoesOnly as follows: 
 
 barefoot = numKids -  withSocks - withShoes + withBoth; 
 
In time, you will learn to make your code more concise and be able to eliminate variables that 
you do not need. 
 
 

 1.7 Calculations and Formulas 
 
Obviously, a computer can compute solutions to mathematical expressions.   We can actually 
perform simple math expressions such as: 

30 + 5 * 2 - 18 / 2 – 2 
 
In such a math expression, we need to understand the order that these calculations are done 
in.   You may recall from high school the BEDMAS memory aid which tells you to perform 
Brackets first, then Exponents, then Division & Multiplication, followed by Addition and 
Subtraction.    
 
So, for example, in the above JAVA expression, the multiplication * operator has preference 
over the addition + operator.  In fact, the * and / operators are evaluated first from left to right 
and then the + and -.    Thus, the step-by-step evaluation of the expression is:  
 

30 + 5 * 2 - 18 / 2 - 2  
30 + 10 - 18 / 2 - 2  
30 + 10 - 9 - 2  
40 - 9 - 2  
31 - 2  
29 

 
We can always add round brackets (called parentheses) to the expression to force a different 
order of evaluation.  Expressions in round brackets are evaluated first (left to right):  
 

(30 + 5) * (2 - (18 / 2 - 2))  
35 * (2 - (18 / 2 - 2))  
35 * (2 - (9 - 2))  
35 * (2 - 7)  
35 * -5  
-175 

 
In JAVA, it is good to add round brackets around code when it helps the person reading the 
program to understand what calculations/operations are done first. 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 37 - 

Another operator that is often useful is the modulus operator which returns the remainder after 
dividing by a certain value.   In JAVA we use the % sign as the modulus operator: 
 

10 % 2  // results in the remainder after dividing 10 by 2 which is 0 
10 % 3 // results in the remainder after dividing 10 by 3 which is 1 
10 % 4 // results in the remainder after dividing 10 by 4 which is 2 
39 % 20 // results in the remainder after dividing 39 by 20 which is 19 

 
Note that using a modulus of 2 will allow you to determine if a number is an odd number or an 
even number … which may be useful in some applications. 
 
In addition to the standard math operations (i.e.,   +,-,*,/ and %), there are some math 
operators that can reduce the amount of code that you need to write.  For example, the 
following code outputs the values 8 and 9 to the console window: 
 
int    n = 8; 
 
System.out.println(n); 
 
n = n + 1; 
 
System.out.println(n); 
 
 
There is an increment operator called ++ which is a quick way to add 1 to a variable.   
The following code does the same thing: 
 
int    n = 8; 
 
System.out.println(n); 
 
n++;  // same as n = n + 1 
 
System.out.println(n); 
 
 
In fact, this short form of incrementing a variable by 1 is often used within other JAVA 
expressions.   For example, the following produces the same result: 
 
int    n = 8; 
 
System.out.println(n++); 
System.out.println(n); 
 
 
Here, the ++ is considered a post-operator in that it increments n after it is used in the 
expression (i.e., after it is printed).   The ++ can also be used as a pre-operator by placing  
it in front of the variable so that the value of the variable is incremented before it is used in  
the expression.   Hence, the following code produces the same result of 8 and 9: 



COMP1405 – Programming Basics  Fall 2015 
 

  - 38 - 

int    n = 8; 
 
System.out.println(n); 
System.out.println(++n); 
 
Similarly, there is a -- post-operator/pre-operator that can be used to decrement a variable. 
 
In addition to these operators, there are some binary assignment operators that perform an 
operation on some numbers and also assign the new value to the variable.   For example, 
consider the following code which outputs 8 and 80 to the console: 
 
int    n = 8; 
 
System.out.println(n); 
 
n = n * 10; 
 
System.out.println(n); 
 
We can replace n = n * 10 with a shorter form which does the same thing as follows: 
 
int    n = 8; 
 
System.out.println(n); 
 
n *= 10;  // same as n = n * 10 
 
System.out.println(n); 
 
This code multiples n by 10 and then puts the result back into n again.   There are similar 
binary operators for the other standard operations:   +=, -=, /= and %=. 
 
If you want to do something beyond these simple operations, you may want to look at the Math 
library in JAVA.   The following is a list of some of the more useful functions in the Math library 
that can be used on numbers: 

Trigonometric:  

• Math.sin(0)           // returns 0.0 which is a double 
• Math.cos(0)           // returns 1.0 
• Math.tan(0.5)         // returns 0.5463024898437905 
• Math.PI           // returns 3.141592653589793 

(note that Math.PI has no brackets … because it is a fixed constant value, not a function) 
 
Conversion and Rounding:  

• Math.round(6.6)       // returns 7 
• Math.round(6.3)       // returns 6 
• Math.ceil(9.2)        // returns 10 
• Math.ceil(-9.8)       // returns -9 



COMP1405 – Programming Basics  Fall 2015 
 

  - 39 - 

• Math.floor(9.2)        // returns 9 
• Math.floor(-9.8)       // returns -10 
• Math.abs(-7.8)         // returns 7.8 
• Math.abs(7.8)          // returns 7.8 

Powers and Exponents:  

• Math.sqrt(144)         // returns 12.0 
• Math.pow(5,2)          // returns 25.0 
• Math.exp(2)            // returns 7.38905609893065 
• Math.log(7.38905609893065) // returns 2.0 

Comparison:  

• Math.max(560, 289)     // returns 560 
• Math.min(560, 289)    // returns 289 

Generation of a Random Number:  

• Math.random()          // returns a double >=0.0 and <1.0 

These functions are used just as shown above.   Notice that we need to write Math. in front of 
all of these functions in order to use them.   This is the way we tell JAVA that we want to use 
the functions in the Math library.   In fact, Math is just one of the many useful pre-defined 
classes in JAVA.   We do not need to import the Math class because it is in the java.lang 
package and is thus automatically imported. 

As an example, consider how to write a program that computes the 
volume of a ball (e.g., how much space a ball takes up). 

How would we write a JAVA code that computes and displays the 
volume of such a ball with radius of 25cm ? 

We need to understand the operations.   We need to do a division, 
some multiplications, raise the radius to the power of 3 and we need 
to know the value of π (i.e., pi). 

Here is the simplest, most straight forward solution: 

int r = 25; 
System.out.println((4 * Math.PI * Math.pow(r, 3) / 3));  

This would also have worked, but requires the radius r to be duplicated: 

System.out.println((4 * Math.PI * (r*r*r) / 3));  

We could even substitute our own value for π : 

System.out.println((4 * 3.141592653589793 * (r*r*r) / 3));  



COMP1405 – Programming Basics  Fall 2015 
 

  - 40 - 

Alternatively, we could have evaluated the 4/3 first: 

System.out.println((4/3 * Math.PI * Math.pow(r, 3)));  

Or even pre-compute 4 π /3  (which is roughly 4.188790204786) : 

System.out.println((4.188790204786 * Math.pow(r, 3)));  

The point is that there are often many ways to write out an expression.   You will find in this 
course that there are many solutions to a problem and that everyone in the class will have their 
own unique solution to a problem (although much of the code will be similar because we will all 
usually follow the same guidelines when writing our programs). 

At the end of this chapter, there is a table that shows of a few other mathematical operators 
that you may wish to use in the future.   Also, it shows the order that JAVA uses to evaluate its 
operators.   You are not responsible for knowing or memorizing anything in that table ... it is 
just for your own personal use. 
 
 

 1.8 Type Conversion 

  
When programming, we often find ourselves working with different kinds of data.   For 
example, even when performing simple calculations, we may end up using a variety of 
primitive data types. 
 

float    price; 
int      payment; 
double   taxes, change; 
 
price = 34.56f;  
taxes = price * 0.13;  
payment = 50;  
 
change = payment - price - taxes; 
 

Notice that the above code performs calculations using ints, floats and doubles.   When 
performing such calculations, JAVA performs some automatic type-conversion.   That is, it 
converts one type of data into another when performing the calculation.    
 
During computations, JAVA will always produce its calculated result as being the same type as 
the more precise data type that was used in the calculation.   In the above example, doubles 
are more precise than floats and ints.   Therefore, when we do price * 0.13, JAVA notices 
that this is a calculation using a float (less precise) and a double (more precise).   Therefore 
the float is converted to a double during the computation and the resulting answer is returned 
as a double, and stored in the taxes variable. 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 41 - 

Consider the difference in output of the following code: 
 

float  price1 = 34.56f; 
double price2 = 34.56;  
System.out.println(price1 * 0.13f); // displays 4.4928 
System.out.println(price2 * 0.13f); // displays 4.492799835205078 

 
Notice that the same calculation is performed in both cases but that one uses a float price 
amount while the other uses a double price amount.   The 1st calculation uses two floats, and 
so the result is a less precise float value.   The 2nd calculation uses  a double, so the entire 
calculation is performed using doubles, generating a more precise result. 
 
What if we changed the code to store the results as follows: 
 

float  price1 = 34.56f; 
double price2 = 34.56; 
float  result; 
 
result = price1 * 0.13f; 
result = price2 * 0.13f; // gives “possible loss of precision” error 

 
The above code will not compile.   JAVA notices that in the last line, it 
is performing a calculation that will result in a double.   However, 
result is of type float.   Since floats are less precise that doubles, the 
JAVA compiler informs us that there would be a loss of precision if we 
tried to take the double answer and “squeeze” it into a smaller float 
variable.   Basically, we cannot squeeze a big thing into a small box.  
 
When assigning calculation results to a variable, JAVA always checks 
to make sure that the resulting type of the calculation will “fit” into the 
variable.    We CANNOT store a … 
 

• double result in a variable of type float, int, long, byte, short 
• float result in a variable of type int, long, byte, short 
• long result in a variable of type int, byte, short 
• int result in a variable of type byte, short 
• short result in a variable of type byte 
 

If we attempt to assign a result into a variable of a less precise type (as above), then we will 
ALWAYS get a compiler error stating “possible loss of precision”. 
 
However, we CAN store a: 
 

• double result in a variable of type double 
• float result in a variable of type float, double 
• long result in a variable of type long, float, double 
• int result in a variable of type int, long, float, double 
• short result in a variable of type short, int, long, float, double 
• byte result in a variable of type byte, short, int, long, float, double 



COMP1405 – Programming Basics  Fall 2015 
 

  - 42 - 

Sometimes, however, we may want to take a more precise calculated value and store it into a 
less precise variable, perhaps for later use.   For example, we may want to perform a money-
based calculation precisely but then we may only be interested in the whole number portion, or 
maybe only 2 decimal places.   This example calculates the change owed to a person, extracts 
and stores the whole portion (as whole monetary bills to be returned to the customer … ignore 
the fact that toonies and loonies are not bills) and the remaining change as a separate value: 
 
  float    price, changeDue; 
  int      payment, billsDue; 
  double   taxes, change; 
   
  price = 34.56f;  
  taxes = price * 0.13;  
  payment = 50;  
   
  change = payment - price - taxes; 
  billsDue = (int)change; 
  changeDue = (float)change - billsDue; 
  System.out.println(change);  // displays 10.947198448181151 
  System.out.println(billsDue); // displays 10 
  System.out.println(changeDue); // displays 0.94719887 
 
Notice that we used (int) and (float).   These are called explicit type-casts.  In English, the 
term typecasting means to identify as belonging to a certain type.   What we are doing is 
telling the JAVA compiler that we would like to “convert” a particular value into the type that we 
specified between parentheses ( ).    
 
We can typecast any numeric type (i.e., double, float, int, long, byte, short, char) to any 
other numeric type at any time.  We just need to remember what happens each time as 
follows: 
 

• if x is a double or float then (long)x, (int)x, (short)x, (byte)x and (char)x will discard 
the decimal places … it will NOT round off, just truncate. 

 
• if x is a long, int, short, byte or char, then (double)x and (float)x will set the decimal 

places to be .0. 
 
• if a more precise value (e.g., long or double) is type-casted to a less precise value 

(e.g., int or double) then some data WILL be lost. 
 
Here are some examples in which the conversion results in data loss:  
 

(float)34.56767867   ==>    34.56768    // rounded off 
(int)2.4             ==>    2         // decimal places lost  
(int)2.9             ==>    2         // does not round off 

 
Here are some examples in which the conversion results in data loss:  

 
(char)947384              ==>    '?'  
(int)123456789012345678L  ==>    -1506741426 



COMP1405 – Programming Basics  Fall 2015 
 

  - 43 - 

Conversions may be intermediate and unintentional: 

int       sum = 30;  
double    avg = sum / 4;  // result is 7.0, not 7.5 !!! 

Perhaps a more common type of conversion is that of converting numbers to Strings and vice-
versa.   In JAVA, there are some pre-defined functions to do this for us. 

In order to convert a given String to a particular numeric data type, there are various functions 
available: 

String s = ...; 
 
Integer.parseInt(s); // returns int value of s  
Double.parseDouble(s) // returns double value of s 
Float.parseFloat(s) // returns float value of s 

Here are some examples: 

Integer.parseInt("7438");  // returns int value 7438  
Double.parseDouble("234.65") // returns double value 234.65  
Float.parseFloat("234.65")  // returns float value 234.65f  

We sometimes need to use these functions if we are given a String from the user and would 
like to convert the input string to a numeric value for calculation purposes.   For example, the 
following code asks the user for his/her age and then uses the input to determine the number 
of years until their retirement: 
 
String input; 
int  age; 
 
input = JOptionPane.showInputDialog("What is your age ?"); 
age = Integer.parseInt(input); 
      
JOptionPane.showMessageDialog(null, "You have " + (65 - age) +  
                              " years until retirement"); 
 
 
Finally, we would also like to be able to convert in the other direction.   That is, perhaps we 
would like to convert a number to a String.   This is often necessary in order to place numeric 
information into a text field on a window.   The simplest way to do this is to take the 
int/float/double/long value and simply add it to an empty String.   JAVA will then convert it: 
 
int      age; 
String   s; 

 
age = 21; 
s = age;  // compile error:   incompatible types 
s = "" + age; // this will work 
 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 44 - 

Another option is to use any of the following functions: 
 

Integer.toString(225)        ==> "225"  
Double.toString(225.56)      ==> "225.56"  
Float.toString(225.56f)      ==> "225.56"  
 
Integer.toBinaryString(225)  ==> "11100001"  
Integer.toHexString(34728)   ==> "87a8"  
Integer.toOctalString(34728) ==> "103650"  

 
Notice that the last 3 are quite useful because they actually change the appearance of the 
integer value within the string according to the desired number system. 
 
 

 1.9 Formatting Text 
 
Consider the following similar program which asks the user for the price of a product, then 
displays the cost with taxes included, then asks for the payment amount and finally prints out 
the change that would be returned: 

import java.util.Scanner; 
 
public class ChangeCalculatorProgram {  
    public static void main(String[] args) { 
        // Declare the variables that we will be using 
        double price, total, payment, change; 
 
        // Get the price from the user 
        System.out.println("Enter product price:"); 
        price = new Scanner(System.in).nextFloat(); 
 
        // Compute and display the total with 13% tax 
        total = price * 1.13; 
        System.out.println("Total cost:$" + total); 
 
        // Ask for the payment amount 
        System.out.println("Enter payment amount:"); 
        payment = new Scanner(System.in).nextFloat(); 
  
        // Compute and display the resulting change 
        change = payment - total; 
        System.out.println("Change:$" + change); 
    } 
} 
 
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 45 - 

Here is the output from running this program with a price of $35.99 and payment of $50: 
 
 
Enter product price: 
35.99 
Total cost:$40.66870172505378 
Enter payment amount: 
50 
Change:$9.33129827494622 

 
Notice all of the decimal places.   This is not pretty.   Even worse …if you were to run the 
program and enter a price of 8.85 and payment of 10, the output would be as follows: 
 
 
Enter product price: 
8.85 
Total cost:$10.0005003888607 
Enter payment amount: 
10 
Change:$-5.003888607006957E-4 

 

The E-4 indicates that the decimal place should be moved 4 units to the left…so the resulting 
change is actually -$0.0005003888607006957.   While the above answers are correct, it would 
be nice to display the numbers properly as numbers with 2 decimal places. 

JAVA’s String class has a nice function called format() which will allow us to format a String in 
almost any way that we want to.   Consider (from our code above) replacing the change output 
line to: 

System.out.println("Change:$" + String.format("%,1.2f", change)); 

The String.format() always returns a String object with a format that we get to specify.  In our 
example, this String will represent the formatted change which is then printed out.   Notice 
that the function allows us to pass-in two parameters (i.e., two pieces of information separated 
by a comma , character).   

The first parameter is itself a String object that specifies how we want to format the resulting 
String.   The second parameter is the value that we want to format (usually a variable name).   
Pay careful attention to the brackets.  Clearly, change is the variable we want to format.   
Notice the format string "%,1.2f".   These characters have special meaning to JAVA.   The % 
character indicates that there will be a parameter after the format String (i.e., the change 
variable).  The 1.2f indicates to JAVA that we want it to display the change as a floating point 
number with at least 1 digit before the decimal and exactly 2 digits after the decimal.   The , 
character indicates that we would like it to automatically display commas in the money amount 
when necessary (e.g.,  $1,500,320.28).   



COMP1405 – Programming Basics  Fall 2015 
 

  - 46 - 

Apply this formatting to the total amount as well:    

import java.util.Scanner; 
 
public class ChangeCalculatorProgram2 {  
    public static void main(String[] args) { 
        double price, total, payment, change; 
 
        System.out.println("Enter product price:"); 
        price = new Scanner(System.in).nextFloat(); 
 
        total = price * 1.13; 
        System.out.println("Total cost:$" + String.format("%,1.2f", total)); 
 
        System.out.println("Enter payment amount:"); 
        payment = new Scanner(System.in).nextFloat(); 
  
        change = payment - total; 
        System.out.println("Change:$" + String.format("%,1.2f", change)); 
    } 
} 
 
 
Here is the resulting output for both test cases: 
 
Enter product price: 
35.99 
Total cost:$40.67 
Enter payment amount: 
50 
Change:$9.33 

Enter product price: 
8.85 
Total cost:$10.00 
Enter payment amount: 
10 
Change:$-0.00 

 
It is a bit weird to see a value of -0.00, but that is a result of the calculation.   Can you think of a 
way to adjust the change calculation of payment - total so that it eliminates the - sign ?  Try it. 
 
The String.format() can also be used to align text as well.   For example, suppose that we 
wanted our program to display a receipt instead of just the change.   How could we display a 
receipt in this format: 

  Product Price     35.99 
            Tax      4.68 
------------------------- 
       Subtotal     40.67 
Amount Tendered     50.00 
========================= 
     Change Due      9.33  

If you notice, the largest line of text is the “Amount Tendered” line which requires 15 
characters.   After that, the remaining spaces and money value take up 10 characters.   We 
can therefore see that each line of the receipt takes up 25 characters.    



COMP1405 – Programming Basics  Fall 2015 
 

  - 47 - 

We can then use the following format string to print out a line of text: 

System.out.println(String.format("%15s%10.2f", aString, aFloat)); 

Here, the %15s indicates that we want to display a string which we want to take up exactly 15 
characters.   The %10.2f then indicates that we want to display a float value with 2 decimal 
places that takes up exactly 10 characters in total (including the decimal character).   Notice 
that we then pass in two parameters: which must be a String and a float value in that order 
(these would likely be some variables from our program).   We can then adjust our program to 
use this new String format as follows … 

import java.util.Scanner; 
 
public class ChangeCalculatorProgram3 {  
    public static void main(String[] args) { 
        double price, tax, total, payment, change; 
 
        System.out.println("Enter product price:"); 
        price = new Scanner(System.in).nextFloat(); 
 
        System.out.println("Enter payment amount:"); 
        payment = new Scanner(System.in).nextFloat(); 
 
        tax = price * 0.13; 
        total = price + tax; 
        change = payment - total; 
         
        System.out.println(String.format("%15s%10.2f","Product Price",  
              price)); 
        System.out.println(String.format("%15s%10.2f","Tax", tax)); 
        System.out.println("-------------------------"); 
        System.out.println(String.format("%15s%10.2f","Subtotal", total)); 
        System.out.println(String.format("%15s%10.2f","Amount Tendered",  
            payment)); 
        System.out.println("========================="); 
        System.out.println(String.format("%15s%10.2f","Change Due",  
             change));  
    } 
} 
 
The result is the correct formatting that we wanted.   Realize though that in the above code, we 
could have also left out the formatting for the 15 character strings by manually entering the 
necessary spaces: 
 

System.out.println(String.format("  Product Price%10.2f", price)); 
System.out.println(String.format("            Tax%10.2f", tax)); 
System.out.println(              "-------------------------"); 
System.out.println(String.format("       Subtotal%10.2f", total)); 
System.out.println(String.format("Amount Tendered%10.2f", payment)); 
System.out.println(              "=========================");  
System.out.println(String.format("     Change Due%10.2f", change));  
 



COMP1405 – Programming Basics  Fall 2015 
 

  - 48 - 

However, the String.format function provides much more flexibility.  For example, if we used 
%-15S instead of %15s, we would get a left justified result (due to the -) and capitalized letters 
(due to the capital S) as follows: 

PRODUCT PRICE       34.99 
TAX                  4.55 
------------------------- 
SUBTOTAL            39.54 
AMOUNT TENDERED     50.00 
========================= 
CHANGE DUE          10.46  

 
There are many more format options that you can experiment with.  Just make sure that you 
supply the required number of parameters.  That is, you need as many parameters as you 
have % signs in your format string. 
 
For example, the following code will produce a MissingFormatArgumentException since one of the 
arguments (i.e., values) is missing (i.e., 4 % signs in the format string, but only 3 supplied 
values: 
 

System.out.println(String.format("$%.2f + $%.2f + $%.2f = $%.2f", x, y, z)); 
 
Also, you should be careful not to miss-match types, otherwise an error may occur  
(i.e., IllegalFormatConversionException). 
 
At the end of this chapter, there is a table that shows of a few other format types that you may 
wish to use in the future.   You are not responsible for knowing or memorizing anything in that 
table ... it is just for your own personal use. 
 
Hopefully, you now feel confident enough to writing simple one-file JAVA programs to interact 
with the user, perform some computations and solve some relatively simple problems. 
 
 

  



COMP1405 – Programming Basics  Fall 2015 
 

  - 49 - 

 

Supplemental Information (Mathematical Operators) 
JAVA also provides bitwise operators for integers and booleans: 

• ~   bitwise complement (prefix unary operator) 
• &   bitwise and 
• |   bitwise or 
• ^   bitwise exclusive-or 
• <<  shift bits left, filling in with zeros 
• >>  shift bits right, filling in with sign bit 
• >>> shift bits right, filling in with zeros 

To understand how these work, you must understand how the numbers are stored as bits in 
the computer.  We will not discuss bit manipulation in this course. 
 
Here is a table showing the operators in JAVA (some which we have not yet discussed) and 
their precedence (i.e., the order that they get evaluated in).  The topmost elements of the 
table have higher precedence and are therefore evaluated first (in a left to right fashion).  In 
the table, <exp> represents any JAVA expression.  If however, you are writing code that 
depends highly on this table, then it is likely that your code is too complex.  

 
postfix operators []       .       ()        ++        -- 
prefix operators ++       --     -       ~       ! 
creation/cast new   (<typecast>) 
multiplication/division/modulus *     /     % 
addition/subtraction +     - 
shift <<     >>     >>> 
comparison <     <=     >     >=     instanceof 
equality = =        ! = 
bitwise-and & 
bitwise-xor ^ 
bitwise-or | 
logical and && 
logical or || 
conditional <bool_exp>?  <true_val>:  <false_val> 
assignment = 
operation assignment +=     -=     *=     /=     %= 
bitwise assignment >>=     <<=     >>>= 
boolean assignment &=     ^=     |= 

 



COMP1405 – Programming Basics  Fall 2015 
 

  - 50 - 

Supplemental Information (Other String.format Flags) 
 
There are a few other format types that may be used in the format string: 
 

Type Description of What it Displays Example Output 
%d a general integer 4096 

%x an integer in lowercase hexadecimal ff 

%X an integer in uppercase hexadecimal FF 

%o an integer in octal 377 

%f a floating point number with a fixed number of spaces 83.43 

%e an exponential floating point number 7.869877e-03 

%g a general floating point number with a fixed number of significant digits 0.008 

%s a string as given "Hello" 

%S a string in uppercase "HELLO" 

%n a platform-independent line end  <CR><LF> 

%b a boolean in lowercase true 

%B a boolean in uppercase FALSE 
 
There are also various format flags that can be added after the % sign: 

Format Flag Description of What It Does Example Output 
- numbers are to be left justified 2378.348 followed by 

any necessary spaces 
0 leading zeros should be shown 000244.87 
+ plus sign should be shown if positive number +67.34 
( enclose number in round brackets if negative (439.67) 
, show decimal group separators 2,347,892.99 

 
There are many options for specifying various formats including the formatting of Dates and Times, but 
they will not be discussed any further here.   Please look at the java documentation. 
 
 
 
 

 

 

 


