

Chapter 2

Decision Making

What is in This Chapter ?
In this chapter we discuss how to write code that makes decisions using the if statement and
the switch statement.

COMP1405 – Decision Making Fall 2015

 - 52 -

 2.1 Using the IF Statement

It is often necessary to be able to make a decision in a program and to act accordingly. For
example, assume that we would like to examine a student's final mark in this course and print
out an appropriate message. For example:

If the student’s grade is less than 50 then print out "Too bad, try again next term.”,
otherwise print out "Congratulations!".

You will notice that this sentence is logically made up of 3 parts: (1) the part that checks
whether or not the student passed (known as the “condition statement”) (2) the part that
specifies what to do if they do not pass (known as the “if body”), and (3) the part that specifies
what to do if the student does pass (known as the “else body”).

We can use the if statement in JAVA to make a similar decision like this:

if (grade < 50)
 System.out.println("Too bad, try again next term.");
else
 System.out.println("Congratulations!");

Notice that the condition statement is between parentheses. Depending on the value of the
grade variable, the code will print out only one of the two statements, but not both. Do you
know why the following code works the same way ?

if (grade >= 50)
 System.out.println("Congratulations!");
else
 System.out.println("Too bad, try again next term.");

In some cases, when making a decision, we do not need to “do something” in both cases. For
example, what if we just wanted to print “Congratulations!” for students who passed, and do
nothing in the case that they failed ? In this case, we could leave off the else part:

if (grade >= 50)
 System.out.println("Congratulations!");

In the examples above, we had one line of code to evaluate for each branch of the if condition.
That is, we only had one statement to print each time. In general, when using an if statement,
you are allowed to have multiple lines of JAVA code evaluated for each case. When you have
more than one line, you need to insert some braces { } after the if and else as follows …

COMP1405 – Decision Making Fall 2015

 - 53 -

if (grade >= 50) {
 System.out.print("Congratulations! ");
 System.out.print(grade);
 System.out.println(" is a passing grade.");
}
else {
 System.out.print(grade);
 System.out.println(" is quite low. Oh well, there's always next term.");
}

It is often a good idea to use the braces anyway, even if you have only one line of code
because it may prevent you from making some mistakes. For example, the following code is
not the same as above:

if (grade >= 50)
 System.out.print("Congratulations! ");
 System.out.print(grade);
 System.out.println(" is a passing grade.");
else
 System.out.print(grade);
 System.out.println(" is quite low. Oh well, there's always next term.");

The code above will not compile. Since the brackets are missing, JAVA interprets the code as
if there is only one line in the if body as follows:

if (grade >= 50)
 System.out.print("Congratulations! ");
System.out.print(grade);
System.out.println(" is a passing grade.");
else
 System.out.print(grade);
System.out.println(" is quite low. Oh well, there's always next term.");

It then sees the else as being out of place … and will give a compile error saying:
‘else’ without ‘if’. An even worse scenario is when JAVA does not notice the error at all.
Consider the following:

if (grade >= 50)
 System.out.print("Congratulations! ");
 System.out.print(grade);
 System.out.println(" is a passing grade.");
System.out.println("All Done.");

In the above code, a grade of 75 will output the following:

COMP1405 – Decision Making Fall 2015

 - 54 -

Congratulations! 75 is a passing grade.
All Done.

… and a grade of 25 will output this:

25 is a passing grade.
All Done.

Clearly this is wrong. Also, be careful not to place a semi-colon ; after the if statement
parentheses:

if (grade >= 50);
 System.out.println("Congrats! " + grade + " is a passing grade.");

In the above code, a grade of 25 will output the following:

Congrats! 25 is a passing grade.

Why ? Because the semi-colon ; at the end of the first line tells JAVA that there is no body for
the if statement. Thus, the System.out.println(…) line is outside the if statement altogether
and is therefore always evaluated.

Notice that we used < and >= in our examples above. These are called logical operators
because they take two values, compare them, and then produce a logical boolean result of
either true or false. They are often used to compare numbers. Here is the list of logical
operators that we can use:

• < less than
• <= less than or equal to
• == equal to
• != not equal to
• >= greater than or equal to
• > greater than

When writing an if statement, you must make sure that whatever is placed between the
parentheses () is a JAVA expression that results in a boolean (i.e., the answer is either true
or false).

COMP1405 – Decision Making Fall 2015

 - 55 -

Example:

Bob and Steve went on a vacation together. During the trip Bob paid for all the
food and for the hotel. Steve paid for the gas and for the entertainment. Write
a program to compute the amount of money that Bob owes Steve (or Steve
owes Bob) after the trip, assuming that they decided to split the expenses
evenly.

First, we get all the expense information as follows:

float food, hotel, gas, entertainment;
Scanner keyboard = new Scanner(System.in);

// Get the user input
System.out.println("Enter food expense total: ");
food = keyboard.nextFloat();

System.out.println("Enter hotel bill total: ");
hotel = keyboard.nextFloat();

System.out.println("Enter gasoline expense total: ");
gas = keyboard.nextFloat();

System.out.println("Enter entertainment expense total: ");
entertainment = keyboard.nextFloat();

Now we need to compute the amount that each "should have" spent in order to be fair:

 each = (food + hotel + gas + entertainment) / 2;

Then we need to determine who paid more and find the amount owed. We can do this by
subtracting what Steve actually paid from what he should have paid as follows:

 difference = each - (gas + entertainment);

Now, if the difference is more than zero, then Steve owes Bob this difference. If it is less than
zero, then Steve paid too much ... so Bob owes Steve. We need to use an if statement to
check for this and print an appropriate message:

if (difference > 0)
 System.out.println("Steve owes Bob $" + difference);
else
 System.out.println("Bob owes Steve $" + difference);

COMP1405 – Decision Making Fall 2015

 - 56 -

However, although this code is correct, it simply displays the final answer and it is not easy to
determine if the answer is correct. It may be nice to include some extra print statements that
show the breakdown of the calculations as well as formatting the money values properly.
Here is the completed program which provides a nice easy-to-read program output:

import java.util.Scanner;

public class TripExpenseProgram {
 public static void main(String[] args) {
 float food, hotel, gas, entertainment, each, difference;
 Scanner keyboard = new Scanner(System.in);

 // Get the user input
 System.out.println("Enter food expense total: ");
 food = keyboard.nextFloat();

 System.out.println("Enter hotel bill total: ");
 hotel = keyboard.nextFloat();

 System.out.println("Enter gasoline expense total: ");
 gas = keyboard.nextFloat();

 System.out.println("Enter entertainment expense total: ");
 entertainment = keyboard.nextFloat();

 // Calculate the difference
 each = (food + hotel + gas + entertainment) / 2;
 difference = each - (gas + entertainment);

 // These four lines are not necessary, but they give a breakdown
 // that will help verify whether or not the result is correct.
 System.out.println("\nThe total expenses are " +
 String.format("$%,1.2f", each * 2));
 System.out.println("Each person should pay " +
 String.format("$%,1.2f", each));

 System.out.println("Steve paid " +
 String.format("$%,1.2f", (gas + entertainment)));
 System.out.println("Bob paid " +
 String.format("$%,1.2f", (food + hotel)));

 // Decide who owes who and then display the results
 if (difference > 0)
 System.out.print("\nTherefore, Steve owes Bob ");
 else
 System.out.print("\nTherefore, Bob owes Steve ");

 System.out.println(String.format("$%,1.2f", difference));

 }
}

Here is what the output will look like ... notice how nicely it reads. Try to do this with your
programs in the course so that correct results can be verified just by reading the program's
output:

COMP1405 – Decision Making Fall 2015

 - 57 -

Enter food expense total:
536.92
Enter hotel bill total:
1282.13
Enter gasoline expense total:
78.45
Enter entertainment expense total:
389.21

The total expenses are $2,286.71
Each person should pay $1,143.35
Steve paid $467.66
Bob paid $1,819.05

Therefore, Steve owes Bob $675.70

Example:

Assume that you want to take a vote among 5 friends to find out whether or
not they agree to some issue (e.g., like not wearing speedos at a pool
party). Each person votes yes or no. Write a program that determines
the majority response (either yes or no).

To begin the program, consider first getting all 5 votes and storing them.
Then use the votes to determine the majority.

char v1, v2, v3, v4, v5;
Scanner keyboard = new Scanner(System.in);

// Get the user input
System.out.println("Enter vote 1 (y or n): ");
v1 = keyboard.next().charAt(0);

System.out.println("Enter vote 2 (y or n): ");
v2 = keyboard.next().charAt(0);

System.out.println("Enter vote 3 (y or n): ");
v3 = keyboard.next().charAt(0);

System.out.println("Enter vote 4 (y or n): ");
v4 = keyboard.next().charAt(0);

System.out.println("Enter vote 5 (y or n): ");
v5 = keyboard.next().charAt(0);

Now we need to count up the yes votes and the no votes. We can use one variable to count
the yes votes and another to count the no votes and then compare them to make our decision:

COMP1405 – Decision Making Fall 2015

 - 58 -

int yesCount = 0;
int noCount = 0;

if (v1 == 'y')
 yesCount++;
else
 noCount++;
if (v2 == 'y')
 yesCount++;
else
 noCount++;
if (v3 == 'y')
 yesCount++;
else
 noCount++;
if (v4 == 'y')
 yesCount++;
else
 noCount++;
if (v5 == 'y')
 yesCount++;
else
 noCount++;
if (yesCount > noCount)
 System.out.println("The majority voted YES");
else
 System.out.println("The majority voted NO");

Can you think of another way of doing this by using only one counter and only one variable for
user input ?

Well, we can start with a count of zero and then increase it when we get a YES vote and
decrease when we get a NO vote. Notice what would happen:

count starts at 0

vote 1 = yes count increases to 1
vote 2 = yes count increases to 2
vote 3 = no count decreases to 1
vote 4 = yes count increases to 2
vote 5 = no count decreases to 1

count starts at 0

vote 1 = no count decreases to -1
vote 2 = no count decreases to -2
vote 3 = no count decreases to -3
vote 4 = yes count increases to -2
vote 5 = yes count decreases to -1

Once we have all the votes, we can check if the count is positive. In that case, the majority
noted YES. If the count is negative, the majority votes NO. If the count is zero (cannot
happen when number of voters is odd though), then there is a TIE. Here is the resulting code
that uses only one count variable:

COMP1405 – Decision Making Fall 2015

 - 59 -

import java.util.Scanner;

public class MajorityProgram {
 public static void main(String[] args) {
 char vote;
 int count = 0;

 Scanner keyboard = new Scanner(System.in);

 // Get the user input and apply to the total
 System.out.println("Enter vote 1 (y or n): ");
 vote = keyboard.next().charAt(0);
 if (vote == 'y')
 count++;
 else
 count--;
 System.out.println("Enter vote 2 (y or n): ");
 vote = keyboard.next().charAt(0);
 if (vote == 'y')
 count++;
 else
 count--;
 System.out.println("Enter vote 3 (y or n): ");
 vote = keyboard.next().charAt(0);
 if (vote == 'y')
 count++;
 else
 count--;
 System.out.println("Enter vote 4 (y or n): ");
 vote = keyboard.next().charAt(0);
 if (vote == 'y')
 count++;
 else
 count--;
 System.out.println("Enter vote 5 (y or n): ");
 vote = keyboard.next().charAt(0);
 if (vote == 'y')
 count++;
 else
 count--;
 if (count > 0)
 System.out.println("The majority voted YES");
 else
 System.out.println("The majority voted NO");

 }
}

We will see later that we can shorten this code a lot more ...

COMP1405 – Decision Making Fall 2015

 - 60 -

Example:

Let us write a program that displays the following menu.

Luigi's Pizza

 S(SML) M(MED) L(LRG)
1. Cheese 5.00 7.50 10.00
2. Pepperoni 5.75 8.63 11.50
3. Combination 6.50 9.75 13.00
4. Vegetarian 7.25 10.88 14.50
5. Meat Lovers 8.00 12.00 16.00

The program should then prompt (i.e., get input from) the user for the type of pizza he/she
wants to order (i.e., 1 to 5) and then the size of the pizza 'S', 'M' or 'L'. Then the program
should compute and display the cost of the pizza with 13% HST added.

To begin, we need to define a class to represent the program and display the menu:

public class LuigisPizzaProgram {
 public static void main(String[] args) {
 System.out.println("Luigi's Pizza ");
 System.out.println("---");
 System.out.println(" S(SML) M(MED) L(LRG)");
 System.out.println("1. Cheese 5.00 7.50 10.00 ");
 System.out.println("2. Pepperoni 5.75 8.63 11.50 ");
 System.out.println("3. Combination 6.50 9.75 13.00 ");
 System.out.println("4. Vegetarian 7.25 10.88 14.50 ");
 System.out.println("5. Meat Lovers 8.00 12.00 16.00 ");
 }
}

We can then get the user input and store it into variables:

Scanner keyboard = new Scanner(System.in);

System.out.println("What kind of pizza do you want (1-5) ?");
int kind = keyboard.nextInt();

System.out.println("What size of pizza do you want (S, M, L) ?");
char size = keyboard.next().charAt(0);

Now that we have the kind and size, we can compute the total cost. Notice that the cost of a
small pizza increases by $0.75 as the kind of pizza increases. Also, you may notice that the
cost of a medium is 1.5 x the cost of a small and the cost of a large is 2 x a small. So we can
compute the cost of any pizza based on its kind and size by using a single mathematical
formula. Can you figure out the formula ?

A small pizza would cost: smallCost = $4.25 + (kind x $0.75)

COMP1405 – Decision Making Fall 2015

 - 61 -

A medium pizza would cost: mediumCost =smallCost * 1.5
A large pizza would cost: largeCost =smallCost * 2.

Can you write the code now ?

float cost = 4.25f + (kind * 0.75f);
if (size == 'M')
 cost *= 1.5f;
else if (size == 'L')
 cost *= 2;

And of course, we can then compute and display the cost before and after taxes. Here is the
completed program:

import java.util.Scanner;

public class LuigisPizzaProgram {
 public static void main(String[] args) {
 System.out.println("Luigi's Pizza ");
 System.out.println("---");
 System.out.println(" S(SML) M(MED) L(LRG)");
 System.out.println("1. Cheese 5.00 7.50 10.00 ");
 System.out.println("2. Pepperoni 5.75 8.63 11.50 ");
 System.out.println("3. Combination 6.50 9.75 13.00 ");
 System.out.println("4. Vegetarian 7.25 10.88 14.50 ");
 System.out.println("5. Meat Lovers 8.00 12.00 16.00 ");

 Scanner keyboard = new Scanner(System.in);

 System.out.println("What kind of pizza do you want (1-5) ?");
 int kind = keyboard.nextInt();

 System.out.println("What size of pizza do you want (S, M, L) ?");
 char size = keyboard.next().charAt(0);

 float cost = 4.25f + (kind * 0.75f);
 if (size == 'M')
 cost *= 1.5f;
 else if (size == 'L')
 cost *= 2;

 System.out.println("The cost of the pizza is: " +
 String.format("$%,1.2f", cost));
 System.out.println("The price with tax is: " +
 String.format("$%,1.2f", cost * 1.13));
 }
}

COMP1405 – Decision Making Fall 2015

 - 62 -

Example:

Consider writing a program that will be placed at a kiosk in front of a bank to allow
customers to determine whether or not they qualify for the bank’s new
“Entrepreneur Startup Loan”.

Assume that this kind of loan is only given out to:

(1) someone who is currently employed AND who is a recent University
graduate, or ..

(2) someone who is employed AND over 30 years of age AND has at least 10
years of full-time work experience.

The program should display information to the screen as well as ask the user various
questions … and then determine if the person qualifies.

Here is a start to the program that displays some opening instructions:

import java.util.Scanner;

public class LoanQualificationProgram {
 public static void main(String[] args) {
 // Get a Scanner object for user input
 Scanner keyboard = new Scanner(System.in);

 // Display some opening instructions
 System.out.println("Bank of Java");
 System.out.println("============");
 System.out.println("Follow the instructions below to " +
 "determine whether or not you qualify " +
 "for a Entrepreneur Startup Loan...\n");
 }
}

Now we need to start asking the user some questions. We can first ask whether or not he/she
is employed. Likely we will ask for a character such as ‘y’, ‘Y’, ‘n’ or ‘N’. We can then check
the input and store the employment status as a boolean. Here is the new code to add:

char charInput;
boolean employed;

// Determine whether or not the user is employed
System.out.print("Are you currently employed (Y/N)? ");
charInput = keyboard.nextLine().charAt(0);

if ((charInput == 'y') || (charInput == 'Y'))
 employed = true;
else
 employed = false;

Interestingly, we can shorten this code by realizing that the employed variable is a boolean
variable and the condition of the IF statement is also a boolean. So we can replace this:

COMP1405 – Decision Making Fall 2015

 - 63 -

if ((charInput == 'y') || (charInput == 'Y'))
 employed = true;
else
 employed = false;

with this ... which does the same thing and is more concise:

employed = (charInput == 'y') || (charInput == 'Y');

We can similarly ask whether or not they have a recent University degree:

boolean hasDegree;

// Determine if the user has a recent University degree
System.out.print("Did you graduate with a University degree " +
 "in the past 6 months (Y/N)? ");
charInput = keyboard.nextLine().charAt(0);

hasDegree = (charInput == 'y') || (charInput == 'Y');

In a similar manner, we can ask for the user’s age and the number of years that they have
worked at full time status:

int age, yearsWorked;

// Determine the user's age
System.out.print("How old are you ? ");
age = keyboard.nextInt();

// Determine the number of years worked at full time status
System.out.print("How many years have you been working " +
 "at full time status ? ");
yearsWorked = keyboard.nextInt();
System.out.println("\n");

Finally, we can determine whether or not they qualify:

char charInput;
boolean employed, hasDegree;
int age, yearsWorked;

...

// Now determine whether or not the person qualifies for the loan
if (employed) {

COMP1405 – Decision Making Fall 2015

 - 64 -

 if (hasDegree)
 System.out.println("Congratulations! You qualify " +
 "for the ESL loan.");
 else {
 if (age >= 30) {
 if (yearsWorked >= 10)
 System.out.println("Congratulations! You qualify " +
 "for the ESL loan.");
 else
 System.out.println("Sorry, you must have worked " +
 "at least 10 years at full " +
 "time status to qualify.");
 }
 else
 System.out.println("Sorry, you must be a recent " +
 "University graduate or be at " +
 "least 30 years of age.");
 }
}
else {
 System.out.println("Sorry, you must be currently " +
 "employed to qualify.");
}

Here is the finished code:

import java.util.Scanner;

public class LoanQualificationProgram {
 public static void main(String[] args) {
 char charInput;
 boolean employed, hasDegree;
 int age, yearsWorked;

 // Get a Scanner object for user input
 Scanner keyboard = new Scanner(System.in);

 // Display some opening instructions
 System.out.println("Bank of Java");
 System.out.println("============");
 System.out.println("Follow the instructions below to " +
 "determine whether or not you qualify " +
 "for a Entrepreneur Startup Loan...\n");

 // Determine whether or not the user is employed
 System.out.print("Are you currently employed (Y/N)? ");
 charInput = keyboard.nextLine().charAt(0);
 employed = (charInput == 'y') || (charInput == 'Y');

 // Determine if the user has a recent University degree
 System.out.print("Did you graduate with a University degree " +
 "in the past 6 months (Y/N)? ");
 charInput = keyboard.nextLine().charAt(0);
 hasDegree = (charInput == 'y') || (charInput == 'Y');

 // Determine the user's age
 System.out.print("How old are you ? ");

COMP1405 – Decision Making Fall 2015

 - 65 -

 age = keyboard.nextInt();

 // Determine the number of years worked at full time status
 System.out.print("How many years have you been working " +
 "at full time status ? ");
 yearsWorked = keyboard.nextInt();
 System.out.println("\n");

 // Now determine whether or not the person qualifies for the loan
 if (employed) {
 if (hasDegree)
 System.out.println("Congratulations! You qualify " +
 "for the ESL loan.");
 else {
 if (age >= 30) {
 if (yearsWorked >= 10)
 System.out.println("Congratulations! You qualify " +
 "for the ESL loan.");
 else
 System.out.println("Sorry, you must have worked " +
 "at least 10 years at full " +
 "time status to qualify.");
 }
 else
 System.out.println("Sorry, you must be a recent " +
 "University graduate or be at " +
 "least 30 years of age.");
 }
 }
 else {
 System.out.println("Sorry, you must be currently " +
 "employed to qualify.");
 }
 }
}

And here is some sample output:

Bank of Java
============
Follow the instructions below to determine whether or not you qualify for a
Entrepreneur Startup Loan...

Are you currently employed (Y/N)? Y
Did you graduate with a University degree in the past 6 months (Y/N)? N
How old are you ? 38
How many years have you been working at full time status ? 12

Congratulations! You qualify for the ESL loan.

COMP1405 – Decision Making Fall 2015

 - 66 -

Example:

Consider now an example in which we take the number grade of a student (i.e., from 0% to
100%) and output a letter grade (from F to A+). How would we do this ? Well … we would
need to understand which letter grade corresponds to which number grades as follows:

A = 80% - 100%
B = 70% - 79%
C = 60% - 69%

D = 50% - 59%
F = 0% - 49%

So, given a grade, how can we output the appropriate letter ? We could use the if statement:

if (grade >= 80)
 System.out.println("A");
else {
 if (grade >= 70)
 System.out.println("B");
 else {
 if (grade >= 60)
 System.out.println("C");
 else {
 if (grade >= 50)
 System.out.println("D");
 else
 System.out.println("F");
 }
 }
}

You may notice now that we have an if statement inside of an else statement’s body. This is
known as nested if statements. Notice how the code is indented carefully so that when
reading the code we can see what is inside each if/else statement’s body.

In fact, an if/else statement is actually considered a single JAVA statement. So, we do not
need the braces here. In fact, we can even place the succeeding if statements up on the
same line as the else statements and align everything up on the left. The following is how we
usually write such code:

if (grade >= 80)
 System.out.println("A");
else if (grade >=70)
 System.out.println("B");
else if (grade >= 60)
 System.out.println("C");
else if (grade >= 50)
 System.out.println("D");
else
 System.out.println("F");

COMP1405 – Decision Making Fall 2015

 - 67 -

Example:

Consider another example in which we are given an integer representing a month and we
would like to store (in a variable called days) the number of days in that month (we will
assume that it is not a leap year). Here is the table of information that we need to know:

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Days 31 28 31 30 31 30 31 31 30 31 30 31

Here is how we can do this with if statements:

int month, days;

month = ... // assume that we got this from the user

if (month == 1)
 days = 31;
else if (month == 2)
 days = 28;
else if (month == 3)
 days = 31;
else if (month == 4)
 days = 30;
//... etc ...

However, you can see that the if statement will be 24 lines long! Since there are only 3
values for the months (i.e., 31, 30 and 28 (ignore leap year for now)), there should be a way to
arrange it in a format like this …

int month, days;

month = ... // assume that we got this from the user
if (...) // Jan, Mar, May, Jul, Aug, Oct, Dec
 days = 31;
else if (...) // Apr, Jun, Sep, Nov
 days = 30;
else if (...) // Feb only
 days = 28;

To do this, we need to have some way of asking whether or not the month is Jan or Mar or
May or Jul etc… Well, it is a good thing then that JAVA supplies us with what is known as
Boolean operators. Here are three useful boolean operators:

• && conditional and
• || conditional or
• ! not (prefix)

COMP1405 – Decision Making Fall 2015

 - 68 -

The && and || operators are used in-between two JAVA expressions that evaluate to
booleans. Below is a table explaining the results of using these two boolean values b1and b2
in various expressions:

b1 b2 if (b1 && b2) if (b1 || b2) if (!b1) if (b1)
false false false false true false
false true false true true false
true false false true false true
true true true true false true

Notice that the && results in true only when both booleans are true, and false otherwise.
Conversely, the || results in false only when both booleans are false, and true otherwise.
Also note that the ! results in the opposite value of the boolean.

We can actually combine multiple booleans operators together in various ways:

if ((boolean1 && boolean2 && boolean3) || (boolean1 && !boolean2)) …

So how do we use this in our month/days example ? Well, each boolean expression can be in
a format something like this: (month == 2). Therefore, our solution may look like this:

if ((month == 1) || (month == 3) || (month == 5) || (month == 7) ||
 (month == 8) || (month == 10) || (month == 12))
 days = 31;
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))
 days = 30;
else if (month == 2)
 days = 28;

So we just used a bunch of “or” operators. We can actually simplify the code by noticing
something interesting. Since the first two if statements checked 11 of the 12 months, then we
do not need to ask if (month == 2) in the last if statement because it is the only possible
month remaining (assuming that the month was in the valid range of 1 to 12). Also, it does not
matter which order we check the months in. So, the following code will also do the same
thing, but is much shorter:

if (month == 2)
 days = 28;
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))
 days = 30;
else
 days = 31;

As one more example, how would we use an if statement that prints out the message “valid”
when a given number is within a given range (e.g., from 1 to 10) and “invalid” otherwise ?

COMP1405 – Decision Making Fall 2015

 - 69 -

Here is a common mistake that many students make:

int number = ... ; //code left out intentionally

if (1 <= number <= 10)
 System.out.println("Valid");
else
 System.out.println("Invalid");

JAVA does not allow us to check ranges in this manner. Instead, we have to check the two
sides of the range separately.

int number = ... ; //code left out intentionally

if ((number >= 1) && (number <= 10))
 System.out.println("Valid");
else
 System.out.println("Invalid");

Although if statements are quite easy to use, it is often the case that students do not fully
understand how to use boolean logic. As a result, sometimes students end up writing overly
complex and inefficient code ... sometimes even using an if statement when it is not even
required!

To illustrate this, consider the following examples of "BAD" coding style. Try to determine why
the code is inefficient and how to improve it. If it is your desire to be a good programmer, pay
careful attention to these examples.

Example 1:

boolean male = ...;

if (male == true) {
 System.out.println("male");
else
 System.out.println ("female");

Here, the boolean value of male is already true or false, we can make use of this fact:

boolean male = ...;

if (male) {
 System.out.println ("male");
else
 System.out.println ("female");

COMP1405 – Decision Making Fall 2015

 - 70 -

Example 2:

boolean adult = ...;

if (adult == false)
 discount = 3.00;

Here is a similar situation as above, but with a negated boolean. Below is better code.

boolean adult = ...;

if (!adult) {
 discount = 3.00;

Example 3:

boolean tired = ...;

if (tired)
 result = true;
else
 result = false;

Above, we are actually returning the identical boolean as tired. No if statement is
needed:

boolean tired = ...;

result = tired;

Example 4:

if ((age < 6) || (age > 65))
 discount = true;
else
 discount = false;

The discount is solely determined by the age. No if statement is needed:

discount = (age < 6) || (age > 65);

COMP1405 – Decision Making Fall 2015

 - 71 -

Example5:

if ((age < 6) || (age > 65))
 fullPrice = false;
else
 fullPrice = true;

Just like above, we do not need the if statement:

fullPrice = !((age < 6) || (age > 65));

// or …

fullPrice = (age >= 6) && (age <= 65);

Supplemental Information: The Selection Operator

In addition to the if statement, JAVA allows a Selection Operator to be used. Here is the
general format:

 <booleanCondition> ? <valueIfTrue> : <valueIfFalse>

The result of the expression is one of the two values supplied, depending on whether the
condition is true or false. For example,

String result;

result = grade > 50 ? "pass" : "fail";

does the same thing as:

String result;

if (grade > 50)
 result = "pass";
else
 result = "fail";

So this saves the amount of code to write, but it does sacrifice a little bit of readability of the
code.

COMP1405 – Decision Making Fall 2015

 - 72 -

 2.2 The Switch Statement

In addition to the if statement, there is another construct in JAVA called the switch statement
which is beneficial for simplifying code that contains nested if statements.

Example:

Consider a simplified letter grade that is given for a course project (i.e., A, B, C, D, F). (i.e., for
the purpose of brevity, we will assume that there is no A+, A-, B+, B- ... grades). Sometimes
when a student receives a letter grade he/she would like to know what percentage range
corresponds to that letter. For example, a B corresponds to a grade between 70% and 79%.

Consider code that uses if statements to compute the proper range as follows …

char aLetter;

aLetter = ...; // the code for obtaining the grade has been omitted

if (aLetter == 'A')
 System.out.println("80% - 100%");
else if (aLetter == 'B')
 System.out.println("70% - 79%");
else if (aLetter == 'C')
 System.out.println("60% - 69%");
else if (aLetter == 'D')
 System.out.println("50% - 59%");
else if (aLetter == 'F')
 System.out.println("0% - 49%");
else
 System.out.println("not defined");

Looking at the code, we can see that there
are 5 if statements and it looks very messy. If
we later decide to handle the A+, A-, B+, etc..
cases, then the code will look much longer
and cluttered. There is a better way to write
this code. We can use a switch statement.
The switch statement is typically used in
situations where we have a sequence of
nested if statements in which only one of the
if statements is to be executed.

The switch statement has the format shown
here on the right:

switch (aPrimitiveExpression) {
 case val1:
 /* 1 or more lines of code*/;
 break;
 case val2:
 /* 1 or more lines of code*/;
 break;
 ...
 case valN:
 /* 1 or more lines of code*/;
 break;
 default:
 /* 1 or more lines of code*/;
 break;
}

COMP1405 – Decision Making Fall 2015

 - 73 -

In the above code, aPrimitiveExpression is either a variable or any JAVA code that results in
one of the following types:

• a primitive variable of type int, char, byte, or short
• a String type
• an Enum type (discussed later)

The values of val1, val2, …, valN must all be primitive constant values of the same type as
aPrimitiveExpression.

The switch statement works as follows:

1. It evaluates aPrimitiveExpression to obtain a value (the
expression MUST result in a primitive data type, it cannot be an
object).

2. It then checks the values val1, val2, …, valN in order from top to

bottom until a value is found equal to the value of
aPrimitiveExpression. If none match, then the default case is
executed.

3. It then executes the statements corresponding to the case

whose value matched.

4. If there is a break at the end of the lines of JAVA code for that case, then the switch
statement quits. Otherwise it continues to evaluate all the successive case statements
that follow ... until a break is found or until no more cases remain.

Here is how can we make use of the switch statement for solving the grade range problem ?

import java.util.Scanner;

public class GradingSwitchProgram {
 public static void main(String[] args) {
 char letter;
 Scanner keyboard = new Scanner(System.in);

 // Get the user input
 System.out.print("Enter the grade: ");
 letter = keyboard.next().charAt(0);

 switch(letter) {
 case 'A': System.out.println("80% - 100%"); break;
 case 'B': System.out.println("70% - 79%"); break;
 case 'C': System.out.println("60% - 69%"); break;
 case 'D': System.out.println("50% - 59%"); break;
 case 'F': System.out.println("0% - 49%"); break;
 default: System.out.println("not defined");
 }
 }
}

COMP1405 – Decision Making Fall 2015

 - 74 -

We can clearly see that the code is simpler to read. However, this is not the only advantage of
a switch statement.

Consider our previous example in which we were given an integer representing a month and
we would like to know the number of days in that month:

if (month == 2)
 days = 28;
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))
 days = 30;
else
 days = 31;

Here is how we can use a switch statement …

switch(month) {
 case 2: days = 28; break;
 case 4:
 case 6:
 case 9:
 case 11: days = 30; break;
 default: days = 31;
}

Note that when the month is 4, 6, 9, or 11, then days = 30; is evaluated. The code is not
necessarily much shorter, but it is simpler to read. This is the main advantage of a switch
statement.

One thing that needs mentioning is that the value of the cases must be literal value. That is,
they cannot be expressions nor ranges. Nor can we make use of the logical operators such as
and'ing and or'ing.

So these two examples will not work:

switch (age) {
 case 1-12: price = 5.00; break; // Won’t compile
 case 13-17: price = 8.00; break; // Won’t compile
 case 18-54: price = 10.00; break; // Won’t compile
 default: price = 6.00;
}

switch (age) {
 case < 12: discount = 100; break; // Won’t compile
 case > 65: discount = 50; break; // Won’t compile
 default: discount = 0;
}

