

Chapter 10

Exception Handling

What is in This Chapter ?

It is never possible to predict accurately what the user of your software will do. While your
program is running, situations often arise in which some unexpected error occurs, perhaps due
to unexpected or corrupt data. We have to deal with these problems gracefully in our code so
that our code is robust, produces valid/correct results and does not crash. In this set of notes,
we will discuss Exceptions, which are JAVA's way of handling problems that occur in your
program. You will find out how to handle standard problems that occur in your code by using
the Exception classes and how to define your own types of Exceptions.

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 355 -

 10.1 Simple Debugging

We use the term bug in computer science to denote a problem with our program.
Unfortunately, much of our programming time may be spent on finding errors/bugs in the code
that we write. This can be VERY time consuming and frustrating. Sometimes we may fix one
bug only to find that another one appears. There are basically 3 types of errors (i.e., bugs):

1. Compile Errors occur when your code will not compile. They are

the easiest to find since the compiler catches them and informs us of the
problem. Because JAVA is strongly typed, many “misunderstandings”
between method parameters and variables are eliminated. Once fixed,
compiler errors do not come back. Often though ... one error (such as a
missing semicolon) can lead to a whole slew of compile errors.

2. Runtime Errors cannot be determined at compile time. They "pop up"

when you run your code and usually represent a serious problem (e.g.,
divide by zero, stack overflow, out of memory). These errors may
sometimes require a re-design of your code (e.g., to reduce memory
usage). But often, the problem is less serious such as trying to send
messages to a null object (i.e., NullPointerException) or accessing past

available array boundaries (i.e., ArrayOutOfBoundsException)

3. Logic Errors pertain to the logistics of your program such as computing

wrong values or forgetting to handle certain “special situations” in your code.
JAVA cannot detect nor explain these errors. Sometimes the logic error
could lead to a runtime error which JAVA can then catch, but it certainly
cannot explain them. Logic errors are often VERY difficult to find since the
program could “appear” to be working. Rigorous testing is required to find
them. Logic errors typically require you to do some debugging.

As programmers, we spend much of our time maintaining code and doing what is known as ...

Debugging is the process of "figuring out errors" in your program and "fixing" them.

Actually, finding the error is usually the hard part.
Fixing it is often (but certainly not always) easy. One of
the most common debugging techniques is that of using
"print" statements in your code. When there are many
logic errors, this is usually the simplest way to debug.

If your program is producing wrong answers, you can use print statements to display
intermediate calculations as follows …

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 356 -

public double computeMortgagePayment() {

 double monthlyRate = this.getInterestRate() / 12;

 System.out.println("monthly rate = " + monthlyRate); // debug

 double amortizeRate = (1-Math.pow(1+monthlyRate, this.numMonths*-1));

 System.out.println("amortize rate = " + amortizeRate); // debug

 return this.getHousePrice() * monthlyRate / amortizeRate;

}

From the intermediate results, you should be able to narrow down where you went wrong.
Print statements can also be used to determine whether or not a certain point in your code is
being reached or if a certain method is being called. (this is especially useful when
programming in C):

public double computeMortgagePayment() {

 System.out.println("*** Got Here 1");

 double monthlyRate = this.getInterestRate() / 12;

 double amortizeRate = (1-Math.pow(1+monthlyRate, this.numMonths*-1));

 System.out.println("*** Got Here 2");

 return this.getHousePrice() * monthlyRate / amortizeRate;

}

By doing this, we can get an idea as to where our program has stopped working and also find
out if JAVA is calling the methods that we think it is calling. Print statements can also be used
to show the order that certain pieces of code are evaluated in: (this is especially useful when
using timer events or when multiple processes are running)

public void deposit(float anAmount) {

 System.out.println("depositing $" + anAmount);

 this.balance = this.balance + anAmount;

}

public boolean withdraw(float anAmount) {

 System.out.println("withdrawing $" + anAmount);

 if (anAmount <= this.balance) {

 this.balance = this.balance - anAmount;

 return true;

 }

 return false;

}

In order to simplify the print statements, we can often print out whole objects …

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 357 -

public static void Test1(){

 BankAccount account = new BankAccount("Jim");

 account.deposit(120.53f);

 account.withdraw(20);

 account.deposit(400);

 account.withdraw(829.31f);

 System.out.println(account);

}

As long as we have implemented an informative toString() method for our objects, we should
get descriptive output.

Although this debugging technique is effective, your code may become littered with
System.out.println statements which need to eventually be removed before you ship out your
code. However, the "print statement" remains one of the most popular and simplest methods
for debugging and this technique will usually help us narrow down the error that occurred.

In JAVA, it seems that the most common errors occur because we forgot to initialize something
or if unexpected data was given to us. In some cases we can write additional code to "expect
and handle" bad input data. This is called error-checking and it is the basis for Exceptions
in JAVA. We will not discuss debugging any further in this course, but will instead focus on
how to deal gracefully with unexpected errors that may arise in our programs.

 10.2 Exceptions

There are many chances for errors to occur in a program when the
programmer has no control over information that is entered into the program
from the keyboard, files, or from other methods/classes/packages etc... Even
worse ... when such errors occur, it is not always clear how to handle the error.

Exceptions are errors that occur in your program.

They are JAVA’s way of telling you that something has gone wrong in your program. When an
exception occurs, JAVA forces us to do one of the following:

1. Handle the exception (we must know when to do this and what to do), or
2. Declare that we want someone else to handle it.

Exception Handling is the strategy of handling errors which are generated

during program execution

We handle exceptions in order to allow our program to “quit gracefully" as opposed to having
JAVA spew out a bunch of exception messages.

When should we handle exceptions ? When we do not know how to deal with the error … or
when it does not make sense to handle the error.

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 358 -

For example, in large software systems, an error may occur outside of the code that we wrote
(i.e., in someone else's code). We may not even have access to this code in order to fix the
error. Perhaps the error occurred in some module that was developed by another team of
programmers. Sometimes, it is an advantage to anticipate some possible errors and then we
can allow our program to handle the error gracefully. However, it is sometimes the case that
we do not know what to do at all when the error occurs. If our code can easily predict a
particular kind of error, then there is no need to use Exceptions, since we can deal with the
code on our own.

Furthermore, in software components such as methods, libraries, and classes that are likely to
be widely used, it is unclear as to what should be done when the error occurs. Our decision
as to how we handle the error may or may not be the best choice for the software as a whole.

To help you understand, consider this "real world" example in which an unexpected situation
occurs. Suppose that you ask your friend to go to McDonald's to get you a Big Mac and
Fries. You expect him to come back with food for you.

However, what could go wrong ?

1. he crashes his car and never arrives at McDonald's
2. he gets there, but the place is burnt down
3. he places his order but finds out there are no Big Macs

left anymore
4. he places the order but does not have enough money
5. he gets the food and drops/spills it on the ground on the

way back

As you can see, much can go wrong … but what would your friend do in each of these
situations ?

1. he informs you that he cannot handle your request
2. he either returns informing you of the problem, or drives to a different McDonald's or

nearby restaurant
3. he improvises and gets you two single hamburgers in the place of the Big Mac
4. he gets you an incomplete order
5. he tries to save money and simply wipes it off ;) ... or perhaps purchases replacements.

As you may well understand by now, we need to think along these lines. We need to always
ask ourselves:

• What can go wrong ?
• Should I handle it ?
• How do I handle it ?

As it turns out, JAVA has a nice mechanism for handling errors in a consistent manner. We
don’t always need to use this mechanism in our code, but there are advantages:

• Improves clarity of programs for large pieces of software
• Can be more efficient than "home-made" error checking code

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 359 -

• They apply to multi-threaded (more than one program) applications
• Programmers save time by using predefined Exceptions

In JAVA, exceptions are thrown (i.e., generated) by either:

• the JVM automatically
• your code at any time

Exceptions are always caught
(i.e., handled) by one of these:

• your own code (i.e., graceful decision)
• someone else's code (i.e., delegate the responsibility)
• the JVM (i.e., program halts)

JAVA has many predefined exceptions, and we can also create our own. In JAVA,
Exceptions are objects, so each one is defined in its own class. The Exception classes are
arranged in a hierarchy, and their position in the hierarchy can affect the way that they are
handled. There are also Error objects in JAVA … which represent more serious errors that
may occur in your program which would require the program to stop altogether since they are
considered unrecoverable:

Object

Exception

VirtualMachineError

Error

…

StackOverflowError

OutOfMemoryError
RuntimeException

NullPointerException

ArithmeticException

IndexOutOfBoundsException

ClassNotFoundException

DataFormatException

…

…

Throwable

…

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 360 -

In regards to the Error classes, generally your application should not try to catch them. There
are many subclasses of Error, here are just a few:

• VirtualMachineError
o StackOverflowError (e.g., recursion too deep)

o OutOfMemoryError (e.g., can't create any more objects)

• LinkageError
o NoClassDefFoundError (e.g., no class with given name)

o ClassFormatError (e.g., class is incompatible)

The Exception class and its subclasses indicate a "less serious"
problem. The exceptions are either "checked" or "unchecked" by the compiler. “Checked”
exceptions are pre-defined types of errors that the JAVA compiler looks for in your code and
forces you to deal with them before it will compile your code. Generally, your applications will
need to deal with these types of Exceptions.

Here are just a few of the "checked" exceptions that we might need to catch in our code:

• ClassNotFoundException (e.g., tried to load an undefined class)

• CloneNotSupportedException (e.g., cannot make copy of object)

• DataFormatException (e.g., bad data conversion)

• IllegalAccessException (e.g., access modifiers prevent access)

• InstantiationException (e.g., problem creating an object)

• IOException

o EOFException (e.g., end of file exception)

o FileNotFoundException (e.g., cannot find a specified file)

Here are a few of the "unchecked" exceptions. Although you can check for (i.e., detect and
handle) these types of errors in your code, normally you will not do so. Instead, you will try to
write your code so that such exceptions cannot happen. The JAVA compiler will not force you
to handle these errors before compiling:

• RuntimeException

o ArithmeticException (e.g., bad computation such as divide by 0)

o ArrayStoreException (e.g., storing wrong type of object in array)

o ClassCastException (e.g., cannot typecast one class to another)

o IndexOutOfBoundsException (e.g., gone outside array bounds)

o NoSuchElementException (e.g., cannot find any more elements)

o NullPointerException (e.g., attempt to send message to null)

o NumberFormatException (e.g., trouble converting to a number)

Recall that when exception handling you must either (a) handle the
exception yourself, or (b) declare that someone else will handle it.

In the 2nd case, we are actually delegating the exception-handling
responsibility to someone else. We do this when we do not want to handle
the error situation in our code. We actually delegate the responsibility to the "calling method"
(i.e., the method that called our method must handle the error). We do this by adding a
throws clause to our method declaration as follows …

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 361 -

public void openFile(String fileName) throws java.io.FileNotFoundException {

 // code for method

}

The throws keyword appears at the end of a method signature and is followed by an
Exception type. When compiling this method, JAVA will check all methods that call this
openFile() method to make sure that they deal with the FileNotFoundException in some way
(i.e., either by catching it, or declaring that they too will throw it, thereby delegating the
responsibility further up the chain of method calls).

You can actually specify multiple exception types with the throws clause by listing the
exceptions separated by commas:

void convertFile(String fileName) throws java.io.FileNotFoundException,

 java.lang.ClassNotFoundException,

 java.io.IOException {

 // code for method

}

So, to clarify things a little, the throws clause is part of a method’s
declaration that is used to tell the compiler which exceptions the
method may throw back to its caller. The throws clause is
required if the code in the method "may" generate, but not handle,
a particular type of exception. You should think of the throws
clause as a “sign” that the method holds up in order to tell the
whole world publicly that the code in that method may generate the
specified exception.

For example, if we consider the openFile() method mentioned
earlier, it declares to everyone in its signature that it may generate a
FileNotFoundException at any time. So, when we call the openFile() method from some
other method, say getCustomerInfo(), then the getCustomerInfo() method "may also"
declare that it throws the exception (if, for example, it did not want to handle it):

public void getCustomerInfo() throws java.io.FileNotFoundException {

 // do something

 this.openFile("customer.txt");

 // do something

}

Here, if the exception is thrown while in the openFile() method, the getCustomerInfo()
method will stop and it will then pass on the exception to "its" caller.
The responsibility may be repeatedly delegated in this manner. It is as if everyone ignores the
error (like a hot potato). Nobody explicitly handles the error. The JVM will eventually catch it
and halt the program:

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 362 -

At any time during this process however, any method may catch the exception and handle it.
Once caught, propagation of the exception stops.

A method may catch an exception by specifying try and catch blocks. A "block" here refers to
a sequence of JAVA statements (i.e., code defined between braces { }).

The "try block" represents the code for which you want to handle an Exception. We precede
this block with the try keyword. Similarly, the "catch block" represents the code that handles
a particular type of exception. We precede these blocks with the catch keyword.

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 363 -

A catch block always appears right after a try block as follows:

...

try {

 // some code that may cause an exception

}

catch (FileNotFoundException ex) {

 // some code that handles the exception

}

...

Notice that the catch block requires a parameter which indicates the type of error to be
caught. This parameter can be accessed and used within the catch block (more on this
later). The getCustomerInfo() method in our previous example can decide to handle the
exception through use of try/catch blocks as follows:

public void getCustomerInfo() {

 try {

 this.openFile("customer.txt");

 }

 catch (java.io.FileNotFoundException ex) {

 System.out.println("Error: File not found"); // Handle the error here

 }

}

Notice that the method no longer needs to "throw" the exception any further (i.e., no throws
clause), since it caught and handled it.

More than one catch block may be used to catch one-of-many possible exceptions. We
simply list all catch blocks one after another:

public void getCustomerInfo() {

 try {

 // do something that may cause an Exception

 }

 catch (java.io.FileNotFoundException ex) {

 // Handle the error here

 }

 catch (NullPointerException ex) {

 // Handle the error here

 }

 catch (ArithmeticException ex) {

 // Handle the error here

 }

}

Consider what happens when an exception occurs within a try block:

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 364 -

Here, an exception of type
ExceptionType2 occurs as
a result of the doSomething()
method call. JAVA will
immediately stop running the
code in the try block and
search through the catch
blocks for one whose
parameter type matches the
exception that occurred (i.e.,
for one that takes
ExceptionType2 parameter
or a superclass of
ExceptionType2). When
one is found, it executes the
code within that catch block
and then continues to the
point in the program
immediately following the
catch blocks.

Note that JAVA does NOT
go back to the try block
once it completes the
catch block. So any code
remaining in the try block
after the location where
the exception had occurred
is not evaluated as shown
here 

If no match is found when
JAVA looks for a matching
catch block, then the entire
getCustomerInfo() method
halts and the method throws
the same exception to the
method that called this
getCustomerInfo()
method and that method will then have to deal with the exception in some way.

Since Exceptions are objects and are organized in a class hierarchy, then one Exception
may be a more specific kind of another one. That is, Exceptions in general may have
superclasses and subclasses.

Does NOT go
back to the try

block again

public void getCustomerInfo() {

 try {

 ...

 doSomething();

 ...

 }

 catch (ExceptionType1 ex) {

 ...

 }

 catch (ExceptionType2 ex) {

 ...

 }

 catch (ExceptionType3 ex) {

 ...

 }

 // continue with program

 ...

}

public void getCustomerInfo() {

 try {

 ...

 doSomething();

 ...

 }

 catch (ExceptionType1 ex) {

 ...

 }

 catch (ExceptionType2 ex) {

 ...

 }

 catch (ExceptionType3 ex) {

 ...

 }

 // continue with program

 ...

}

1. Exception
 occurs

2. Match
 is found

4. Program
 continues

3. Catch block
 is executed

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 365 -

So, when JAVA goes looking through the catch blocks
for a match, it will look for the first match that either
matches the Exception class exactly or matches one of
its superclasses. It is important to note that only one
catch block (the one that "first" matches the exception)
will ever be evaluated. That means we need to be
careful, because the order of the catch blocks is
important when we list them.

Consider the portion of the JAVA class hierarchy show
here on the right: The code below is problematic. Do
you know why ?

public void getCustomerInfo() {

 try {

 // do something that may cause an exception

 }

 catch (Exception ex){

 // Catches all exceptions

 }

 catch (java.io.IOException ex){

 // Never reached since above catches all

 }

 catch (java.io.FileNotFoundException ex){

 // Never reached since above two are caught first

 }

}

Notice that we arranged the catch blocks so that the more general Exception is caught first.
But this is bad because ALL exceptions are subclasses of Exception. That means,
regardless of what type of exception occurs in the try block, the "first" catch block will
ALWAYS match and therefore ALWAYS be evaluated. The remaining two catch blocks will
never be evaluated. In fact, the JAVA compiler will detect this and tell you that the last two
catch blocks are "unreachable". To fix the problem, we can simply reverse the order of the
catch blocks.

An additional finally block may be optionally used after a set of catch blocks:

try {

 ...

}

catch (java.io.IOException ex){ ... }

catch (Exception ex){ ... }

finally {

 // Code to release resources

}

Exception

IOException

FileNotFoundException

Object

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 366 -

The finally block is used to release resources (e.g., closing files). It is always executed. If an
exception does not occur, it is executed immediately after the try block, even if the try block
has a return statement in it ! (i.e., it is executed just before returning). If an exception does
occur, the finally block is executed immediately after the catch block is executed. If an
exception occurs and no catch block matches, the finally block is evaluated before the
method halts with the thrown exception.

Let us now look at what we can do inside our catch blocks. While inside the catch block, the
following messages can be sent to the incoming Exception (i.e., to the parameter
of a catch block):

• getMessage() - returns a String describing the exception. Typically, these

strings are short descriptions of the error.

• printStackTrace() - displays the sequence of method calls that led up to

the exception. This is what you see on the screen when the JVM catches
an exception. This is very useful for debugging purposes.

So we can do many different things inside catch blocks. Here are some
examples:

try {

 ...

}

catch (ExceptionType1 ex) {

 System.out.println("Hey! Something bad just happened!");

}

catch (ExceptionType2 ex) {

 System.out.println(ex.getMessage());

}

catch (ExceptionType3 ex) {

 ex.printStackTrace();

}

Consider the stack trace for this code:

import java.util.ArrayList;

public class MyClass {

 public static void doSomething(ArrayList<Integer> anArray){

 doAnotherThing(anArray);

 }

 public static void doAnotherThing(ArrayList<Integer> theArray){

 System.out.println(theArray.get(0)); // Error is generated

 }

 public static void main(String[] args){

 doSomething(null);

 }

}

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 367 -

When we run this code, we get the following stack trace printed to the console window:

 java.lang.NullPointerException
 at MyClass.doAnotherThing(MyClass.java:7)
 at MyClass.doSomething(MyClass.java:4)
 at MyClass.main(MyClass.java:10)

Notice that the stack trace indicates:

1. the kind of Exception that was generated
2. the method that generated the exception and
3. the line number at which the exception occurred

 10.3 Examples of Handling Exceptions

Let us now look at how we can handle (i.e., catch) a standard Exception in
JAVA. Consider a program that reads in two integers and divides the first one
by the second and then shows the answer. We will assume that we want the
number of times that the second number divides evenly into the first (i.e., ignore
the remainder). What problems can occur ? Well, we may get invalid data or we
may get a divide by zero error. Let us look at how we would have done this
previously …

import java.util.Scanner;

public class ExceptionTestProgram1 {

 public static void main(String[] args) {

 int number1, number2, result;

 Scanner keyboard;

 keyboard = new Scanner(System.in);

 System.out.println("Enter the first number:");

 number1 = keyboard.nextInt();

 System.out.println("Enter the second number:");

 number2 = keyboard.nextInt();

 System.out.print(number2 + " goes into " + number1);

 System.out.print(" this many times: ");

 result = number1 / number2;

 System.out.println(result);

 }

}

Here is the output if 143 and 24 are entered:

Enter the first number:

143

Enter the second number:

24

24 goes into 143 this many times: 5

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 368 -

What if we now enter 143 and ABC ?

Enter the first number:

143

Enter the second number:

ABC

Exception in thread "main" java.util.InputMismatchException

 at java.util.Scanner.throwFor(Scanner.java:840)

 at java.util.Scanner.next(Scanner.java:1461)

 at java.util.Scanner.nextInt(Scanner.java:2091)

 at java.util.Scanner.nextInt(Scanner.java:2050)

 at ExceptionTestProgram1.main(ExceptionTestProgram1.java:13)

This is not a pleasant way for your program to end. By default, when exceptions occur, they
actually print out the stack trace (i.e., the sequence of method calls that led to the exception).
That is what we are seeing here. It is ugly, but good for debugging purposes.

Notice what happened. The first line of the stack trace indicates that an
InputMismatchException has occurred.

The second line tells us that the error occurred at line 840 of the Scanner.java code from a
method called throwFor(). This was not code that we wrote … it is pre-existing code from
JAVA’s Scanner class. The error, however, is not in line 840 of the Scanner class code.
That is just where the error surfaced.

By looking further down the stack trace, we can gain insight as to why our code caused the
Exception to occur. We just need to look down the stack trace until we find a method that we
wrote. Notice that most of the successive method calls were in the Scanner class. However,
right at the bottom we notice that the main method was called.

As it turns out, JAVA is telling us that the error occurred as a result of line 13 in our
ExceptionTestProgram1. That is the code that tries to obtain the next integer from the
Scanner. When it attempts to do this, we get an “Input Mismatch” because we entered ABC
when we ran the program … and ABC cannot be converted to an integer.

So now that we know WHY the error occurred, how can we gracefully handle the error ? We
certainly do not want to see the stack trace message !!!

In order to handle the entering of bad data (e.g., ABC instead of an integer) we would need to
do one of two things:

1. either modify the code in the Scanner class to detect and gracefully handle the error, or
2. catch the InputMismatchException within our code and gracefully handle the error.

Since it is not usually possible nor recommended to copy and start modifying the available
JAVA class libraries, our best choice would be to catch and handle the error from our own
code. We will have to "look for" (i.e., catch) the InputMismatchException by placing
try/catch blocks in the code appropriately as follows:

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 369 -

try {

 System.out.println("Enter the first number:");

 number1 = keyboard.nextInt();

 System.out.println("Enter the second number:");

 number2 = keyboard.nextInt();

}

catch (java.util.InputMismatchException e) {

 System.out.println("Those were not proper integers! I quit!");

 System.exit(-1);

}

System.out.print(number2 + " goes into " + number1);

...

Notice in the catch block that we display an error message when the error occurs and then we
do: System.exit(-1);. This is a quick way to halt the program completely.

The value of -1 is somewhat arbitrary but when a program stops we need to supply some kind
of integer value. Usually the value is a special code that indicates what happened. Often,
programmers will use -1 to indicate that an error occurred.

Once we incorporate the try block, JAVA indicates to us the following compile errors:

 variable number2 might not have been initialized

 variable number1 might not have been initialized

It is referring to this line:

System.out.print(number2 + " goes into " + number1);

Here we are using the number1 and number2 variables. However, because the try block
may generate an error, JAVA is telling us that there is a chance that we will never assign
values to these variables (i.e., they might not be initialized) and so we might obtain wrong data.
JAVA does not like variables that have no values … so it is forcing us to assign a value to
these two variables. It is perhaps the most annoying type of compile error in JAVA, but
nevertheless we must deal with it. The simplest way is to just assign a value of 0 to each of
these variables when we declare them. Here is the updated version:

import java.util.Scanner;

public class ExceptionTestProgram2 {

 public static void main(String[] args) {

 int number1 = 0, number2 = 0, result;

 Scanner keyboard;

 keyboard = new Scanner(System.in);

 try {

 System.out.println("Enter the first number:");

 number1 = keyboard.nextInt();

 System.out.println("Enter the second number:");

 number2 = keyboard.nextInt();

 }

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 370 -

 catch (java.util.InputMismatchException e) {

 System.out.println("Those were not proper integers! I quit!");

 System.exit(-1);

 }

 System.out.print(number2 + " goes into " + number1);

 System.out.print(" this many times: ");

 result = number1 / number2;

 System.out.println(result);

 }

}

If we test it again with 143 and 24 as before, it still works the same. However, now when
tested with 143 and ABC, here is the output:

Enter the first number:

143

Enter the second number:

ABC

Those were not proper integers! I quit!

What if we enter ABC as the first number ?

Enter the first number:

ABC

Those were not proper integers! I quit!

Woops! It appears that our error message is not grammatically correct anymore. Perhaps we
should change it to "Invalid integer entered!" … this should be clear enough.

Now let us test the code with values 12 and 0:

Enter the first number:

12

Enter the second number:

0

0 goes into 12 this many times: Exception in thread "main"

java.lang.ArithmeticException: / by zero

 at ExceptionTestProgram2.main(ExceptionTestProgram2.java:23)

JAVA has detected that we tried to divide a number by zero … a big “no no” in the world of
mathematics. We can handle the ArithmeticException by adding additional try/catch
blocks around line 23 of our code:

try {

 result = number1 / number2;

}

catch (ArithmeticException e) {

 System.out.println("Second number is 0, cannot do division!");

 System.exit(-1);

}

 System.out.println(result);

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 371 -

We can merge the two try blocks into one if we want to as follows…

import java.util.Scanner;

public class ExceptionTestProgram3 {

 public static void main(String[] args) {

 int number1 = 0, number2 = 0, result = 0;

 Scanner keyboard;

 keyboard = new Scanner(System.in);

 try {

 System.out.println("Enter the first number:");

 number1 = keyboard.nextInt();

 System.out.println("Enter the second number:");

 number2 = keyboard.nextInt();

 result = number1 / number2;

 }

 catch (java.util.InputMismatchException e) {

 System.out.println("Invalid integer entered!");

 System.exit(-1);

 }

 catch (ArithmeticException e) {

 System.out.println("Second number is 0, cannot do division!");

 System.exit(-1);

 }

 System.out.print(number2 + " goes into " + number1);

 System.out.println(" this many times: " + result);

 }

}

Now when we enter 12 and 0 as input, we get the appropriate message:

Second number is 0, cannot do division!

How can we adjust our code to repeatedly prompt for integers until valid ones were entered ?
We would need a while loop since we do not know how many times to keep asking.
Here is how we could do this to get a single number …

int number1 = 0;

boolean gotANumber = false;

while (!gotANumber) {

 try {

 System.out.println("Enter the first number");

 number1 = new Scanner(System.in).nextInt();

 gotANumber = true;

 }

 catch (java.util.InputMismatchException e) {

 System.out.println("Invalid integer. Please re-enter");

 }

}

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 372 -

This code would repeatedly ask for a number until it was a valid integer. However, there is a
slight problem with the Scanner class. When the error is generated in the Scanner class
code due to the invalid integer being entered, the Scanner object is messed up and is no
longer ready to read integers using nextInt(). The easiest way to fix this is to re-assign a new
Scanner object to the keyboard variable when the error occurs. Here is the completed code:

import java.util.Scanner;

public class ExceptionTestProgram4 {

 public static void main(String[] args) {

 int number1 = 0, number2 = 0, result = 0;

 boolean gotANumber = false;

 Scanner keyboard;

 keyboard = new Scanner(System.in);

 while(!gotANumber) {

 try {

 System.out.println("Enter the first number");

 number1 = keyboard.nextInt();

 gotANumber = true;

 }

 catch (java.util.InputMismatchException e) {

 System.out.println("Invalid integer. Please re-enter");

 keyboard = new Scanner(System.in);

 }

 }

 gotANumber = false;

 while(!gotANumber) {

 try {

 System.out.println("Enter the second number");

 number2 = keyboard.nextInt();

 gotANumber = true;

 }

 catch (java.util.InputMismatchException e) {

 System.out.println("Invalid integer. Please re-enter");

 keyboard = new Scanner(System.in);

 }

 }

 try {

 result = number1 / number2;

 System.out.print(number2 + " goes into " + number1);

 System.out.println(" this many times: " + result);

 }

 catch (ArithmeticException e) {

 System.out.println("Second number is 0, cannot do division!");

 }

 }

}

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 373 -

Here are the test results:

Enter the first number

what

Invalid integer. Please re-enter

Enter the first number

help me

Invalid integer. Please re-enter

Enter the first number

ok, ok, here goes

Invalid integer. Please re-enter

Enter the first number

143

Enter the second number

did you say number 2 ?

Invalid integer. Please re-enter

Enter the second number

40

40 goes into 143 this many times: 3

 10.4 Creating and Throwing Your Own Exceptions

You may throw an exception in your code at any time if you want to inform everyone that an
error occurred in your code. Thus, you do not need to handle the error in your code, you can
simply delegate (i.e., transfer) the responsibility to whoever calls your method.

Exceptions are thrown with the throw statement. Basically, when we want to generate an
exception, we create a new Exception object by calling one of its constructors, and then
throw it as follows:

throw new java.io.FileNotFoundException();

throw new NullPointerException();

throw new Exception();

Methods that throw these exceptions, must declare that they do
so in their method declarations, using the throws clause (as we
have seen before):

public void yourMethod() throws anException {

 ...

}

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 374 -

You may even catch an exception, partially handle it and then throw it again:

public void yourMethod() throws Exception {

 try {

 ...

 }

 catch (Exception ex){

 ... // partially handle the exception here

 throw ex; // then throw it again

 }

}

Catching and then throwing an exception again is useful, for example, if we want to:

• just keep an internal "log" of errors that were generated,
• attach additional information to the exception message, or
• delay the passing on of the exception to the calling method

It is also possible to create "your own" types of exceptions. This would allow you to catch
specific types of problems in your code that JAVA would normally ignore. To make your own
exceptions, you simply need to create a subclass of an existing exception. If you are unsure
where to put it in the hierarchy, you should use Exception as the superclass.

Here are the steps to making your own Exception:

1. choose a meaningful class/exception name (e.g., WrongPasswordException)
2. specify the superclass under which this exception will reside (e.g., Exception)
3. optionally provide a constructor (for simplicity, this constructor may just call the super

constructor, passing in a string indicating the reason for the error).

Here is an example of a newly defined exception called MyExceptionName. We define it just
as we would any other class and then save it to a file called MyExceptionName.java. It must
also be compiled before it can be used in your program …

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 375 -

public class MyExceptionName extends Exception {

 public MyExceptionName() {

 super("Some string explaining the exception");

 }

}

Consider an example of how we could force the user to type in their name (i.e., not leave it
blank). We could do the following:

import java.util.Scanner;

public class MyExceptionTestProgram {

 public static void main(String[] args) {

 String name = "";

 boolean gotValidName = false;

 Scanner keyboard = new Scanner(System.in);

 while (!gotValidName) {

 System.out.println("Enter your name");

 name = keyboard.nextLine();

 if (name.length() > 0)

 gotValidName = true;

 else

 System.out.println("Error: Name must not be blank");

 }

 System.out.println("Hello " + name);

 }

}

Here would be the output of such a program:

Enter your name

Error: Name must not be blank

Enter your name

Mark

Hello Mark

Notice how the “error” is detected: using an IF statement, we simply checked the data for an
empty string and then displayed an appropriate message.

In some programs, however, we may not want to print a message to the screen. For example,
we may want to bring up a dialog box. In fact, we may not know exactly what to do, as it
depends on our user interface as well as the context within our application. In such cases
(i.e., when we are not sure what to do), we could simply generate an exception and let the
method that called our code decide what to do.

Let us generate a MissingNameException when the user does not enter a name. We can
do this by starting with our own exception definition as follows:

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 376 -

public class MissingNameException extends Exception {

 public MissingNameException() {

 super("Name is blank");

 }

}

We need to save and compile that code in its own file. Now, how do we generate the
exception ? We simply call throw new MissingNameException() at the right spot in the

code:

import java.util.Scanner;

public class MyExceptionTestProgram2 {

 public static void main(String[] args) throws MissingNameException {

 String name = "";

 boolean gotValidName = false;

 Scanner keyboard = new Scanner(System.in);

 while (!gotValidName) {

 System.out.println("Enter your name");

 name = keyboard.nextLine();

 if (name.length() <= 0)

 throw new MissingNameException();

 gotValidName = true;

 }

 System.out.println("Hello " + name);

 }

}

Notice that we must declare in our method that we now “throw” the exception. If we run the
code as before, we can see this new exception being generated:

Enter your name

Exception in thread "main" MissingNameException: Name is blank

 at MyExceptionTestProgram2.main(MyExceptionTestProgram2.java:12)

Congratulations to us … we have successfully created and generated our own exception.
How though can we handle the exception ? So that we may use the same example, let us
adjust the code a little by creating a method that will get the user input for us as follows …

public static String getName() throws MissingNameException {

 String name = new Scanner(System.in).nextLine();

 if (name.length() <= 0)

 throw new MissingNameException();

 return name;

}

The above method gets the name from the user and returns it … unless the name is blank …
in which case it generates the MissingNameException.

Now we should catch the error from our main program as follows:

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 377 -

import java.util.Scanner;

public class MyExceptionTestProgram3 {

 // Method to get the name from the user

 public static String getName() throws MissingNameException {

 String name = new Scanner(System.in).nextLine();

 if (name.length() <= 0)

 throw new MissingNameException();

 return name;

 }

 // Main method to test out the MissingNameException

 public static void main(String[] args) {

 String name = "";

 boolean gotValidName = false;

 while (!gotValidName) {

 System.out.println("Enter your name");

 try {

 name = getName();

 gotValidName = true;

 }

 catch (MissingNameException ex) {

 System.out.println("Error: Name must not be blank");

 }

 }

 System.out.println("Hello " + name);

 }

}

The resulting output is the same as before (i.e., same as MyExceptionTestProgram).

As another example, let us take another look at the BankAccount object again ... more
specifically ... consider this withdraw() method:

public boolean withdraw(float anAmount) {

 if (anAmount <= this.balance) {

 this.balance -= anAmount;

 return true;

 }

 return false;

}

When the user tries to withdraw more money than is actually in the account ... nothing
happens. Since the method returns a boolean, we can always check for this error where we
call the method:

public static void main(String[] args) {

 BankAccount b = new BankAccount("Bob");

 b.deposit(100);

 b.deposit(500.00f);

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 378 -

 if (!b.withdraw(25.00f))

 System.out.println("Error withdrawing money from account");

 if (!b.withdraw(189.45f))

 System.out.println("Error withdrawing money from account");

 b.deposit(100.00f);

 if (!b.withdraw(1000000))

 System.out.println("Error withdrawing money from account");

}

This form of error checking works fine, but it clearly clutters up the code! Let us see how we
can make use of an Exception. We will create a WithdrawalException object. Where would
it go in the Exception hierarchy ? Probably right under the Exception class again, since
there are no existing bank-related exception classes in JAVA. Here is the exception:

public class WithdrawalException extends Exception {

 public WithdrawalException() {

 super("Error making withdrawal");

 }

}

Now how do we throw the exception from within the withdraw() method ?
Here is how we do it …

public void withdraw(float anAmount) throws WithdrawalException {

 if (anAmount <= this.balance)

 this.balance -= anAmount;

 else

 throw new WithdrawalException();

}

Note that we must also inform the compiler that this method may throw a
WithdrawalException by writing this as part of the method declaration. The addition of this
simple statement will force all methods that call the withdraw() method to deal with the
exception.

Also notice that we no longer need the boolean return type for the withdraw() method since
its purpose was solely for error checking. Now that we have the exception being generated,
this becomes our new form of error checking.

Now how do we change the code that calls the withdraw() method ? We just need to enclose
our withdrawal code in a try block:

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 379 -

public static void main(String[] args) {

 BankAccount b = new BankAccount("Bob");

 try {

 b.deposit(100);

 b.deposit(500.00f);

 b.withdraw(25.00f);

 b.withdraw(189.45f);

 b.deposit(100.00f);

 b.withdraw(1000000);

 } catch (WithdrawalException ex) {

 System.out.println("Error withdrawing money");

 }

}

Notice how much simpler and cleaner the calling code becomes. Be aware however, that if
one error occurs early within the try block, none of the remaining code in the try block gets
evaluated!!! So an error in the first withdrawal attempt would prevent the two other
withdrawals and deposit from happening. If we did not want this behavior, we would need to
make a separate try/catch block for each of the 3 withdraw() method calls:

public static void main(String[] args) {

 BankAccount b = new BankAccount("Bob");

 b.deposit(100);

 b.deposit(500.00f);

 try {

 b.withdraw(25.00f);

 } catch (WithdrawalException ex) {

 System.out.println("Error withdrawing money");

 }

 try {

 b.withdraw(189.45f);

 } catch (WithdrawalException ex) {

 System.out.println("Error withdrawing money");

 }

 b.deposit(100.00f);

 try {

 b.withdraw(1000000);

 } catch (WithdrawalException ex) {

 System.out.println("Error withdrawing money");

 }

}

We can make our code even simpler by ignoring the error. To do this we would have to
indicate in the main() method that the WithdrawalException may occur as follows …

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 380 -

public static void main(String[] args) throws WithdrawalException {

 BankAccount b = new BankAccount("Bob");

 b.deposit(100);

 b.deposit(500.00f);

 b.withdraw(25.00f);

 b.withdraw(189.45f);

 b.deposit(100.00f);

 b.withdraw(1000000);

}

If we do this, however, then the program will stop and quit when the first
WithdrawalException occurs.

We can actually add more information to our exceptions. For example, there may be many
reasons why we cannot withdraw from a BankAccount. The bank account …

• may not have enough money in it,
• may not allow withdrawals (e.g., some kinds of SavingsAccounts), or
• may not have sufficient funds to cover transaction fees associated with the account

We do not need to make different types of exceptions, but can instead supply more information
when the WithdrawException is generated. The easiest way to do this is to modify the
constructor in our WithdrawalException class that takes a String parameter to describe the
error:

public class WithdrawalException extends Exception {

 public WithdrawalException(String description) {

 super(description);

 }

}

We can then use this new constructor instead by supplying different explanations as to why the
error occurred. For example, the SuperSavings account may have the following withdraw()
method:

public void withdraw(float anAmount) throws WithdrawalException {

 throw new WithdrawalException("Withdrawals not allowed from this account");

}

whereas the PowerSavings account may have this method …

COMP1406 - Chapter 10 - Exception Handling Winter 2018

 - 381 -

public void withdraw(float anAmount) throws WithdrawalException {

 if (anAmount > this.balance)

 throw new WithdrawalException("Insufficient funds in account to" +

 " withdraw specified amount");

 if (anAmount + WITHDRAW_FEE > this.balance) {

 throw new WithdrawalException("Not enough money to cover" +

 " transaction fee");

 this.balance -= anAmount + WITHDRAW_FEE;

}

So, as can easily be seen, we can provide additional explanatory information for the user when
an exception does occur. Furthermore, we can do this with a single exception class (i.e., we
do not need to make a subclass of WithdrawalException for each specific situation).

We can extract this “additional explanation” from the exception by sending the getMessage()
message to the exception within our catch blocks:

public static void main(String[] args) {

 PowerSavings p = new PowerSavings("Bob");

 SuperSavings s = new SuperSavings("Betty");

 try {

 p.deposit(100);

 s.deposit(500.00f);

 p.withdraw(25.00f);

 p.withdraw(189.45f);

 s.deposit(100.00f);

 s.withdraw(1000000);

 } catch (WithdrawalException ex) {

 System.out.println(ex.getMessage());

 }

}

In this example, the catch block catches any errors for both bank accounts.

