

Chapter 13

Other Interesting JAVA Classes

What is in This Chapter ?

This chapter discusses some interesting JAVA classes such as String, Date,
GregorianCalendar and others. This chapter can be viewed as an explanation of the tool-like
classes available in JAVA to make your life easier.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 428 -

 13.1 The String Class

Strings are one of the most commonly used
concepts in all programming languages. They are
used to represent text characters and are
fundamental in allowing a user to interact with the
program. In JAVA, Strings are actually objects, not
primitives and any text between double quotes
represents a literal String in our programs:

String name = "Stan Dupp";
String empty = "";

However, since Strings are also objects, we can
create one by using one of many available
constructors. Here are two examples:

String nothing = new String(); // makes an empty String
String copy = new String(name); // makes copy of the name String

A String has a length corresponding to the number of characters in the String. We can ask a
String for its length by using the length() method:

String name = "Stan Dupp";
String empty = "";
name.length(); // returns 9
empty.length(); // returns 0

This length remains unchanged for the string at all times. That is, once a string has been
created we cannot change the size of the string, nor can we append to the string.

Even though we cannot append to a String, we can still make use of the + operator to join two
of them together. Recall, for example, the use of the + operator within the toString() method
for the Person class:

public String toString() {
 return (this.age + " year old Person named " +
 this.firstName + " " + this.lastName);
}

Here, we are actually combining 5 String objects to form a new String object containing the
result … the original 5 String objects remain unaltered.

Each character in a String is assigned an imaginary integer index that represents its order in
the sequence. The first character in the String has an index of 0, the second character has

COMP1406 - Chapter 13 - Text Formatting Classes

an index of 1, and so on. We can access any character from a
method which requires us to specify the index of the character that we want to get:

String name = "Hank Urchif"
name.charAt(0);
name.charAt(1);
name.charAt(name.length() -
name.charAt(name.length());
name.charAt(100);

There are also some methods in the
range) of characters from the String. The
parameters s and e, where s
than the ending character index:

String name = "Hank Urchif"
name.substring(0, 4);
name.substring(5, 11);
name.substring(1, name.length());
name.substring(3, 6);

In all cases above, the resulting
object, the original name object remaining unchanged.

There is also a very useful method for eliminating unwanted leading and trailing characters
(e.g., spaces, tabs, newlines and
that get String input (e.g., name, address, email etc..) from the user through text fields on
windows. The trim() method returns a new
object but with no leading and trailing space, tab, newline or carriage return characters.

String s1 = " I need a shave
String s2 = " ";
s1.trim(); // returns "I need a shave"
s2.trim(); // returns empty string ""

Also, sometimes when getting input from the user we would like to force the information to be
formatted as either uppercase or lowercase characters. Two useful methods called
toUppercase() and toLowercase()
characters converted to uppercase or lowercase, respectively. The methods only affect the
alphabetic characters … all other characters remain the same.

Text Formatting Classes

 - 429 -

an index of 1, and so on. We can access any character from a String by usin
method which requires us to specify the index of the character that we want to get:

"Hank Urchif";
 // returns character 'H'
 // returns character 'a'

- 1); // returns character 'f'
(name.length()); // causes StringIndexOutOfBoundsException

 // causes StringIndexOutOfBoundsException

There are also some methods in the String class that allow us to extract a sequence (or
range) of characters from the String. The substring(s,e) method does just that. It takes two

 specifies the starting character index and e
acter index:

"Hank Urchif";
 // returns character "Hank"
 // returns character "Urchif"

, name.length()); // returns character "ank Urchif"
 // returns character "k U"

In all cases above, the resulting String is a new
object remaining unchanged.

There is also a very useful method for eliminating unwanted leading and trailing characters
newlines and carriage returns). This can be useful when writing programs

that get String input (e.g., name, address, email etc..) from the user through text fields on
method returns a new String object that represents the original st

object but with no leading and trailing space, tab, newline or carriage return characters.

I need a shave ";

// returns "I need a shave"
// returns empty string ""

Also, sometimes when getting input from the user we would like to force the information to be
formatted as either uppercase or lowercase characters. Two useful methods called

toLowercase() will generate a copy of the string but with all
characters converted to uppercase or lowercase, respectively. The methods only affect the
alphabetic characters … all other characters remain the same.

 Winter 2017

by using the charAt()
method which requires us to specify the index of the character that we want to get:

StringIndexOutOfBoundsException
StringIndexOutOfBoundsException

class that allow us to extract a sequence (or
method does just that. It takes two

 specifies one more

// returns character "Hank"
// returns character "Urchif"
// returns character "ank Urchif"
// returns character "k U"

There is also a very useful method for eliminating unwanted leading and trailing characters
. This can be useful when writing programs

that get String input (e.g., name, address, email etc..) from the user through text fields on
object that represents the original string

object but with no leading and trailing space, tab, newline or carriage return characters.

Also, sometimes when getting input from the user we would like to force the information to be
formatted as either uppercase or lowercase characters. Two useful methods called

will generate a copy of the string but with all alphabetic
characters converted to uppercase or lowercase, respectively. The methods only affect the

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 430 -

String s = "Tea For 2!";
s.toUpperCase(); // returns "TEA FOR 2!"
s.toLowerCase(); // returns "tea for 2!"

A final important topic that we will discuss regarding strings is that of comparing strings with
one another. String comparison is a fundamental tool used in many programs. For example,
whenever we want to search for a person’s name in a list, we must compare the name of the
person (i.e., a String) with all of the names in a list of some sort.

JAVA has two useful methods for comparing Strings. The equals(s) method compares one
String with another String, s, and then returns true if the two strings have the exact same
characters in them and false otherwise. A similar comparison method called
equalsIgnoreCase(s) is used to compare the two strings but in a way such that lowercase and
uppercase characters are considered equal.

String apple1 = "apple";
String apple2 = "APPLE";
String apple3 = "apples";
String orange = "orange";

apple1.equals(orange); // returns false
apple1.equals(apple2); // returns false
apple1.equals(apple3); // returns false
apple1.equals(apple2.toLowercase()); // returns true

apple1.equalsIgnoreCase(apple2); // returns true

In regards to sorting strings, the compareTo(s) method will compare one string with another
(i.e., parameter s) and return information about their respective alphabetical ordering. The
method returns an integer which is:

 negative if the first string is alphabetically before s
 positive if the first string is alphabetically after s, or
 zero if the first string equals s

String apple = "Apple";
String orange = "Orange";
String banana = "Banana";

banana.compareTo(orange); // returns -13, Banana comes before Orange
banana.compareTo(apple); // returns 1, Banana comes after Apple
apple.compareTo("Apple"); // returns 0, Apple equals Apple
"Zebra".compareTo("apple"); // returns -7, uppercase chars are before lower!
"apple".compareTo("Apple"); // returns 32, lowercase chars are after upper!

You may notice, in the last two cases, that uppercase characters always come alphabetically
before lowercase characters. You should always take this into account when sorting data.

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 431 -

To avoid sorting problems, it may be best to use toUpperCase() on each String before
comparing them:

if (s1.toUpperCase().compareTo(s2.toUpperCase()) < 0)
// s1 comes first

else
// s2 comes first

Another very useful method in the String class is the split() method because it allows you to
break up a String into individual substrings (called tokens) based on some separation
criteria. For example, we can extract

 words from a sentence, one by one
 fields from a database or text file, separated by commas or other chars

The term delimiter is used to indicate the character(s) that separate the tokens (i.e., individual
words or data elements).

Consider for example, the following String data which has been read in from a file:

"Mark,Lanthier,49,M,false"

Perhaps this is data for a particular person and we want to extract the information from the
string in a way that we can use it. If we consider the comma ',' character as the only delimiter,
then we can use the split method to obtain an array of Strings which we can then parse one
by one to extract the needed data:

String s1 = "Mark,Lanthier,49,M,false";

String[] tokens = s1.split(",");
for(String token: tokens)
 System.out.println(token);

The code above will produce the following output:

Mark
Lanthier
49
M
false

Each token is an individual String that can be used afterwards. If, for example, we wanted to
have just the 3rd piece of data (i.e., 49) and use it in a math expression, we could split the
string and access just that piece of data, converting it to an integer as necessary …

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 432 -

String s1 = "Mark,Lanthier,49,M,false";
String[] tokens;
int age;

tokens = s1.split(",");
age = Integer.parseInt(tokens[2]);
if (age > 21) ...

The "," parameter to the split() method above indicates that the ',' character is the delimiter.
If we had the following String, however, we may want to include the ':' character as a delimiter
as well:

"Mark,Lanthier:49:M,false"

We cannot simply use the parameter string ",:" because that will only consider consecutive
comma colon characters as delimiters (i.e., a 2-char delimiter). We want to allow the comma
OR the colon to be delimiters, but not necessarily together. To accomplish this, the
expression in the string becomes more complex. We basically have to indicate that we want
all non-alphanumeric characters to be part of the tokens and everything else to be delimiters.
So the following code would do what we want:

String s1 = "Mark,Lanthier:49:'M',false";

String[] tokens = s1.split("[^a-zA-Z0-9]");
for(String token: tokens)
 System.out.println(token);

Notice the square brackets [] in the parameter string. This indicates that we are about to list
a sequence of characters to be the delimiters. The ^ character negates the list of characters
to indicate that we are about to list all the non-delimiter characters (i.e., the token characters).
Then we list the alphanumeric ranges a-z, A-Z and 0-9 to indicate that any alphanumeric
character is part of a token, while everything else is to be considered a delimiter.

The parameter string is considered to be a regular expression (not discussed here) and can
be quite complex. You may look in JAVA’s API for more information. In some cases, the
token strings will be of size 0. For example, consider the following code:

String s1 = "Mark, Lanthier , 49 ,,, M , false";

String[] tokens = s1.split("[,]"); // comma or space delimiter
for(String token: tokens)
 System.out.println(token);

The following output would be obtained …

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 433 -

Mark

Lanthier

49

M

false

Notice that there are many spaces in between. These spaces are empty strings. We should
check for the empty strings in our code:

String s1 = "Mark, Lanthier , 49 ,,, M , false";

String[] tokens = s1.split("[,]"); // comma or space delimiter
for(String token: tokens)
 if (token.length() > 0)
 System.out.println(token);

Then we obtain the output as before:

Mark
Lanthier
49
M
false

 Supplemental Information (StringTokenizers)

There is another (perhaps simpler) way of extracting tokens from a String through use of the
StringTokenizer class (imported from the java.util package). However, for some reason,
the JAVA guys “suggest” that you use the split() method instead.

String s = "Mark, Lanthier , 49 ,,, M , false";

StringTokenizer tokens = new StringTokenizer(s,", ");
System.out.println("The string has " + tokens.countTokens() + " tokens");

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 434 -

while(tokens.hasMoreTokens()) {
 System.out.println(tokens.nextToken());
}

This code will produce the same result as above, but with an extra line of output indicating the
number of tokens in total, which is 5 in this example.

Interestingly, the Scanner class that we used for getting keyboard input can also be used to
get tokens from a String. The list of delimiters however is actually a pattern sequence, not a
list of separate delimiter characters. That means, whatever is listed as the delimiter string
must match exactly (i.e., in the example below, a single comma must be followed by a single
space character):

String sentence = "Banks, Rob, 34, Ottawa, 12.67";
Scanner s = new Scanner(sentence).useDelimiter(", ");
System.out.println(s.next());
System.out.println(s.next());
System.out.println(s.nextInt());
System.out.println(s.next());
System.out.println(s.nextFloat());
s.close();

Notice that the Scanner should be closed, we did not do this earlier but it is common
practice.

 13.2 The StringBuilder & Character Classes

Strings cannot be changed once created. Instead, when we try to
manipulate them, we always get back a "brand new" String object.
This is not normally a problem in most cases when programming,
however, sometimes we would like to be able to modify a String by
inserting/removing characters. For example, when we open a file in
a text editor or word processor, we usually append, cut and insert
text “on the fly”. It would be memory-inefficient and time-inefficient
to continually create new strings and copy over characters from an
old string to a new one.

The StringBuilder class in JAVA is useful for such a purpose. You may think of it simply as a
String that can be modified. The StringBuilder methods run a little slower that their String
equivalent methods, so if you plan to create strings that will not need to change, use String
objects instead.

Here are two constructors for the StringBuilder class:

new StringBuilder();
new StringBuilder(s); // s is a String

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 435 -

The first creates a StringBuilder with no characters to begin with and the second creates one
with the characters equal to the ones in the given String s.

As with Strings, the length() method can be used to return the number of characters in the
StringBuilder as follows:

StringBuilder sb1, sb2;

sb1 = new StringBuilder();
sb2 = new StringBuilder("hello there");
sb1.length(); // returns 0
sb2.length(); // returns 11

Unlike Strings, you can actually modify the length of the StringBuilder to any particular length
by using a setLength(int newLength) method. If the newLength is less than the current
length, the characters at the end of the StringBuilder are truncated. If the size is greater, null
characters are used to fill in the extra places at the end as follows:

StringBuilder sb;

sb = new StringBuilder("hello there");
sb.setLength(9);
System.out.println(sb); // displays "hello the"

As with Strings, the charAt(int index) method is used to access particular characters based
on their index position (which starts at position 0). Unlike Strings though, a setCharAt(int
index, char c) method is also available which allows you to change the character at the given
index to become the specified character c. Here is how these methods work …

StringBuilder name;

name = new StringBuilder("Chip Electronic");
name.charAt(3); // returns 'p'
name.setCharAt(4,'+');
System.out.println(name); // displays "Chip+Electronic"

However, a more commonly used method in the StringBuilder class is the append(Object x)
method which allows you to append a bunch of characters to the end of the StringBuilder. If
x is a String object, the entire string is appended to the end. If x is any other object, JAVA
will call the toString() method for that object and append the resulting String to the end of the
StringBuilder:

StringBuilder sb = new StringBuilder();
sb.append("Mark has ");
sb.append(new BankAccount("Mark"));
System.out.println(sb); // displays "Mark has Account #10000 with $0.0"

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 436 -

The resulting output may differ, of course, depending on the BankAccount’s toString()
method. Similar methods also exist for appending an int, long, float, double, boolean or
char as follows:

append(int x), append(long x), append(float x),
append(double x), append(boolean x), append(char x)

The final two methods that we will mention allow you to remove characters from the
StringBuilder. The deleteCharAt(int index) method will remove the character at the given
index while the delete(int start, int end) method will delete all the characters within the indices
ranging from start to end-1 as follows:

StringBuilder sb;

sb = new StringBuilder("Miles Perlyter");
sb.delete(3,11); // changes sb to "Milter"
sb.deleteCharAt(sb.length()-1); // changes sb to "Milte"
sb.deleteCharAt(sb.length()-1); // changes sb to "Milt"

Sometimes, it is useful to use a StringBuilder to go through a String and make changes to it.
For example, consider using a StringBuilder to remove all the non-alphabetic characters from
a String as follows (of course the result would have to be a new String, since the original
cannot be modified) …

String original, result = "";
StringBuilder sb;
Character c;

original = "Hello, my 1st name ... is Mark !!";
sb = new StringBuilder();
for (int i=0; i<original.length(); i++) {
 c = original.charAt(i);
 if (Character.isLetter(c))
 sb.append(c);
}
result = new String(sb);
System.out.println(result);

Notice a couple of things from this code. First, the StringBuilder is used as a temporary
object for creating the result string but is no longer useful after the method has
completed. We use one of the String class’ constructors to create the new
String … passing in the StringBuilder. Second, we are checking for non-
alphabetic characters by using Character.isLetter(). Here, isLetter() is a static
function in the Character class that determines whether or not the given
character is alphabetic or not.

Side note: Character is a class in JAVA known as a wrapper class because it is an
object wrapper for the char primitive. Essentially, the class can be used to “convert” (i.e., wrap up) a
char into an object that can then be used as a regular object. There is a wrapper class for each of the
primitives in JAVA (i.e., Integer, Long, Float, Double, Character, Boolean, Short and Byte). Since
JAVA 1.5, primitives are automatically wrapped into objects, and so we need not worry about this.

COMP1406 - Chapter 13 - Text Formatting Classes

There are other useful methods in the

Character.isLetter(c)
Character.isDigit(c)
Character.isLetterOrDigit(c)
Character.isWhiteSpace(c)
Character.isLowerCase(c)
Character.isUpperCase(c)
Character.toLowerCase(c)
Character.toUpperCase(c)

Here are some examples of how they are used:

Character.isLetter(
Character.isDigit('6'
Character.isLetterOrDigit
Character.isWhiteSpace
Character.isLowerCase
Character.isUpperCase
Character.toLowerCase
Character.toUpperCase

Note that none of these methods require you to make an instance of a
are all static/class methods that take a
another primitive.

 13.3 The Date and

It is often necessary to use dates and times when programming.
class provided in the java.util
data objects that incorporate time as well.
represent BOTH date and time
happens to be the number of milliseconds since January 1, 1970, 00:00:00
GMT.

New dates are created with a call to a constructor as follows:

Date today = new

The result is an object that represents the current date and time and it looks something like this
when displayed (of course it will vary depending on the day you run your code):

Thu Mar 26 14:39:17 EDT 2009

Notice that it shows the day, month
and year of the Date object.
useful methods in the Date class:

 getTime() - Returns a long

Text Formatting Classes

 - 437 -

seful methods in the Character class. Here are just a few:

isLetter(c) // checks if c is a letter in the alphabet
isDigit(c) // checks if c is a digit (i.e., '0'
isLetterOrDigit(c) // … this one is obvious
isWhiteSpace(c) // checks if c is the space
isLowerCase(c) // checks if c is lowercase (e.g., ‘a’)
isUpperCase(c) // checks if c is uppercase (e.g., ‘A’)
toLowerCase(c) // returns lowercase equival
toUpperCase(c) // returns uppercase equivalent of C

Here are some examples of how they are used:

('A') // returns true
'6') // returns true

isLetterOrDigit('@') // returns false
isWhiteSpace(' ') // returns true
isLowerCase('a') // returns true
isUpperCase('A') // returns true
toLowerCase('B') // returns 'b'
toUpperCase('b') // returns 'B'

Note that none of these methods require you to make an instance of a Character
/class methods that take a char as a parameter (int in some cases) a

and Calendar Classes

It is often necessary to use dates and times when programming. Let us take a look at the
java.util package. The Date class allows us to make

data objects that incorporate time as well. The java.util.Date class is used to
time. Dates are stored simply as a number, which

happens to be the number of milliseconds since January 1, 1970, 00:00:00

New dates are created with a call to a constructor as follows:

new Date();

The result is an object that represents the current date and time and it looks something like this
when displayed (of course it will vary depending on the day you run your code):

Thu Mar 26 14:39:17 EDT 2009

month, day-of-month, hours, minutes, seconds
 This is default behavior for this class. There are only three other

class:

long representing this time in milliseconds.

 Winter 2017

class. Here are just a few:

// checks if c is a letter in the alphabet
digit (i.e., '0' - '9')

// … this one is obvious …
space character

// checks if c is lowercase (e.g., ‘a’)
// checks if c is uppercase (e.g., ‘A’)
// returns lowercase equivalent of c
// returns uppercase equivalent of C

Character object. They
in some cases) and return

Let us take a look at the Date
class allows us to make

class is used to
Dates are stored simply as a number, which

happens to be the number of milliseconds since January 1, 1970, 00:00:00

The result is an object that represents the current date and time and it looks something like this
when displayed (of course it will vary depending on the day you run your code):

seconds, timezone
There are only three other

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 438 -

 after(Date d) - Returns whether or not receiver date comes after the given date d.
 before(Date d) - Returns whether or not receiver date comes before the given date d.

Most other methods have been deprecated (which means they should not be used anymore).

In the class Date itself, there is no easy way to create a specific date (e.g., Feb. 13, 1992).
Instead, we must use a different class to do this. In the current version of JAVA,
Calendar objects are used to represent dates, instead of Date objects. Calendar is
an abstract base class for converting between a Date object and a set of integer
fields such as YEAR, MONTH, DAY, HOUR, and so on.

Although this Calendar class has many useful constants and methods (as you will soon see),
we cannot make instances of it (i.e., we cannot say new Calendar()). Instead, the more
specific kind of calendar called a GregorianCalendar is used.

The java.util.GregorianCalendar class is used to query and manipulate dates. Here are some
of the available constructors …

new GregorianCalendar() // today’s date
new GregorianCalendar(1999, 11, 31) // year,month,day
new GregorianCalendar(1968, 0, 8, 11, 55) // year, month, day, hours, mins

Notice that:

 the year is specified as 4-digits (e.g., 1968)
 months are specified from 0 to 11 (January being 0)
 days must be from 1 to 31
 hours and minutes are at the end of the constructor

Calendars do not display well.

Here is what you would see if you tried displaying a GregorianCalendar:

java.util.GregorianCalendar[time=1178909251343,areFieldsSet=true,
areAllFieldsSet=true,lenient=true,zone=sun.util.calendar.ZoneInfo[id=
"America/New_York",offset=-18000000,dstSavings=3600000,useDaylight=true,
transitions=235,lastRule=java.util.SimpleTimeZone[id=America/New_York,
offset=-18000000,dstSavings=3600000,useDaylight=true,startYear=0,
startMode=3,startMonth=3,startDay=1,startDayOfWeek=1,startTime=7200000,
startTimeMode=0,endMode=2,endMonth=9,endDay=-1,endDayOfWeek=1,endTime=
7200000,endTimeMode=0]],firstDayOfWeek=1,minimalDaysInFirstWeek=1,ERA=1,
YEAR=2007,MONTH=4,WEEK_OF_YEAR=19,WEEK_OF_MONTH=2,DAY_OF_MONTH=11,
DAY_OF_YEAR=131,DAY_OF_WEEK=6,DAY_OF_WEEK_IN_MONTH=2,AM_PM=1,HOUR=2,
HOUR_OF_DAY=14,MINUTE=47,SECOND=31,MILLISECOND=343,ZONE_OFFSET=
-18000000,DST_OFFSET=3600000]

Obviously, this is not pleasant. To display a Calendar in a friendlier manner, we can use the
getTime() method, which actually returns a Date object (... not very intuitive … I know).
Consider these examples:

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 439 -

System.out.println(new GregorianCalendar().getTime()); // today
System.out.println(new GregorianCalendar(1999,11,31).getTime());
System.out.println(new GregorianCalendar(1968,0,8,11,55).getTime());

Here is the output (which of course varies with the current date):

Thu Mar 26 14:48:40 EDT 2009
Fri Dec 31 00:00:00 EST 1999
Mon Jan 08 11:55:00 EST 1968

The isLeapYear(int year) method returns whether or not the given year is a
leap year for this calendar:

 new GregorianCalendar().isLeapYear(2008)); // returns true
 new GregorianCalendar().isLeapYear(2009)); // returns false

There are many other methods that we can use to query or alter the date which are inherited
from the Calendar class.

For example, the get(int field) method is used along with some static constants to access
information about the particular calendar date. For example, at the time of updating these
notes the date was:

Thu Mar 26 15:05:35 EDT 2009

Consider the results (shown to the right) of each get method call in the code below. You
should use import java.util.Calendar at the top of your code so that you can use these
constants:

Calendar today = Calendar.getInstance();

today.get(Calendar.YEAR); // 2009
today.get(Calendar.MONTH); // 2
today.get(Calendar.DAY_OF_MONTH); // 26
today.get(Calendar.DAY_OF_WEEK); // 5
today.get(Calendar.DAY_OF_WEEK_IN_MONTH); // 4
today.get(Calendar.DAY_OF_YEAR); // 85
today.get(Calendar.WEEK_OF_MONTH); // 4
today.get(Calendar.WEEK_OF_YEAR); // 13
today.get(Calendar.HOUR); // 3
today.get(Calendar.AM_PM); // 1
today.get(Calendar.HOUR_OF_DAY); // 15
today.get(Calendar.MINUTE); // 5
today.get(Calendar.SECOND); // 35

The value returned from the get(int field) method can be compared with other Calendar
constants. For example,

if (aCalendar.get(Calendar.MONTH) == Calendar.APRIL) {...}
if (aCalendar.get(Calendar.DAY_OF_WEEK) == Calendar.SATURDAY) {...}

Here are some of the useful constants:

COMP1406 - Chapter 13 - Text Formatting Classes

Calendar.SUNDAY
Calendar.MONDAY
Calendar.TUESDAY
Calendar.WEDNESDAY
Calendar.THURSDAY
Calendar.FRIDAY
Calendar.SATURDAY

Calendar.JANUARY
Calendar.FEBRUARY
Calendar.MARCH
Calendar.APRIL
Calendar.MAY
Calendar.JUNE
Calendar.AM

There is also a set(int field, int value)
date fields:

aCalendar.set(Calendar.MONTH,
aCalendar.set(Calendar.YEAR, 1999);
aCalendar.set(Calendar.AM_PM,

Other set methods allow the date and time to be changed …

aCalendar.set(1999, Calendar.AUGUST
aCalendar.set(1999, Calendar.AUGUST

We can also format dates when we want to print them nicely.
class (in the java.text package) that formats a
formats. It does this by generating a
takes a String which indicates the desired format:

new SimpleDateFormat("MMM dd,yyyy"

The parameter in the method is a format string that specifies “how you want the date to look”
when it is printed. By using different characters in the format string,
for the date. The format(Date d) method
actually do the work by applying the format to the given date. Here is an example:

import java.text.SimpleDateFormat;
...

SimpleDateFormat dateFormatter =
Date today = new
String result = dateFormatter.

System.out.println(result);

Here is the result (which would vary,

Apr 4,2017

Here are examples of format Strings and their effect on the dat

Text Formatting Classes

 - 440 -

Calendar.JANUARY
Calendar.FEBRUARY
Calendar.MARCH
Calendar.APRIL
Calendar.MAY
Calendar.JUNE
Calendar.AM

Calendar.JULY
Calendar.AUGUST
Calendar.SEPTEMBER
Calendar.OCTOBER
Calendar.NOVEMBER
Calendar.DECEMBER
Calendar.PM

value) method that can be used to set the values for certain

(Calendar.MONTH, Calendar.JANUARY);
(Calendar.YEAR, 1999);
(Calendar.AM_PM, Calendar.AM);

the date and time to be changed …

Calendar.AUGUST, 15);
Calendar.AUGUST, 15, 6, 45);

We can also format dates when we want to print them nicely. There is a SimpleDateFormat
that formats a Date object using one of many predefined

It does this by generating a String representation of the date. The constructor
which indicates the desired format:

"MMM dd,yyyy");

The parameter in the method is a format string that specifies “how you want the date to look”
By using different characters in the format string, you get different

method in the SimpleDataFormat class is then used to
ng the format to the given date. Here is an example:

java.text.SimpleDateFormat;

dateFormatter = new SimpleDateFormat("MMM dd,yyyy"
new Date();

result = dateFormatter.format(today);

Here is the result (which would vary, depending on the date):

Here are examples of format Strings and their effect on the date April 30th 2001 at 12:08 PM:

 Winter 2017

method that can be used to set the values for certain

SimpleDateFormat
object using one of many predefined

he constructor

The parameter in the method is a format string that specifies “how you want the date to look”
get different output

en used to
ng the format to the given date. Here is an example:

"MMM dd,yyyy");

e April 30th 2001 at 12:08 PM:

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 441 -

Format String Resulting output

without formatting

"yyyy/MM/dd"
"yy/MM/dd"
"MM/dd"
"MMM dd,yyyy"
"MMMM dd,yyyy"
"EEE. MMMM dd,yyyy"
"EEEE, MMMM dd,yyyy"
"h:mm a"
"MMMM dd, yyyy (hh:mma)"

Tue Apr 30 12:08:52 EDT 2001

2001/04/30
01/04/30
04/30
Apr 30, 2001
April 30, 2001
Mon. April 30, 2001
Monday, April 30, 2001
12:08 PM
April 30, 2001 (12:08PM)

For additional formatting information, check out the JAVA API specification. Here is a simple
example that creates two dates. One representing today, the other representing a future date:

import java.util.*;
import java.text.SimpleDateFormat;

public class DateTestProgram {
 public static void main (String[] args) {

 Calendar today = Calendar.getInstance();
 Calendar future;
 int difference;

 // Display Information about today's date and time
 System.out.println("Here is today:");
 System.out.println(today.getTime());
 System.out.println(today.get(Calendar.YEAR));
 System.out.println(today.get(Calendar.MONTH));
 System.out.println(today.get(Calendar.DAY_OF_MONTH));

 // Display Information about a future day's date and time
 future = Calendar.getInstance();
 future.set(2010, Calendar.MARCH, 5);
 System.out.println("Here is the future:");
 System.out.println(future.getTime());
 System.out.println(future.get(Calendar.YEAR));
 System.out.println(future.get(Calendar.MONTH));
 System.out.println(future.get(Calendar.DAY_OF_MONTH));

 // Test the formatting
 Date aDate = new Date();
 System.out.println(aDate);
 System.out.println(new SimpleDateFormat("yyyy/MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("yy/MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("MMM dd,yyyy").format(aDate));
 System.out.println(new SimpleDateFormat("MMMM dd,yyyy").format(aDate));
 }
}

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 442 -

Here is the output from running this code on Mar 30th, 2017:

Here is today:
Thu Mar 30 16:17:49 EDT 2017
2017
2
30
Here is the future:
Mon Mar 05 16:17:49 EST 2040
2040
2
5
Thu Mar 30 16:17:49 EDT 2017
2017/03/30
17/03/30
03/30
Mar 30,2017
March 30,2017

Notice that the months start at 0, and so March is month #2.

Although we can create and display simple dates, we have not done any manipulation at all.
For instance, we may want to know how many working days there are between two dates.
There are many more functions in the Calendar and Date classes, but we will not discuss
them any further here. You would have to look at the API for the Date, Calendar,
GregorianCalendar and SimpleDateFormat classes.

 Supplemental Information (Formatting Dates with Strings)

We can also use the String.format() method to format dates and times. There are many
flags that can be used (see the API for details) but here are some commonly used ones for
displaying dates and times:

Date aDate = new Date();

System.out.println(String.format("%tc", aDate));
System.out.println(String.format("%tF", aDate));
System.out.println(String.format("%tR", aDate));
System.out.println(String.format("%tr", aDate));
System.out.println(String.format("%tD", aDate));

Here was the output when it was ran on March 30, 2017 at 4:19pm:

Thu Mar 30 16:19:09 EDT 2017
2017-03-30
16:19
04:19:09 PM
03/30/17

COMP1406 - Chapter 13 - Text Formatting Classes Winter 2017

 - 443 -

