

Chapter 14

Graphics

What is in This Chapter ?

As programmers, we will likely all eventually come across a situation in which we need to
display graphics. Graphics may be pictures or perhaps drawings consisting of lines, circles,
rectangles etc... For example, if we want to have an application that displays a bar graph,
there is no "magical" component in JAVA that does this for us. In this chapter, we will learn
the basics of drawing graphics, displaying images, and manipulating graphics in our
JAVA applications.

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 445 -

 14.1 Doing Simple Graphics

Graphics are used in many applications to display graphs, statistics, diagrams, pictures etc...
Some applications are even completely based on graphics such as games, paint programs,
PowerPoint etc... We have already seen how to display images on our application window
inside labels, buttons etc... Now we will see how to actually draw our own graphics, as when
drawing graphs or diagrams. To draw something, we create a new Canvas object, specifying
its width and height:

Canvas canvas = new Canvas(300, 300);

Normally, we add this to our root Pane when we create our application:

Pane p = new Pane();
Canvas canvas = new Canvas(300, 300);
p.getChildren().add(canvas);

Once the Canvas has been created, we then need to get a kind of "pen" for drawing onto it.
We do this by asking the Canvas for its GraphicsContext:

GraphicsContext aPen = canvas.getGraphicsContext2D();

We can then use this "pen" to start drawing. Think of each canvas as having its own "pen"
that can only be used to draw on it, just like the pens attached to kiosks at the bank.

One of the things that we get to do is specify the outline color (i.e., stroke color) as well as the
fill color (i.e., the shape's fill-in color) by using setStroke() and setFill():

aPen.setStroke(Color.BLACK);
aPen.setFill(Color.YELLOW);

There are a set of drawing functions that allow you to draw onto a canvas. Most drawing
functions allow you to specify x and y coordinates. The coordinate (x,y)=(0,0) is at the top left
corner of the canvas. Here are just some of the methods available in the GraphicsContext
class (look in the JavaFX API for more info):

// Draw a line from (x1, y1) to (x2,y2)
public void strokeLine(double x1, double y1,
 double x2, double y2);

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 446 -

// Draw a rectangle with its top left at (x, y) having
// the given width and height
public void strokeRect(double x, double y,
 double width, double height);

// Draw a filled rectangle with its top left at (x, y)
// having the given width and height
public void fillRect(double x, double y,
 double width, double height);

// Draw an oval with its top left at (x, y) having the
// given width and height
public void strokeOval(double x, double y,
 double width, double height);

// Draw a filled oval with its top left at (x, y)
// having the given width and height
public void fillOval(double x, double y,
 double width, double height);

// Draw a rounded rectangle with its top left at (x, y)
// having given width & height and arc width & height
public void strokeRoundRect(double x, double y,
 double width, double height,
 double w, double h);

// Draw a filled rounded rectangle with its top left at
// (x, y) having given & height and arc width & height
public void fillRoundRect(double x, double y,
 double width, double height,
 double w, double h);

// Draw a filled "Open" arc with its top left at
// (x, y) starting at startAngle deg and going extent
public void strokeArc(double x, double y, double width,
 double height, double startAngle,
 double extent, ArcType.OPEN);

// Draw a filled "Chord" arc with its top left at
// (x, y) starting at startAngle deg and going extent
public void strokeArc(double x, double y, double width,
 double height, double startAngle,
 double extent, ArcType.CHORD);

// Draw a filled "Pie Chart" arc with its top left at
// (x, y) starting at startAngle deg and going extent
public void strokeArc(double x, double y, double width,
 double height, double startAngle,
 double extent, ArcType.ROUND);

// Draw an "Open" or "chord" arc with its top left at
// (x, y) starting at startAngle deg and going extent
public void fillArc(double x, double y, double width,
 double height, double startAngle,
 double extent, ArcType.OPEN);

// Draw a "Pie Chart" arc with its top left at (x, y)
// starting at startAngle deg and going extent
public void fillArc(double x, double y, double width,
 double height, double startAngle,
 double extent, ArcType.ROUND);

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 447 -

// Draw a polygon with the given coordinates
public void strokePolygon(double[] x, double[] y,
 int numEdges);

// Draw a filled polygon with the given coordinates
public void fillPolygon(double[] x, double[] y,
 int numEdges);

// Draw a polyline with the given coordinates
public void strokePolyline(double[] x, double[] y,
 int numEdges);

// Draw the given String with its bottom left at (x, y)
public void strokeText(String str, double x, double y);

// Draw the given String with its bottom left at (x, y)
public void fillText(String str, double x, double y);

Example:

This code makes a simple Application and then
draws some text on it wherever the user clicks the
mouse. The code is straight forward. The text is
drawn such that the bottom left corner of the text
appears at the location in which the mouse is
pressed. Here is the code:

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.canvas.*;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class TextDrawingExample extends
 Application {
 public void start(Stage primaryStage) {
 Pane p = new Pane();
 Canvas canvas = new Canvas(300, 300);
 p.getChildren().add(canvas);
 GraphicsContext aPen = canvas.getGraphicsContext2D();
 aPen.setStroke(Color.BLACK);
 aPen.setFill(Color.YELLOW);
 Scene scene = new Scene(p, 300, 300);

 // Draw a piece of text wherever the mouse is pressed

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 448 -

 canvas.setOnMousePressed(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent mouseEvent) {
 aPen.strokeText("Hello", mouseEvent.getX(), mouseEvent.getY());
 }
 });

 primaryStage.setTitle("Text Drawing Example");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
 public static void main(String[] args) { launch(args); }
}

Of course, we can adjust the Font as well. For example, we can change the font using
setFont():

aPen.setFont(Font.font ("Arial", 40));
aPen.strokeText("Hello", mouseEvent.getX(), mouseEvent.getY());

We can even mix and match things ... filling AND drawing the font:

aPen.setStroke(Color.BLACK);
aPen.setFill(Color.YELLOW);
aPen.setFont(Font.font ("Stencil", 40));
aPen.fillText("Hello", mouseEvent.getX(), mouseEvent.getY());
aPen.strokeText("Hello", mouseEvent.getX(), mouseEvent.getY());

Here is the result of each of these:

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 449 -

Example:

In this example, we will set up nine Canvases, each one allowing a different shape to be
drawn onto it. We will set up a single event handler for all mouse presses and within that
method we will ask which canvas has been clicked on and then draw the corresponding shape
onto the canvas. The shapes will be drawn with different colors each time. We use
Math.random() to get a random number for creating a random color.

The code for this application is below. You will notice that:

1. We created an array of GraphicsContext objects to represent the 9 "pens" that
correspond to the 9 canvases. This was made as an instance variable so that both the
start() and handlePress() methods can access it freely. A black border is drawn
around each canvas upon startup.

2. All canvases share the same event handler, so within it, we need to determine which
canvas was clicked on to decide which shape to draw. We do this by comparing the 9
pens with the pen that comes in as a method parameter (which is the pen belonging to
the canvas that generated the event). Then we can determine the row and column that
the pen belongs to and determine which of the 9 shapes to draw.

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.canvas.*;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.GridPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.ArcType;
import javafx.stage.Stage;

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 450 -

public class ShapeDrawingExample extends Application {
 private GraphicsContext[][] pens = new GraphicsContext[3][3];

 public void start(Stage primaryStage) {

 GridPane aPane = new GridPane();
 aPane.setPadding(new Insets(10, 10, 10, 10));
 aPane.setHgap(1);
 aPane.setVgap(1);

 for (int row=0; row<3; row++)
 for (int col=0; col<3; col++) {
 // Create and add a canvas and draw a border around it
 Canvas c = new Canvas(200, 100);
 pens[row][col] = c.getGraphicsContext2D();
 pens[row][col].setStroke(Color.BLACK);
 pens[row][col].setLineWidth(4);
 pens[row][col].strokeRect(0, 0, c.getWidth(), c.getHeight());
 pens[row][col].setLineWidth(1);
 aPane.add(c, col, row);

 // Handle a mouse press on each canvas
 c.setOnMousePressed(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent mouseEvent) {
 handlePress(((Canvas)mouseEvent.getSource()).
 getGraphicsContext2D(),
 mouseEvent.getX(), mouseEvent.getY());
 }
 });
 }

 Scene scene = new Scene(aPane, 620, 320);
 primaryStage.setTitle("Shape Drawing Example");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 // Handle the MousePress event on a canvas
 private void handlePress(GraphicsContext aPen, double x, double y) {
 // Get a random color
 aPen.setStroke(Color.color(Math.random(), Math.random(), Math.random()));
 aPen.setFill(Color.color(Math.random(), Math.random(), Math.random()));

 // Find the index of the canvas that caused this event
 int penNumber = 0;
 for (int row=0; row<3; row++)
 for (int col=0; col<3; col++) {
 if (aPen == pens[row][col]) {
 penNumber = row*3 + col;
 break;
 }
 }

 // Now decide what to draw
 switch (penNumber) {
 case 0: aPen.strokeLine(x, y, x+20, y+20); break;
 case 1: aPen.strokeOval(x, y, 10, 20); break;
 case 2: aPen.strokeRect(x, y, 40, 20); break;
 case 3: aPen.strokeRoundRect(x, y, 40, 20, 15, 15); break;
 case 4: aPen.strokeArc(x, y, 40, 20, 45, 200, ArcType.OPEN); break;

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 451 -

 case 5: aPen.fillOval(x, y, 10, 20); break;
 case 6: aPen.fillRect(x, y, 40, 20); break;
 case 7: aPen.fillRoundRect(x, y, 40, 20, 15, 15); break;
 case 8:
 double[] px = new double[4];
 px[0] = x;
 px[1] = x + 30;
 px[2] = x + 50;
 px[3] = x + 10;
 double[] py = new double[4];
 py[0] = y;
 py[1] = y + 5;
 py[2] = y + 35;
 py[3] = y + 50;
 aPen.fillPolygon(px, py, 4);
 aPen.strokePolygon(px, py, 4);
 break;
 }
 }
 public static void main(String[] args) { launch(args); }
}

14.2 Displaying Images and Manipulating Pixels

We have seen how to draw shapes of different colors onto components, now we will find out
how to draw an image on the screen. JavaFX lets you load and display image files in a similar
way in which we used them on Labels and Buttons earlier in the course. An ImageView object
is used to display an image and the ImageView can be added to a Pane just like any other
object:

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.*;
import javafx.scene.layout.Pane;
import javafx.stage.Stage;

public class ImageDrawingExample extends Application {
 public void start(Stage primaryStage) {
 Image image = new Image("KittenPuppy.png");
 ImageView imageView = new ImageView(image);

 Pane root = new Pane();
 root.getChildren().add(imageView);
 Scene scene = new Scene(root, 480, 300);
 primaryStage.setTitle("Image Drawing Example");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
 public static void main(String[] args) { launch(args); }
}

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 452 -

We can also extract information from the image by accessing its pixel colors. We do this by
using the getPixelReader() method, and then using the getColor(x,y) method on that to
obtain the pixel's color at the specified coordinate.

// Determine the color of each pixel in the image
PixelReader pixelReader = image.getPixelReader();

for (int y = 0; y < image.getHeight(); y++) {
 for (int x = 0; x < image.getWidth(); x++) {
 Color color = pixelReader.getColor(x, y);

 System.out.println("\nPixel color at (" + x + "," + y + ")");
 System.out.println("R = " + color.getRed());
 System.out.println("G = " + color.getGreen());
 System.out.println("B = " + color.getBlue());
 System.out.println("Opacity = " + color.getOpacity());
 System.out.println("Saturation = " + color.getSaturation());
 }
}

The above code obtains color information from every
pixel in the image. It reads in one pixel at a time,
starting in the upper left corner (0,0) and progressing
across the image from left to right. The Y-coordinate
increments only after an entire row has been read.
Information about each pixel is then printed. The
R,G,B values represent the percentage of red, green
and blue in the pixel, where (0.0, 0.0, 0.0) would be
black, while (1.0, 1.0, 1.0) would be white. The
output looks something like what is shown here.

Pixel color at (178,284)
R = 0.9843137264251709
G = 0.9411764740943909
B = 0.9254902005195618
Opacity = 1.0
Saturation = 0.059760952556502815

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 453 -

Unfortunately, Image objects are read-only. So, in order to change an image's pixels, we need
an instance of WritableImage and then we can use getPixelWriter() to get a PixelWriter
object that will allow us to change the pixel values:

// Create WritableImage
WritableImage wImage = new WritableImage((int)image.getWidth(),
 (int)image.getHeight());
PixelWriter pixelWriter = wImage.getPixelWriter();

With the PixelWriter, we can use setColor(x, y, newColor) to change a pixel at location (x, y)
to a newColor. Here is an example of how to brighten a pixel, which makes use of the color
variable obtained from pixelReader.getColor(x, y);:

color = color.brighter();
pixelWriter.setColor(x,y,color);

We can apply this to each pixel to brighten the whole image. It should be noted however, that
this does not change the original image. We are in fact brightening wImage ... which is the
WritableImage object. If we want the changes to be visible, we would need to show the new
image. One way to do this is to change the image on the ImageView from the original image
to the wImage as follows:

imageView.setImage(wImage);

There are more efficient ways to manipulate pixels by using setPixels(), which allows you to
define all the pixel values of an image via a byte[]. You can look further into the
pixelWriter API for more details.

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 454 -

14.3 Graph Editor Example

This section of the notes describes a step-by-step approach for creating a simple graph editor.
It introduces the notion of "drag and drop" as well as selecting objects.

What is a graph ? There are many types of graphs. We are interested in graphs that form
topological and/or spatial information. Our graphs will consist of nodes and edges. The
nodes may represent cities in a map while the edges may represent routes or flights between
cities:

We would like to make a graph editor with the ability to:

 add/remove nodes
 add/remove edges
 move nodes around (edges between them will remain connected)
 "select" groups of nodes and edges for removal or moving
 do some other useful graph-manipulation features

The Graph Model:

We will begin our application as usual by developing the model. We know that our graph
itself is going to be the model, but we must first think about what components make up the
graph. These are the nodes and edges.

Let us begin by creating a Node class. What state should each node maintain ? Well, it
depends on the application that will be using it. Since we know that the graph will be

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 455 -

displayed, each node will need to keep track of its location. Also, we may wish to label
nodes (e.g., a city's name). Here is a basic model for the nodes:

import javafx.geometry.Point2D;

public class Node {
 private String label;
 private Point2D location;

 public Node() { this("", new Point2D(0,0)); }
 public Node(String aLabel) { this(aLabel, new Point2D(0,0)); }
 public Node(Point2D aPoint) { this("", aPoint); }
 public Node(double x, double y) { this("", new Point2D(x,y)); }

 public Node(String aLabel, Point2D aPoint) {
 label = aLabel;
 location = aPoint;
 }

 public String getLabel() { return label; }
 public Point2D getLocation() { return location; }
 public void setLabel(String newLabel) { label = newLabel; }
 public void setLocation(Point2D aPoint) { location = aPoint; }
 public void setLocation(double x, double y) { location = new Point2D(x, y); }

 // Nodes look like this: label(12,43)
 public String toString() {
 return(label + "(" + location.getX() + "," + location.getY() + ")");
 }
}

Notice that we don't have much in terms of behavior ... simply some get/set methods and a
toString() method. Notice the two different set methods for location. This gives us flexibility
in cases where the coordinates are either Point2D objects or ints.

What state do we need for a graph edge ? Well ... they must start at some node and end at
another so we may want to know which nodes these are. Does it make sense for a graph
edge to exist when one or both of its endpoints are not nodes ? Probably not. So an edge
should keep track of the node from which it starts and the node at which it ends. We will call
them startNode and endNode. What about a label ? Sure ... roads have names (as well as
lengths). Here is a basic Edge class:

public class Edge {
 private String label;
 private Node startNode, endNode;

 public Edge(Node start, Node end) { this("", start, end); }
 public Edge(String aLabel, Node start, Node end) {
 label = aLabel;
 startNode = start;
 endNode = end;
 }

 public String getLabel() { return label; }
 public Node getStartNode() { return startNode; }
 public Node getEndNode() { return endNode; }

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 456 -

 public void setLabel(String newLabel) { label = newLabel; }
 public void setStartNode(Node aNode) { startNode = aNode; }
 public void setEndNode(Node aNode) { endNode = aNode; }

 // Edges look like this: sNode(12,43) --> eNode(67,34)
 public String toString() {
 return(startNode.toString() + " --> " + endNode.toString());
 }
}

Now what about the graph itself ? What do we need for the state of the graph ?
Well ... a graph is just a bunch of nodes and edges.

Still, we have a few choices for representing the graph:

1. Keep a collection of all nodes AND another collection of all edges
2. Keep only a collection of all nodes
3. Keep only a collection of all edges
4. Keep only 1 node OR 1 edge (this seems weird doesn't it ?)

Let us examine each of these:

1. The 1st strategy would provide quick access for nodes and edges since they are readily
available. However, it does take more space than the other strategies.

2. The 2nd strategy allows quick access to nodes, but if we ever needed to get all the
edges, we would have to build up the collection, which takes time. This can be done by
iterating through all incident edges (i.e., incoming and outgoing edges) of all nodes and
adding the edges (this is slower, but more space efficient). So each node would have
to keep track of the edges from/to it.

3. The 3rd strategy is similar to the 2nd except that the edges are efficiently accessible
and the nodes are not.

4. The 4th strategy is weird. If we keep one node, we would have to traverse along one of
its incident edges to the node at the other end and continue in this manner throughout
the graph in order to build up a list of all the nodes and edges. However, this will ONLY
work if the graph is connected (i.e., every node can be reached from every other node
through a sequence of graph edges).

We will choose the 2nd strategy for our implementation, although you should realize that all
four are possible.

Let us examine our Node and Edge classes a little further and try to imagine additional
behavior that we may want to have.

Notice that each edge keeps track of the nodes that it connects together. But shouldn't a node
also keep track of the edges are connected to it ? Think of "real life". Wouldn't it be nice to
know which roads lead "into" and "out of" a city ?

Obviously, we can always consult the graph itself and check ALL edges to see if they connect
to a given city. This is NOT what you would do if you had a map though. You don't find this

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 457 -

information out by looking at ALL roads on a map. You find the city of interest, then look at the
roads around that area (i.e., only the ones heading into/out of the city).

The point is ... for time efficiency reasons, we will probably want each node to keep track of the
edges that it is connected to. Of course, we won't make copies of these edges, we will just
keep "pointers" to them so the additional memory usage is not too bad.

We should go back and add the following instance variable to the Node class:

 private ArrayList<Edge> incidentEdges;

We will also need the following "get method" and another for adding an edge:

public ArrayList<Edge> incidentEdges() {
 return incidentEdges;
}

public void addIncidentEdge(Edge e) {
 incidentEdges.add(e);
}

We will also have to add this line to the last of the Node constructors:

 incidentEdges = new ArrayList<Edge>();

While we are making changes to the Node class, we will also add another interesting method
called neighbours() that returns the nodes that are connected to the receiver node by a graph
edge. That is, it will return an ArrayList of all nodes that share an edge with this receiver
node. It is very much like asking: "Which cities can I reach from this one if I travel on only one
highway ?".

We can obtain these neighbors by iterating through the incidentEdges of the receiver and
extracting the node at the other end of the edge. We will have to determine if this other node
is the start or end node of the edge:

public ArrayList<Node> neighbours() {
 ArrayList<Node> result = new ArrayList<Node>();

 for (Edge e: incidentEdges) {
 if (e.getStartNode() == this)
 result.add(e.getEndNode());
 else
 result.add(e.getStartNode());
 }

 return result;
}

As we write this method, it seems that we are writing a portion of code that is potentially useful
for other situations. That code is the code responsible for finding the opposite node of an
edge. We should extract this code and make it a method for the Edge class:

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 458 -

public Node otherEndFrom(Node aNode) {
 if (startNode == aNode)
 return endNode;
 else
 return startNode;
}

Now, we can rewrite the neighbours() method to use the otherEndFrom() method:

public ArrayList<Node> neighbours() {
 ArrayList<Node> result = new ArrayList<Node>();

 for (Edge e: incidentEdges)
 result.add(e.otherEndFrom(this));

 return result;
}

Ok. Now we will look at the Graph class. We have decided that we were going to store just
the nodes, and not the edges. We will also store a label for the graph ... after all ... provinces
have names don't they ?

import java.util.*;

public class Graph {
 private String label;
 private ArrayList<Node> nodes;

 public Graph() { this("", new ArrayList<Node>()); }
 public Graph(String aLabel) { this(aLabel, new ArrayList<Node>()); }
 public Graph(String aLabel, ArrayList<Node> initialNodes) {
 label = aLabel;
 nodes = initialNodes;
 }

 public ArrayList<Node> getNodes() { return nodes; }
 public String getLabel() { return label; }
 public void setLabel(String newLabel) { label = newLabel; }

 // Graphs look like this: label(6 nodes, 15 edges)
 public String toString() {
 return(label + "(" + nodes.size() + " nodes, " +
 getEdges().size() + " edges)");
 }
}

Let us write a method to return all the edges of the graph. It will have to go and collect all the
Edge objects from the incident edges of the Node objects and return them as an ArrayList.
Can you foresee a small problem ?

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 459 -

// Get all the edges of the graph by asking the nodes for them
public ArrayList<Edge> getEdges() {
 ArrayList<Edge> edges = new ArrayList<Edge>();

 for (Node n: nodes) {
 for (Edge e: n.incidentEdges()) {
 if (!edges.contains(e)) //so that it is not added twice
 edges.add(e);
 }
 }

 return edges;
}

Now we need methods for adding/removing nodes/edges. Adding a node or edge is easy,
assuming that we already have the node or edge:

public void addNode(Node aNode) {
 nodes.add(aNode);
}

public void addEdge(Edge anEdge) {
 // ?????? What ?????? ...
}

Wait a minute ! How do we add an edge if we do not store them explicitly ? Perhaps we don't
want an addEdge method that takes an "already created" edge. Instead, we should have an
addEdge method that takes the startNode and endNode as parameters, then it creates the
edge:

public void addEdge(Node start, Node end) {
 // First make the edge
 Edge anEdge = new Edge(start, end);

 // Now tell the nodes about the edge
 start.addIncidentEdge(anEdge);
 end.addIncidentEdge(anEdge);
}

There ... that is better. What about removing/deleting a node or edge ? Deleting an Edge is
easy, we just ask the edge's start and end nodes to remove the edge from their lists.

public void deleteEdge(Edge anEdge) {
 // Just ask the nodes to remove it
 anEdge.getStartNode().incidentEdges().remove(anEdge);
 anEdge.getEndNode().incidentEdges().remove(anEdge);
}

Removing a Node is a little more involved since all of the incident edges must be removed as
well. After all ... we cannot have edges dangling with one of its Nodes missing !

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 460 -

public void deleteNode(Node aNode) {
 // Remove the opposite node's incident edges
 for (Edge e: aNode.incidentEdges())
 e.otherEndFrom(aNode).incidentEdges().remove(e);
 nodes.remove(aNode); // Remove the node now
}

OK. Let us write some code that now tests the model classes. Here is static method for the
Graph class that creates and returns a graph:

public static Graph example() {
 Graph myMap = new Graph("Ontario and Quebec");
 Node ottawa, toronto, kingston, montreal;

 myMap.addNode(ottawa = new Node("Ottawa", new Point2D(250,100)));
 myMap.addNode(toronto = new Node("Toronto", new Point2D(100,170)));
 myMap.addNode(kingston = new Node("Kingston", new Point2D(180,110)));
 myMap.addNode(montreal = new Node("Montreal", new Point2D(300,90)));
 myMap.addEdge(ottawa, toronto);
 myMap.addEdge(ottawa, montreal);
 myMap.addEdge(ottawa, kingston);
 myMap.addEdge(kingston, toronto);

 return myMap;
}

We can test it by writing Graph.example() anywhere. This looks fine and peachy, but if we have
100 nodes, we would need 100 local variables (or a big array) just for the purpose of adding
edges !! Maybe this would be a better way to write the code:

public static Graph example() {
 Graph myMap = new Graph("Ontario and Quebec");

 myMap.addNode(new Node("Ottawa", new Point2D(250,100)));
 myMap.addNode(new Node("Toronto", new Point2D(100,120)));
 myMap.addNode(new Node("Kingston", new Point2D(200,130)));
 myMap.addNode(new Node("Montreal", new Point2D(300,70)));
 myMap.addEdge("Ottawa", "Toronto");
 myMap.addEdge("Ottawa", "Montreal");
 myMap.addEdge("Ottawa", "Kingston");
 myMap.addEdge("Kingston", "Toronto");

 return myMap;
}

This way, we can access the nodes of the graph by their names (assuming that they are all
unique names). How can we make this happen ? We just need to make another addEdge()
method that takes two String arguments and finds the nodes that have those labels. Perhaps
we could make a nice little helper method in the Graph class that will find a node with a given
name (label):

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 461 -

public Node nodeNamed(String aLabel) {
 for (Node n: nodes)
 if (n.getLabel().equals(aLabel))
 return n;
 return null; // If we don't find one
}

Now we can write another addEdge() method that takes String parameters representing Node
names:

public void addEdge(String startLabel, String endLabel) {
 Node start = nodeNamed(startLabel);
 Node end = nodeNamed(endLabel);

 if ((start != null) && (end != null))
 addEdge(start, end);
}

Notice the way we share code by making use of the "already existing" addEdge() method. Also
notice the careful checking for valid node labels. After this new addition, the 2nd main() method
that we created above will now work.

Displaying the Graph:

If we are going to be displaying the graph, we need to think about how
we want to draw it. Here, to the right, is what we "may" want to see:
So where do we start ? Let us work on writing code that
draws each of the graph components separately.

We will start by writing methods for drawing
Nodes and Edges, then use these to
draw the Graph. We can pass around
the GraphicsContext object that corresponds to the "pen" that belongs to the canvas. Here is
a method for the Node class that will instruct a Node to draw itself using the given
GraphicsContext object:

public void draw(GraphicsContext aPen) {
 int r = 15; // Node radius

 aPen.setFill(Color.color(0.6, 0.6, 1.0)); // Fill circle around center of node
 aPen.fillOval(location.getX() - r, location.getY() - r, r*2, r*2);

 aPen.setStroke(Color.BLACK); // Draw border around the circle
 aPen.strokeOval(location.getX() - r, location.getY() - r, r*2, r*2);

 aPen.setFont(Font.font("Arial", 14)); // Draw label at top right of node
 aPen.setFill(Color.BLACK);
 aPen.fillText(label, location.getX() + r, location.getY() - r);
}

Notice that we draw the node twice ... once for the blue color ... once for the black border.
Here is now a similar method for the Edge class that draws an edge:

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 462 -

public void draw(GraphicsContext aPen) {
 // Draw black line from center of startNode to center of endNode
 aPen.setStroke(Color.BLACK);
 aPen.strokeLine(startNode.getLocation().getX(),
 startNode.getLocation().getY(),
 endNode.getLocation().getX(),
 endNode.getLocation().getY());
}

When drawing the graph, we should draw edges first, then draw the nodes on top. Why not
the other way around ? Here is the corresponding draw method for the Graph class:

public void draw(GraphicsContext aPen) {
 ArrayList<Edge> edges = getEdges();

 for (Edge e: edges) // Draw the edges first
 e.draw(aPen);
 for (Node n: nodes) // Draw the nodes second
 n.draw(aPen);
}

The User Interface:

Now we can start the creation of our GraphEditorApp user interface. To begin, we will just
create a window that will have a Canvas in it and we will then draw the example Graph from
within the start() method:

The code to do this is straight forward. Notice that the Graph is stored as an instance
variable and that it is drawn simply by calling the graph's draw() method with the canvas' pen.

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.scene.Scene;

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 463 -

import javafx.scene.canvas.*;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class GraphEditorApp extends Application {
 public static int WIDTH = 500;
 public static int HEIGHT = 250;

 private Graph graph; // The model (i.e. the graph)

 public void start(Stage primaryStage) {

 graph = Graph.example();

 Pane p = new Pane();
 Canvas canvas = new Canvas(WIDTH, HEIGHT);
 p.getChildren().add(canvas);
 Scene scene = new Scene(p, WIDTH, HEIGHT);

 // Display the graph onto the canvas
 GraphicsContext aPen = canvas.getGraphicsContext2D();
 graph.draw(aPen);

 primaryStage.setTitle("Graph Editor");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 public static void main(String[] args) { launch(args); }
}

Manipulating Nodes:

What kind of action should the user perform to add a node to the graph ? There are many
possibilities (i.e., menu options, buttons, mouse clicks). We will allow nodes to be added to the
graph via double clicks of the mouse. When the user double-clicks on the canvas, a new node
will be added at that mouse-click location.

// Handle a double-click in the canvas
canvas.setOnMousePressed(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent mouseEvent) {
 if (mouseEvent.getClickCount() == 2) {
 // Change the model, by adding a new Node
 graph.addNode(new Node(mouseEvent.getX(), mouseEvent.getY()));

 // Update the view, by redrawing the Graph
 update(aPen);
 }
 }
});

Here is the update() method. It simply erases the old graph and draws the new one:

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 464 -

 // Update the view by redrawing the graph onto the Canvas
 private void update(GraphicsContext aPen) {
 aPen.setFill(Color.WHITE);
 aPen.fillRect(0, 0, WIDTH, HEIGHT);
 graph.draw(aPen);
 }

If we run our code, we will notice something that is not so pleasant. Our strategy
of using the double click allows us to add nodes on top of each other, making
them possibly indistinguishable, as shown here on the right.

Perhaps instead of having nodes lying on top of each other, we could check to determine
whether or not the user clicks within a node. Then we can decide to "not add" the node if there
is already one there. What do we do then ... ignore the click ? Maybe we should cause the
node to be somehow "selected" so that we can move it around.

To do this, we will need to add functionality that allows nodes to be selected and unselected.

If we attempt to re-select an "already selected" node, it should probably become unselected
(i.e., toggle on/off). We should make the node appear different as well (perhaps red). We will
need to detect which node has been selected. This sounds like it could be a nice little helper
method in the Graph class.

We can just check the distance from the given point to the center of all nodes. If the distance
is <= the radius, then we are inside that node.

In fact, we are not really computing the distance, we are computing the "square" of the
distance. This is more efficient since we do not need to compute a square root. We need to
add the following to the Graph class:

// Return the first node in which point p is contained, if none, return null
public Node nodeAt(double x, double y) {
 for (Node n: nodes) {
 Point2D c = n.getLocation();
 double d = (x-c.getX())*(x-c.getX()) + (y-c.getY())*(y-c.getY());

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 465 -

 if (d <= (15*15))
 return n;
 }
 return null;
}

The 15 looks like a "magic" number. It seems like this number may be used a lot. We should
define a static constant in the Node class. Go back and change the draw method as well to
use this new static value:

 public static int RADIUS = 15;

Here is the better code:

public Node nodeAt(double x, double y) {
 for (Node n: nodes) {
 Point2D c = n.getLocation();
 double d = (x-c.getX())*(x-c.getX()) + (y-c.getY())*(y-c.getY());
 if (d <= (Node.RADIUS*Node.RADIUS))
 return n;
 }
 return null;
}

We should go back into our drawing routines and adjust the code so that it uses this new
RADIUS constant.

One more point ... the code goes through the Nodes from the first to the last. It would be
better to go in reverse order, because our drawing routine will draw the first one first and the
last one last. That means, that if two Nodes overlap, the one that was last added will appear
"on top" ... and this is likely the one that we want to select. So, this is better code:

public Node nodeAt(double x, double y) {
 for (int i=nodes.size()-1; i>=0; i--) {
 Node n = nodes.get(i);
 Point2D c = n.getLocation();
 double d = (x - c.getX()) * (x - c.getX()) +
 (y - c.getY()) * (y - c.getY());
 if (d <= (Node.RADIUS*Node.RADIUS))
 return n;
 }
 return null;
}

Now since we are allowing Nodes to be selected, we will have to somehow keep track of all
the selected nodes. We have two choices:

 Let the graph keep track of the selected nodes separately
 Let each node keep track of whether or not it is selected

We will choose the second strategy (do you understand the tradeoffs of each ?).

Add the following instance variable and methods to the Node class:

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 466 -

 private boolean selected;

public boolean isSelected() { return selected; }
public void setSelected(boolean state) { selected = state; }
public void toggleSelected() { selected = !selected; }

Now we should modify the draw method to allow nodes to be selected and unselected:

// Draw the Node using the given pen
public void draw(GraphicsContext aPen) {
 // Draw a blue-filled circle around the center of the node
 if (selected)
 aPen.setFill(Color.RED);
 else
 aPen.setFill(Color.color(0.6, 0.6, 1.0));

 aPen.fillOval(location.getX() - RADIUS, location.getY() - RADIUS,
 RADIUS*2, RADIUS*2);

 // Draw a black border around the circle
 aPen.setStroke(Color.BLACK);
 aPen.strokeOval(location.getX() - RADIUS, location.getY() - RADIUS,
 RADIUS*2, RADIUS*2);

 // Draw a label at the top right corner of the node
 aPen.setFont(Font.font("Arial", 14));
 aPen.setFill(Color.BLACK);
 aPen.fillText(label, location.getX() + RADIUS, location.getY() - RADIUS);
}

To make it all work, we must now select any Nodes that are clicked on by updating the code in
the mouseClicked event handler of the GraphEditorApp:

// Handle a double-click in the canvas
canvas.setOnMousePressed(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 if (ev.getClickCount() == 2) {
 Node aNode = graph.nodeAt(ev.getX(), ev.getY());
 if (aNode == null)
 // Change the model, by adding a new Node
 graph.addNode(new Node(ev.getX(), ev.getY()));
 else
 aNode.toggleSelected();
 // Update the view, by redrawing the Graph
 update(aPen);
 }
 }
});

Now how do we allow nodes to be deleted ? Perhaps, the user must select the node(s) first
and then press the delete key. Perhaps when the delete key is pressed, ALL of the currently
selected nodes should be deleted. So we will make a method that first returns all the selected
nodes. We will need to add this method to the Graph class which returns an
ArrayList<Node> of all the selected nodes:

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 467 -

// Get all the nodes that are selected
public ArrayList<Node> selectedNodes() {
 ArrayList<Node> selected = new ArrayList<Node>();
 for (Node n: nodes)
 if (n.isSelected())
 selected.add(n);
 return selected;
}

We already took care of the node selection, now we must handle the delete key. We should
have the GraphEditorApp implement a KeyReleased event handler. We will delete all
selected Nodes and then update as follows:

canvas.setOnKeyReleased(new EventHandler<KeyEvent>() {
 public void handle(KeyEvent ev) {
 if (ev.getCode() == KeyCode.DELETE) {
 // Delete all selected Nodes
 for (Node n: graph.selectedNodes())
 graph.deleteNode(n);
 // Update the view, by redrawing the Graph
 update(aPen);
 }
 }
});

There is a SLIGHT problem. It seems that even though we have only one component in our
app, this component does not have the focus by default. In order for the keystrokes to be
detectable, the component MUST have the focus. So we will add the following line to the
start() method, perhaps before setting the event handler:

canvas.requestFocus(); // Needed to handle key events

Now, how can we move nodes around once they are created ? Once again, we must decide
how we want the interface to work. It is most natural to allow the user to move nodes by
pressing the mouse down while on top of a node and holding it down while dragging the node
to the new location, then release the mouse button to cause the node to appear in the new
location. We will need mousePressed and mouseDragged event handlers, respectively. Here
is what we will have to do:

When the user presses the mouse (i.e., a "press", not a "click"), then determine if he/she
pressed on top of a node. If yes, then remember this node as being the one selected,

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 468 -

otherwise do nothing. As the mouse moves (while button being held down), we must update
the chosen node's location.

We will have to remember which node is being dragged so that we can keep changing its
location as the mouse is dragged. We will add an instance variable in the GraphEditorApp
called dragNode to remember this node:

 private Node dragNode;

Here is the updated mousePressed handler and the new mouseReleased and mouseDragged
event handlers which must be written:

// Handle a mouse-press in the canvas
canvas.setOnMousePressed(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 Node aNode = graph.nodeAt(ev.getX(), ev.getY());
 if (ev.getClickCount() == 2) {
 if (aNode == null)
 // Change the model, by adding a new Node
 graph.addNode(new Node(ev.getX(), ev.getY()));
 else
 aNode.toggleSelected();
 // Update the view, by redrawing the Graph
 update(aPen);
 }
 else {
 if (aNode != null) {
 dragNode = aNode; // If we pressed on a node, store it
 }
 }
 }
});

// Handle a mouse-release in the canvas
canvas.setOnMouseReleased(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 dragNode = null; // We must have let go of a Node
 }
});

// Handle a mouse-drag in the canvas
canvas.setOnMouseDragged(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 if (dragNode != null)
 dragNode.setLocation(new Point2D(ev.getX(), ev.getY()));
 update(aPen); // We have changed the model, so now update
 }
});

Notice that the pressing of the mouse merely stores the node to be moved. The releasing of
the mouse button merely resets this stored node to null. All of the moving occurs in the drag
event handler. If we drag the mouse, we just make sure that we had first clicked on a node by
examining the stored node just mentioned. If this stored node is not null, we then update its
position and then update the rest of the graph. Notice that all the edges connected to a node
move along with the node itself. Can you explain why ?

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 469 -

Manipulating Edges:

We have exhausted almost all the fun out of manipulating the graph nodes and we are now left
with the "fun" of adding/deleting/selecting and moving edges. First we will consider adding
edges. We must decide again on what action the user needs to perform in order to add the
edge:

1. We can have the user double-click on the startNode, double click on the endNode and
then have the edge "suddenly" appear.

2. We can select any two nodes of the graph and then perform some user-action (menu
item, button press, triple click) to cause an edge to appear between the two selected
edges.

3. We can click on a node and then drag the mouse to the destination node while showing
the created edge as we drag the mouse.

I hope you will agree that the 3rd approach is nicer in that it is more intuitive and provides the
user with a nice user-friendly interface. We will see that this strategy is called elastic
banding. To start, we will need to make the following assumptions:

 When the user presses and holds the mouse button down on a node, this node
becomes the startNode for the edge to be created. As the user moves the mouse (i.e.,
mouseDragged event) a line should be drawn from this startNode to the current
mouse position. When the user lets go of the mouse button on top of a different node,
an edge is created between the two.

 We should abort the process of adding an edge if the user releases the mouse button
while: a) not on a node or b) on the same node as he/she started.

We will have to modify the mousePressed, mouseReleased and mouseDragged event
handlers.

As it turns out, the mousePressed event handler already stores the "start" node in the
dragNode variable. But now look at the mouseDragged event handler. Currently, if we
press the mouse on a node and then drag it, this will end up causing the node to be moved.
But we need to allow an elastic band edge to be drawn instead of moving the node. So, we
now have two behaviors that we want to do from the same action of pressing the mouse on a
node. This presents a conflict since we cannot do both behaviors.

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 470 -

Let us modify our node-moving behavior as follows:

 If the node initially clicked on is a selected node, only then we will move it, otherwise
we will assume that an edge is to be added.

The mousePressed event handler currently just stores the selected node, upon a single
press. There is really nothing more to do there.

But now during the mouseDragged event handler, we will have to make a decision so as to
either move the node (if it was a "selected" Node) or to merely draw an edge from the pressed
node to the current mouse location. We will need to draw this "elastic line" within our update()
method after we draw the Graph. Although the start location for the elastic line is the center of
the start Node (i.e. the dragNode), we will need to also know the location of the other end of
the elastic, which is the current mouse location while we are dragging. Since we need this
information within a different method outside of the event handler, we will need to store it in an
instance variable. All we will do here is just store the current mouse location in this instance
variable and use it within the update() method:

private Point2D elasticEndLocation;

Here are the new changes:

// Handle a mouse-drag in the canvas
canvas.setOnMouseDragged(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 elasticEndLocation = new Point2D(ev.getX(), ev.getY());
 if (dragNode != null) {
 if (dragNode.isSelected())
 dragNode.setLocation(elasticEndLocation);
 }
 update(aPen); // We have changed the model, so now update
 }
});

Notice how the elasticEndLocation is updated and stored as the mouse is dragged.

Here is the new update() method with the added elastic line being drawn:

// Update the view by redrawing the graph onto the Canvas
private void update(GraphicsContext aPen) {
 aPen.setFill(Color.WHITE);
 aPen.fillRect(0, 0, WIDTH, HEIGHT);
 graph.draw(aPen);

 // Draw the elastic band
 if (dragNode != null)
 if (!dragNode.isSelected())
 aPen.strokeLine(dragNode.getLocation().getX(),
 dragNode.getLocation().getY(),
 elasticEndLocation.getX(),
 elasticEndLocation.getY());
}

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 471 -

Notice that this method makes use of the dragNode and elasticEndLocation variables but
still needs to decide whether or not to draw the elastic line. We draw the elastic line ONLY if
we are adding an edge. How do we know we are adding an edge ? Well, we must have
pressed on a starting node, so the dragNode must not be null. Also, that dragNode must not
be selected, otherwise we are in the middle of a "node moving" operation, not an "edge
adding" one.

Our last piece to this trilogy of event handler changes is to have the mouseReleased event
handler add the new edge ONLY if we let go of the mouse button on top of a node that is not
the same as the one we started with. If it is, or we let go somewhere off of a node, then we
must redraw everything either way to erase the elastic band. We just need to check that there
was indeed a starting Node (i.e., dragNode != null) and that we release on a different Node:

// Handle a mouse-release in the canvas
canvas.setOnMouseReleased(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 Node aNode = graph.nodeAt(ev.getX(), ev.getY());
 // Check to see if we have let go on a node
 if ((dragNode != null) && (aNode != null) && (aNode != dragNode))
 // Change the model, by adding a new Edge
 graph.addEdge(dragNode, aNode);
 // Update the view, by redrawing the Graph
 dragNode = null; // No need to remember this anymore
 update(aPen);
 }
});

One of our last tasks is to allow edges to be selected and removed. We can similarly add an
instance variable and some methods to the Edge class:

private boolean selected;

public boolean isSelected() { return selected;}
public void setSelected(boolean state) { selected = state;}
public void toggleSelected() { selected = !selected;}

Of course ... again we should initialize the instance variable to false within the constructor.
Now we make selected edges appear different (i.e., red).

public void draw(GraphicsContext aPen) {
 // Draw line from center of startNode to center of endNode
 if (selected)
 aPen.setStroke(Color.RED);
 else
 aPen.setStroke(Color.BLACK);

 aPen.strokeLine(startNode.getLocation().getX(),
 startNode.getLocation().getY(),
 endNode.getLocation().getX(),
 endNode.getLocation().getY());
}

How does the user select an edge ? Likely, by clicking on or near it. We can accomplish this
by determining the distance between the point clicked at and the edge itself.

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 472 -

If the distance is smaller than some pre-decided value (e.g., 5 pixels) then we can assume that
this edge was just clicked on... otherwise we can assume that the edge was not clicked on.
The equation to find the distance from a point to an edge is indicated below:

However, the above equation actually computes the distance from (x,y) to the line that passes
through the two edge nodes. So, if we click anywhere close to that line, we will be a small
distance value and we will think that the edge was selected:

Certainly, we do not want such an (x,y) point to be considered as "close to" the edge. We can
avoid this problem situation by examining the x-coordinate of the point that the user clicked on.
The x-coordinate must be greater that the left node's x-coordinate and smaller than the right
node's x-coordinate.

IF (distance < 3) THEN {
 IF ((x > n1.x) AND (x < n2.x)) OR ((x > n2.x) AND (x < n1.x)) THEN
 this edge has been selected
}

Can you foresee any further problems with the algorithm ? What if the edge is vertical ? The
above checking will never select the edge ! Instead, if the edge is vertical, we should
compare the y-coordinates. In fact, if the line is "more horizontal" we should check the x-
coordinates and if it is "more vertical" we should check the y-coordinates.

To determine if a line segment is more vertical or horizontal, we can compare the difference in
x and the difference in y.

Here is the code:

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 473 -

IF (distance < 3) THEN {
 xDiff ← abs(n2.x - n1.x)
 yDiff ← abs(n2.y - n1.y)
 IF (xDiff > yDiff) THEN
 IF ((x > n1.x) AND (x < n2.x)) OR ((x > n2.x) AND (x < n1.x)) THEN
 this edge has been selected
 OTHERWISE
 IF ((y > n1.y) AND (y < n2.y)) OR ((y > n2.y) AND (y < n1.y)) THEN
 this edge has been selected
}

Add the following method to the Graph class:

// Return first edge in which point p is near midpoint; if none, return null
public Edge edgeAt(double x, double y) {
 for (Edge e: getEdges()) {
 Node n1 = e.getStartNode();
 Node n2 = e.getEndNode();
 double xDiff = n2.getLocation().getX() - n1.getLocation().getX();
 double yDiff = n2.getLocation().getY() - n1.getLocation().getY();
 double distance = Math.abs(xDiff*(n1.getLocation().getY() - y) -
 (n1.getLocation().getX() - x)*yDiff) /
 Math.sqrt(xDiff*xDiff + yDiff*yDiff);
 if (distance <= 5) {
 if (Math.abs(xDiff) > Math.abs(yDiff)) {
 if (((x < n1.getLocation().getX()) &&
 (x > n2.getLocation().getX())) ||
 ((x > n1.getLocation().getX()) &&
 (x < n2.getLocation().getX())))
 return e;
 }
 else
 if (((y < n1.getLocation().getY()) &&
 (y > n2.getLocation().getY())) ||
 ((y > n1.getLocation().getY()) &&
 (y < n2.getLocation().getY())))
 return e;
 }
 }
 return null;
}

Now, upon a double click, we must check for edges. We will first check to see if we clicked on
a node, then if we find that we did not click on a node, we will check to see if we clicked on an
edge. So, we must go back and make changes to the mousePressed event handler:

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 474 -

// Handle a mouse-press in the canvas
canvas.setOnMousePressed(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 Node aNode = graph.nodeAt(ev.getX(), ev.getY());
 if (ev.getClickCount() == 2) {
 if (aNode == null) {
 // We missed a node, now try for an edge midpoint
 Edge anEdge = graph.edgeAt(ev.getX(), ev.getY());
 if (anEdge == null)
 graph.addNode(new Node(ev.getX(), ev.getY()));
 else
 anEdge.toggleSelected();
 }
 else
 aNode.toggleSelected();

 // Update the view, by redrawing the Graph
 update(aPen);
 }
 else {
 if (aNode != null) {
 dragNode = aNode; // If we pressed on a node, store it
 }
 }
 }
});

We can change the keyPressed event handler to delete all selected Nodes AND Edges. Of
course, we will need a method to get the "selected" edges in the Graph class first:

// Get all the edges that are selected
public ArrayList<Edge> selectedEdges() {
 ArrayList<Edge> selected = new ArrayList<Edge>();
 for (Edge e: getEdges())
 if (e.isSelected())
 selected.add(e);
 return selected;
}

canvas.setOnKeyReleased(new EventHandler<KeyEvent>() {
 public void handle(KeyEvent ev) {
 if (ev.getCode() == KeyCode.DELETE) {
 // Delete all selected Edges
 for (Edge e: graph.selectedEdges())
 graph.deleteEdge(e);
 // Delete all selected Nodes
 for (Node n: graph.selectedNodes())
 graph.deleteNode(n);
 // Update the view, by redrawing the Graph
 update(aPen);
 }
 }
});

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 475 -

14.4 Adding Features to the Graph Editor

We have implemented a basic graph editor. There are many features that can be added.
Below are solutions to some added features to the GraphEditor. You may want to try to add
these features yourself without looking at the solutions.

Dragging Edges:

 Add the following two instance variables to the
GraphEditor class:

private Edge dragEdge;
private Point2D dragPoint;

 Add code to the mousePressed event handler in the GraphEditorApp class to store the
edge to be dragged:

canvas.setOnMousePressed(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 Node aNode = graph.nodeAt(ev.getX(), ev.getY());
 if (ev.getClickCount() == 2) {
 if (aNode == null) {
 Edge anEdge = graph.edgeAt(ev.getX(), ev.getY());
 if (anEdge == null)
 graph.addNode(new Node(ev.getX(), ev.getY()));
 else
 anEdge.toggleSelected();
 }
 else
 aNode.toggleSelected();

 update(aPen);
 }
 else {
 if (aNode != null) {
 dragNode = aNode;
 dragEdge = null;
 }
 else
 dragEdge = graph.edgeAt(ev.getX(), ev.getY());
 dragPoint = new Point2D(ev.getX(), ev.getY());
 }
 }
});

 Add code to the mouseDragged event handler in the GraphEditorApp class to store the
edge to be dragged:

canvas.setOnMouseDragged(new EventHandler<MouseEvent>() {
 public void handle(MouseEvent ev) {
 elasticEndLocation = new Point2D(ev.getX(), ev.getY());
 if (dragNode != null) {
 if (dragNode.isSelected())

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 476 -

 dragNode.setLocation(elasticEndLocation);
 }
 if (dragEdge != null) {
 if (dragEdge.isSelected()) {
 dragEdge.getStartNode().setLocation(
 dragEdge.getStartNode().getLocation().getX() +
 ev.getX() - dragPoint.getX(),
 dragEdge.getStartNode().getLocation().getY() +
 ev.getY() - dragPoint.getY());
 dragEdge.getEndNode().setLocation(
 dragEdge.getEndNode().getLocation().getX() +
 ev.getX() - dragPoint.getX(),
 dragEdge.getEndNode().getLocation().getY() +
 ev.getY() - dragPoint.getY());
 dragPoint = new Point2D(ev.getX(), ev.getY());
 }
 }
 update(aPen);
 }
});

Moving Multiple Nodes:

 Add the following instance variable to the
 GraphEditor class (if not already there):

private Point2D dragPoint;

 Add the following line at the bottom of the
 mousePressed event handler in the
 GraphEditorApp class (if not already there):

dragPoint = new Point2D(ev.getX(), ev.getY());

 In the mouseDragged event handler for the GraphEditorApp class, change

if (dragNode != null) {
 if (dragNode.isSelected())
 dragNode.setLocation(elasticEndLocation);
}

 to this:

if (dragNode != null) {
 if (dragNode.isSelected()) {
 for (Node n: graph.selectedNodes()) {
 n.setLocation(n.getLocation().getX()+ev.getX()-dragPoint.getX(),
 n.getLocation().getY()+ev.getY()-dragPoint.getY());
 }
 dragPoint = new Point2D(ev.getX(), ev.getY());
 }
}

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 477 -

Drawing Selected Edges with Different Thicknesses:

 Add the following instance variable to the
Edge class:

public static final int WIDTH = 7;

Modify the draw() method in the Edge class:

public void draw(GraphicsContext aPen) {
 // Draw black line from center of startNode to center of endNode
 if (selected) {
 aPen.setStroke(Color.RED);

 double xDiff = Math.abs(startNode.getLocation().getX() -
 endNode.getLocation().getX());
 double yDiff = Math.abs(startNode.getLocation().getY() -
 endNode.getLocation().getY());

 for (int i= -WIDTH/2; i<=WIDTH/2; i++) {
 if (yDiff > xDiff)
 aPen.strokeLine(startNode.getLocation().getX()+i,
 startNode.getLocation().getY(),
 endNode.getLocation().getX()+i,
 endNode.getLocation().getY());
 else
 aPen.strokeLine(startNode.getLocation().getX(),
 startNode.getLocation().getY()+i,
 endNode.getLocation().getX(),
 endNode.getLocation().getY()+i);
 }
 }
 else {
 aPen.setStroke(Color.BLACK);
 aPen.strokeLine(startNode.getLocation().getX(),
 startNode.getLocation().getY(),
 endNode.getLocation().getX(),
 endNode.getLocation().getY());¨
 }
}

Loading and Saving Graphs:

 Add the following methods to the Node class:

// Save node to given file. Note that incident edges are not saved.
public void saveTo(PrintWriter aFile) {
 aFile.println(label);
 aFile.println((int)location.getX());
 aFile.println((int)location.getY());
 aFile.println(selected);
}

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 478 -

// Load a node from given file. Note that incident edges are not connected
public static Node loadFrom(BufferedReader aFile) throws IOException {
 Node aNode = new Node();

 aNode.setLabel(aFile.readLine());
 aNode.setLocation(Integer.parseInt(aFile.readLine()),
 Integer.parseInt(aFile.readLine()));
 aNode.setSelected(Boolean.valueOf(aFile.readLine()).booleanValue());
 return aNode;
}

Add the following methods to the Edge class:

// Save edge to given file. Note that nodes themselves are not saved.
// We assume here that node locations are unique identifiers for the nodes.
public void saveTo(PrintWriter aFile) {
 aFile.println(label);
 aFile.println((int)startNode.getLocation().getX());
 aFile.println((int)startNode.getLocation().getY());
 aFile.println((int)endNode.getLocation().getX());
 aFile.println((int)endNode.getLocation().getY());
 aFile.println(selected);
}

// Load an edge from given file. Note that nodes themselves are not loaded.
// We actually make temporary nodes here that don't correspond to actual
// graph nodes that this edge connects. We'll have to throw out these TEMP
// nodes later and replace them with graph nodes that connect to this edge.
public static Edge loadFrom(BufferedReader aFile) throws IOException {
 Edge anEdge;
 String aLabel = aFile.readLine();
 Node start = new Node("TEMP");
 Node end = new Node("TEMP");

 start.setLocation(Integer.parseInt(aFile.readLine()),
 Integer.parseInt(aFile.readLine()));
 end.setLocation(Integer.parseInt(aFile.readLine()),
 Integer.parseInt(aFile.readLine()));

 anEdge = new Edge(aLabel, start, end);
 anEdge.setSelected(Boolean.valueOf(aFile.readLine()).booleanValue());

 return anEdge;
}

 Add the following methods to the Graph class:

// Save the graph to the given file.
public void saveTo(PrintWriter aFile) {
 aFile.println(label);

 // Output the nodes
 aFile.println(nodes.size());
 for (Node n: nodes)
 n.saveTo(aFile);

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 479 -

 // Output the edges
 ArrayList<Edge> edges = getEdges();
 aFile.println(edges.size());
 for (Edge e: edges)
 e.saveTo(aFile);
}

// Load a Graph from the given file. After the nodes and edges are loaded,
// We'll have to go through and connect the nodes and edges properly.
public static Graph loadFrom(BufferedReader aFile) throws IOException {
 // Read the label from the file and make the graph
 Graph aGraph = new Graph(aFile.readLine());

 // Get the nodes and edges
 int numNodes = Integer.parseInt(aFile.readLine());
 for (int i=0; i<numNodes; i++)
 aGraph.addNode(Node.loadFrom(aFile));

 // Now connect them with new edges
 int numEdges = Integer.parseInt(aFile.readLine());
 for (int i=0; i<numEdges; i++) {
 Edge tempEdge = Edge.loadFrom(aFile);
 Node start = aGraph.nodeAt(
 tempEdge.getStartNode().getLocation().getX(),
 tempEdge.getStartNode().getLocation().getY());
 Node end = aGraph.nodeAt(tempEdge.getEndNode().getLocation().getX(),
 tempEdge.getEndNode().getLocation().getY());
 aGraph.addEdge(start, end);
 }
 return aGraph;
}

 Add this instance variable to the GraphEditorApp class:

private GraphicsContext aPen;

 and alter the code in the start() method to use this variable:

aPen = canvas.getGraphicsContext2D();

 Then remove the GraphicsContext aPen parameter in the update() method and make
 use of this new instance variable from within the method. Also, remove the parameter in
 all the calls to update(). The Canvas' pen is now available from everywhere in the code.

 Add the following methods to the GraphEditorApp class:

public Graph getGraph() { return graph; }
public void setGraph(Graph g) { graph = g; update(); }

 In the start() menu of the GraphEditorApp class, change the Pane to be a VBox:

VBox p = new VBox();

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 480 -

Then increase the size of the scene by 25:

Scene scene = new Scene(p, WIDTH, HEIGHT+25);

And add the following to the top of the start() menu before the Canvas is created and
added:

// Create the File menu
Menu fileMenu = new Menu("_File");
MenuItem loadItem = new MenuItem("Load");
loadItem.setAccelerator(KeyCombination.keyCombination("Ctrl+L"));
MenuItem saveItem = new MenuItem("Save");
saveItem.setAccelerator(KeyCombination.keyCombination("Ctrl+S"));
fileMenu.getItems().addAll(loadItem, saveItem);

// Set up the event handlers for the File menu
loadItem.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent e) {
 }
});
saveItem.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent e) {
 }
});

// Add the menus to a menubar and then add the menubar to the pane
MenuBar menuBar = new MenuBar();
menuBar.getMenus().add(fileMenu);
p.getChildren().add(menuBar);

Now, we need to insert the code for the Load and Save menu selections. Insert the code into
the event handlers given above as shown below:

loadItem.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent e) {
 FileChooser chooser = new FileChooser();
 chooser.setInitialDirectory(new File("C:\\"));
 chooser.setTitle("Load Graph");
 File f = chooser.showOpenDialog(primaryStage);
 if (f != null) {
 try {
 BufferedReader file = new BufferedReader(
 new FileReader(f.getAbsolutePath()));
 graph = Graph.loadFrom(file);
 file.close();
 update();
 }
 catch (Exception ex) {
 Alert alert = new Alert(Alert.AlertType.ERROR);
 alert.setTitle("Error !");
 alert.setHeaderText(null);
 alert.setContentText("Error Loading Graph From File !");
 alert.showAndWait();
 }
 }
 }
});

COMP1406 - Chapter 14 - Graphics Winter 2017

 - 481 -

saveItem.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent e) {
 FileChooser chooser = new FileChooser();
 chooser.setInitialDirectory(new File("C:\\"));
 chooser.setTitle("Save Graph");
 File f = chooser.showSaveDialog(primaryStage);
 if (f != null) {
 try {
 PrintWriter file = new PrintWriter(
 new FileWriter(f.getAbsolutePath()));
 graph.saveTo(file);
 file.close();
 }
 catch (Exception ex) {
 Alert alert = new Alert(Alert.AlertType.ERROR);
 alert.setTitle("Error !");
 alert.setHeaderText(null);
 alert.setContentText("Error Saving Graph To File !");
 alert.showAndWait();
 }
 }
 }
});

Other Features:

There are also other features we can add. Feel free to experiment:

 Allow all selected edges and nodes to be moved by dragging a selected edge.

 Press <CNTRL><A> to select all nodes and edges and <CNTRL><U> to unselect them.

 Right-click the mouse on a Node and prompt the user for a label to put on that node.

 Scale the entire graph up or down by holding the <SHIFT> key while pressing the
mouse on an empty spot on the window and then dragging the mouse up or down to
enlarge or shrink the graph.

 Press <CNTRL><D> to duplicate all selected nodes and edges and have the new
portion of the graph appear a little below and to the right of the original nodes/edges.

 Show labels on edges

 Adjust labels so that they don't overlap

