

Chapter 2

Creation and Storage of JAVA Objects

What is in This Chapter ?

When beginning object-oriented programming, students often have difficulty understanding
how objects interact. As a result, students sometimes struggle to write code in an object-
oriented manner. In this chapter we discuss how objects are created, stored and used in
JAVA. In order to properly understand object-oriented programming, it is important for you to
understand where data is being stored and how to access the data that is within another
object. Once you understand this simple concept, your life as an object-oriented programmer
will be easier. We will also discuss memory allocation so that you fully understand what an
object actually is. This will help you in 2nd year when you have to allocate memory on your
own.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 22-

 2.1 Using Existing JAVA Objects

Until now, we have discussed creating programs by creating a class and inserting all of our
code into a main() procedure/method. This means that our programs are
considered procedural. Object-Oriented Programming (OOP) is similar to
that of procedural programming in that it also involves executing a set of
instructions in some specified order. However, it differs from procedural
programming in the way that your code is organized.

Programming using object-oriented style, involves organizing your code in
"chunks" that logically correspond to real-world objects. For example, you
may group all of your code related to a person into one file (called a class) while code related
to a car or a bank account would be grouped together in separate files (i.e., classes).

JAVA actually has a lot of pre-defined objects that are all organized into various packages. A
package is essentially equivalent to a folder that contains your .java files. There are many
standard packages in JAVA, each with many classes.

Here are just some of the standard packages that you will likely use in this course:

java.lang
Basic classes and interfaces required by many JAVA programs. It is
automatically imported into all programs.

java.util
Utility classes and interfaces such date/time manipulations, random numbers,
string manipulation, collections ...

java.io Classes that enable programs to input and output data.

java.text
Classes and interfaces for manipulating numbers, dates, characters and strings.
Provides internationalization capabilities as well.

When you want to make use of some of these classes, you will use the import keyword to tell
JAVA that you want to use a class so that it knows where to find it:

import <packageName>.*;

We did this already when we used the Scanner class, which is in the java.util package.
Basically, the import statement is used to tell the compiler which package (i.e., directory) the
class files are sitting in. You can always replace the * by a class name (where the class name
is in the package) so that the readers of your code are more clear on which classes you are
actually using. Keep in mind though that the import statement does not load any classes, it
merely instructs the compiler where to find them when you run your code. The code is only
imported/loaded by the JVM from those libraries as it is needed.

Here is a simple example that makes use of the pre-defined Object, String, Date, Point and
Rectangle object classes in JAVA, making sure to import the correct package:

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 23-

import java.lang.Object;

import java.lang.String;

import java.util.Date;

import java.awt.Point;

import java.awt.Rectangle;

public class ObjectTestProgram {

 public static void main(String[] args) {

 System.out.println(new Object()); // general object

 System.out.println(new String()); // blank string

 System.out.println(new Date()); // date object

 System.out.println(new Point(50, 75)); // point object

 System.out.println(new Rectangle(5,10,20,30)); // rectangle

 }

}

If we do not specify where to find the objects via the import statement, JAVA will become
confused when compiling our code and will generate compile errors such as this:

 Error: C:\...\ObjectTestProgram.java:12: cannot find symbol class Date

In fact, all classes in the java.lang package are automatically imported so we do not need the
first two import statements. Also, when we have multiple classes being imported from the

same package (e.g., Point, Rectangle), we can use a single import statement with the *

wildcard character to tell JAVA to import any needed classes from that package. So here is
the simplest form of the code:

import java.util.*;

import java.awt.*;

public class ObjectTestProgram {

 public static void main(String[] args) {

 System.out.println(new Object()); // general object

 System.out.println(new String()); // blank string

 System.out.println(new Date()); // date object

 System.out.println(new Point(50, 75)); // point object

 System.out.println(new Rectangle(5,10,20,30)); // rectangle

 }

}

In this example, we are simply creating the objects and then displaying them. Notice how
these objects are displayed in the output:

java.lang.Object@d93b30

Mon Jan 09 20:30:35 EST 2017

java.awt.Point[x=50,y=75]

java.awt.Rectangle[x=5,y=10,width=20,height=30]

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 24-

Each object displays itself differently. Notice that the Date object that was created actually
corresponds to today’s date and time (i.e., on January 9, 2017 when I ran the code). Also,
notice that the String object was actually an empty string (i.e., no characters were displayed).

 2.2 Creating Your Own Objects in JAVA

In the previous course, you may have already gained
experience in defining your own data structures
(a.k.a. data types, objects) that you used within
your program in order to group various data
elements together. For example, you may have
created a data structure that represents someone's
address in a similar manner as shown here.

class Address {

String name;

int streetNumber;

String streetName;

String city;

String province;

String postalCode;

}

In JAVA, we create this object by defining a class. Each class that we define represents a
new type (or category) of object. So, the above class represents an Address object that we
have defined. Here is a simple definition of an object as we know it so far:

A object represents multiple pieces of information that are grouped together.

A primitive data type (e.g., int, float, char) represents a
single simple piece of information. An object, however, is
a bundle of data, which can be made up of multiple
primitives or possibly other objects as well. You can think
of an object as a bunch of small pieces of information with
elastic bands around them to hold them together as a
single object (as shown here). Once we define this
class/object, then we were allowed to create Address objects and use them within our
programs. For example, here is how we can create a new Address object and fill in its
values:

Address addr;

addr = new Address();

addr.name = "Patty O.Lantern";

addr.streetNumber = 187;

addr.streetName = "Oak St.";

addr.city = "Ottawa";

addr.province = "ON";

addr.postalCode = "K6S8P2";

System.out.print(addr.name + " lives at ");

System.out.println(addr.streetNumber + " " + addr.streetName);

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 25-

public class Car {

}

public class House {

}

public class MyProgram {

 public static void main(String[] args) {

 ...

 }

}

The code above prints out: "Patty O.Lantern lives at 187 Oak St.".

In JAVA, we generally define all of our own
objects in separate .java files which will reside
in the same folder as the main program class:

Even though the Car and House objects are
defined in their own individual .java files, they
cannot be run as programs. You can only
run classes that have the public static void
main(…) method defined. So, a JAVA
program will typically consist of multiple .java
files ... many of them being object definitions, and one of them being the actual program itself.

For example, we can define very simple Car and Person objects along with a test program as
follows (remember that each class is defined in its own file):

public class Car {

 String make;

 String model;

 int year;

}

public class Person {

 String name;

 String phoneNumber;

}

public class MyObjectTestProgram {

 public static void main(String[] args) {

 System.out.println(new Car());

 System.out.println(new Person());

 }

}

Notice now the output from the program:

Car@19821f

Person@42e816

This is what objects look like by default. They show the name of the class, then an @ symbol,
and finally a strange combination of numbers and letters.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 26-

This number/letter combination represents the location (or address) of the object in the
computer’s memory. We call this the reference, because this memory address “refers to” the
object. The actual value of the address is unimportant to us, however, it is important for you to
understand that each time we make an object, it “uses up” a portion of the computer’s memory.

Later we will see how to change the appearance of our objects so that they show more
meaningful information when displayed.

The next section of notes will clarify in more detail exactly how these objects are stored in
memory.

0000000000

0000000001

0000000002

 …

…

9999999997

9999999998

9999999999

1GB RAM
(memory)

a
Car
object

a
Person
object reference

reference

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 27-

 2.3 Memory Allocation and Object Storage

In order to understand how objects are stored, it is first necessary to understand how your
computer's memory gets "used-up" as your program runs. The Java Virtual Machine (JVM)
is allotted a certain amount of memory space on your computer when your program begins to
run. The amount of memory allotted is adjustable via command-line arguments.

Upon start-up, some of this allotted memory is used up by the JVM. The remaining memory
that is available for your program is denoted as "free memory". As your program runs, it will
allocate (i.e., use up) some of this free memory at various times throughout the runtime of the
program. Your program will also return (i.e., free up) this used memory at various times as it
completes portions of your program. Hence the amount of available free memory will shrink
and grow throughout the execution of the program.

If we consider a snapshot at any time, the memory is broken up into 4 main logical portions as
shown here:

1. The Static Area of memory is memory that is used by the global & static variables
that are defined by your program. This memory usage is fixed and does not change as
the program runs.

2. The Free Memory is the memory that is not currently being used by your program. If
this memory ever gets used up during your program, you will get an "Out Of Memory"
error and your program will stop running.

3. The Stack memory is the memory that is used to store local variables. It also gets
used up a little each time you call a method or run code within a block of code (i.e., a
block is any code within braces). The amount of memory used during a method call
depends on the number and size of the local variables defined in the method as well as
its parameters.

4. The Heap memory is the memory that stores all the objects that you create. Each
time that you call a constructor by using the new keyword, the Heap memory will
increase.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 28-

The following diagram shows how the Stack and Heap memory grows and shrinks over time:

Interestingly, in JAVA, there is no way explicitly to free up heap memory from objects that you
no longer want to use. The garbage collector (gc) handles this for you. You can "suggest"
that the garbage collector free up memory at any time in your program by using System.gc().
However, this does not ensure that garbage collection will take place immediately. It is often
suggested to set object-type (i.e., non-primitive-type) variables to null so that the garbage
collector will realize that you are no longer holding on to an object and can free it sooner.
Ultimately, the success of this strategy depends on how the garbage collector has been
implemented.

For now, let us try to understand how data is stored in the stack memory.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 29-

Here are the 8 primitive data types in JAVA and the amount of memory that each requires:

Type Bytes Used Can Store Values Within This Range

byte 1 -128 to +127

short 2 -32,768 to +32,767

int 4 -2,147,483,648 to +2,147,483,647

long 8 -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

float 4 -1038 to +1038

double 8 -10308 to +10308

char 2 any ASCII or UNICODE character (e.g., 'A','a','1','*','>', etc..)

boolean 1 true or false

Each time we declare a variable within a method, it reserves enough space in the STACK
memory to store the data.

For example, consider the following
variables declared within a method (i.e.,
these are NOT object attributes) and
notice the amount of memory that it
consumes in the stack memory:

byte age;

int id;

double weight;

boolean retired;

char gender;

JAVA automatically reserves this space
for us when we declare these variables.
Each variable begins at a unique address
in the computer's memory (i.e., the
number shown on the left side).
When using the variables, in our program,
the value for the variable is obtained by
simply looking at the address location to
obtain the information. Similarly, when
assigning values to the variables, the
address is used to know where to start
storing the information.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 30-

Consider now a Person object that stores only
primitive data type attributes as follows:

public class Person {

 byte age;

 int id;

 double weight;

 boolean retired;

 char gender;

}

Notice how the object would be stored in memory on 32-bit and 64-bit machines if we were to
declare a few variables of type Person as follows:

Person mySister;

Person myMom;

Person myDad;

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 31-

Notice that on a 32-bit machine each variable requires just 4 bytes ... and requires 8 bytes on
a 64-bit machine. These bytes represent pointers to the location in memory that the object
will actually reside. A 32-bit machine has a 32-bit address space ... and so 4 bytes are
required to store each address reference (i.e., just the variable that holds the object … not the
object’s contents). A 64-bit machine has a 64-bit address space ... and so each object
variable requires an extra 4 byte overhead (i.e., double the space). So 64-bit machines,
although they may be faster for CPU-related operations, may require more space allocation by
default (there are ways to "compress" the pointer references...but this is not discussed here).
From this point onwards in the notes, unless otherwise stated explicitly, we will assume that we
are using a 32-bit machine in order to simplify the discussion.

You will also notice that the space is not reserved for storing any of the actual data inside the
object. Storing the data inside the object would require 16 bytes of storage to store the
age (1 byte), id (4 bytes), weight (8 bytes), retired (1 byte) and gender (2 bytes) information.
However, this space is not reserved until the object is created by calling its constructor.

By declaring the variable: Person mySister; we get a reference

(or pointer) to the location of the object in memory. Since we have yet to
create the object ... the value of the pointer is null.

So, null actually represents an undefined memory address which requires 4 bytes of storage
at all times (64-bit machines require 8 bytes to store each pointer). That means, each time
that we will use objects in java, there is always a 4-byte overhead (8-byte for 64-bit machines)
to store the reference to the object.

Now what about the object itself ? Consider what happens when we create the object via a
constructor as follows:

mySister = new Person();

This is now a constructor call, so the memory that will be used to store the object's data will be
the HEAP memory:

The amount of memory used up depends on the object's data values. Looking at the class
definition of the Person object, you will notice that it contains only primitive data types ... each
of which has a fixed size.

public class Person {

 byte age; // 1 byte

 int id; // 4 bytes

 double weight; // 8 bytes

 boolean retired; // 1 byte

 char gender; // 2 bytes

}

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 32-

The object requires 16 bytes to store your
data. However, each created object in JAVA
requires an additional storage overhead of 8
bytes to store an object header. The data
contained in the header is implementation-
specific ... so it depends on the particular java
implementation that you are using. In fact, it
is possible that other java implementations
may even vary the amount of space used in
the header.

Also, in some cases, additional bytes are
allocated in memory to ensure that the entire
object uses a multiple of 8 bytes. That is,
our current Person object stores 16 bytes of
data ... a nice multiple of 8. However, if we
were to add an additional boolean attribute to
the Person object definition, for example,
then it would take up 17 bytes. In that case,
java will probably reserve an additional 7
bytes more to bring the total up to 24 bytes
so that the entire object again uses a multiple
of 8 bytes. These extra 7 bytes would be
unused, but nevertheless allocated.

So, each Person object that we create will
require (16 + 8 = 24) bytes of storage as
shown in the diagram here. Notice that the
mySister variable now points to the location
where the Person object is being stored (i.e.,
address 0008237846 in our example). So,
the integer value of 0008237846 will be stored
as the pointer at address location
0000024389. Whenever we therefore use
the mySister variable, JAVA just looks at its
value and follows the pointer to find the
object.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 33-

What happens when we access the
internals of the Person object by using the
dot operator ?

mySister.age = 15;

if (mySister.weight > 150) {

 ...

}

The code above requires us to go inside
the object to modify its internal age
variable/attribute and also to access the
internal weight variable/attribute:

In order to do this, JAVA needs to
determine the memory location of the age
and weight attributes relative to the
location of the mySister Person object.

JAVA begins with the address stored
in the mySister variable (i.e., 008237846)
and then adds to that value the fixed offset
that the .age portion of the object is with
respect to the start of the object (i.e., adds
8 bytes more to bypass the header). The
result is 0008237846 + 8 = 0008237854.
Once it has this location computed, it can
then change the byte value there to 15 as
the code instructed.

Similarly, when accessing the .weight
portion of the object, the offset from the
start of the object is 8 + 1 + 4 = 13 bytes.
Hence the weight value is found at
address location 0008237846 + 13 =
0008237859. Accessing the double at
this address requires the 8 bytes from
address 0008237859 to 0008237866 to be interpreted as a double value.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 34-

Now what happens when an object is contained
within another object ? Consider two simple
objects defined as follows:

public class GPSLocation {

 float latitude;

 float longitude;

}

public class University {

 short opened;

 String name;

 GPSLocation location;

}

Now consider the following code:

GPSLocation herzberg;

University carleton;

herzberg = new GPSLocation();

herzberg.latitude = 45.382149;

herzberg.longitude = -75.697304;

carleton = new University();

carleton.opened = 1942;

carleton.name = "Carleton";

carleton.location = herzberg;

Notice what the memory allocation will look like
for this example (the picture is condensed a little
vertically to fit onto the page) ---->

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 35-

You can see that there are three objects involved:

• the String literal "Carleton"

• the GPSLocation

• the University

The carleton variable points to the University object … which itself contains pointers to the
String object … and the GPSLocation object. The herzberg variable also points to the
GPSLocation object and so the address value stored at locations 0000024389 and
0508237842 are the same ... which is 0508237846.

String literals (i.e., String created using double quotes in your code) not stored in the Heap
memory but are actually stored in the STATIC AREA as constants. Any other created Strings
are stored in the Heap memory.

Example:

Consider writing a program that simulates a diving competition. The program will keep track
of various athletes who perform dives. Assume that the following objects have been defined,
each in their own files:

public class Dive {

 String name;

 int difficulty;

}

public class Performance {

 Dive dive;

 float[] scores;

}

public class Athlete {

 String name;

 String country;

 Performance[] performances;

}

Notice that each Performance object contains a Dive object. That means,
each performance corresponds to a single dive (i.e., an athlete performs one dive at a time).
Also, you will notice that the Athlete keeps an array of Performance objects. That is, as the
athlete performs dives over time, new performances will be added to this array ... each
performance representing a particular dive.

In order to make sure that we understand how objects are stored inside of one another, let us
see if we can write code that constructs a particular arrangement of these objects. Here is a
diagram showing the arrangement of objects that we would like to construct. Try to write the
code that will produce this picture.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 36-

Looking at the picture, there are 3 Athlete objects, 6 Performance objects and 4 Dive objects.
The remaining objects are Strings and arrays. Since the Dive objects don't contain the other
objects that we created (i.e., neither Athlete nor Performance) we should start by making
those first. We can store them into variables d1, d2, d3 and d4 for later use.

Dive d1, d2, d3, d4;

d1 = new Dive();

d1.name = "reverse pike";

d1.difficulty = 3;

d2 = new Dive();

d2.name = "cannon ball";

d2.difficulty = 1;

d3 = new Dive();

d3.name = "reverse triple twist";

d3.difficulty = 4;

d4 = new Dive();

d4.name = "forward pike";

d4.difficulty = 2;

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 37-

Now, we should create the Performance objects, making sure to point them to the correct
Dive objects.

Performance p1, p2, p3, p4, p5, p6;

p1 = new Performance();

p1.dive = d1;

p1.scores = new float[8];

p2 = new Performance();

p2.dive = d2;

p2.scores = new float[8];

p3 = new Performance();

p3.dive = d3;

p3.scores = new float[8];

p4 = new Performance();

p4.dive = d3;

p4.scores = new float[8];

p5 = new Performance();

p5.dive = d4;

p5.scores = new float[8];

p6 = new Performance();

p6.dive = d4;

p6.scores = new float[8];

Finally, we create the Athlete objects:

Athlete art, dan, jen;

art = new Athlete();

art.name = "Art Class";

art.country = "Canada";

art.performances = new Performance[3];

dan = new Athlete();

dan.name = "Dan Druff";

dan.country = "Germany";

dan.performances = new Performance[3];

jen = new Athlete();

jen.name = "Jen Tull";

jen.country = "U.S.A.";

jen.performances = new Performance[3];

Of course, we need to simulate these athletes doing their performances. So we need to add
the performances for each athlete:

art.performances[0] = p1;

art.performances[1] = p2;

art.performances[2] = p3;

dan.performances[0] = p4;

dan.performances[1] = p5;

jen.performances[0] = p6;

It seems like a lot of code, but we will see later how to shorten it. For now, it is just important
that you understand how various objects are stored inside others.

COMP1406 - Chapter 2 - Creation and Storage of JAVA Objects Winter 2018

 - 38-

As a further test of your understanding, see if you can write code to access and print out the
following:

1. the difficulty level of Art's 2nd performance
2. the object representing Dan's 2nd performance
3. the 6th judge's score for Jen's first performance

Here are the solutions:

1. System.out.println(art.performances[1].dive.difficulty);
2. System.out.println(dan.performances[1]);
3. System.out.println(jen.performances[0].scores[5]);

Can you write code to determine the average judges' score for Art (consider all performances)
? Assume that there are interesting scores stored in the data, because at the moment they are
all 0.

float sum = 0;

for(int p=0; p<3; p++) {

 for(int s=0; s<8; s++) {

 sum = sum + art.performances[p].scores[s];

 }

}

System.out.println(sum/24);

Do you understand this now ? If not, you may want to come for further help during office
hours. It is VERY important that you understand how to do this stuff.

