

Chapter 3

Defining Object Behavior

What is in This Chapter ?

This chapter discusses the basic idea behind object-oriented programming... that of defining
objects in terms of their state and behavior. It discusses the topic of making constructors
and then explains how functions and procedures (also called methods) can be implemented
and associated with an object's definition. The difference between instance methods and
static/class methods is discussed. The notion of encapsulation is introduced as well as the
toString() method that affects how an object appears when printed. The chapter concludes
with a Bank example that makes use of 4 different objects.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 40 -

 3.1 Object Constructors

A constructor is a special chunk of code that we can write in our object classes that will allow
us to hide the ugliness of setting all of the initial values for our objects each time we use
them. The main advantage of making a constructor is that it will allow us to reduce the
amount of code that we need to write each time we make a new object.

Consider, for example, a Person which is defined as shown below with 6 attributes:

public class Person {

 String firstName;
 String lastName;

 int age;

 char gender;

 boolean retired;

 Address address;

}

We can create a new Person object as follows: new Person()

However, to set the values for the person, we would need multiple lines of code:

Person p1;

p1 = new Person();

p1.firstName = "Bobby";

p1.lastName = "Socks";

p1.age = 24;

p1.gender = 'M';

p1.retired = false;

p1.address = new Address();

We can write a constructor for this class that
allows us to provide initial values for all of the object's
attributes. A constructor is a special kind of function:

public Person(String f, String l, int a, char g, boolean r, Address d) {

 firstName = f;

 lastName = l;

 age = a;

 gender = g;

 retired = r;

 address = d;

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 41 -

Notice in JAVA, we usually indicate that a constructor is publicly accessible to everyone by
placing the public keyword in front of it. By defining the above constructor, we are thus able
to specify the initial parameters for any newly-created Person objects as follows:

Person p1, p2, p3;

p1 = new Person("Bobby", "Socks", 24, 'M', false, anAddress);

p2 = new Person("Holly", "Day", 72, 'F', true, anotherAddress);

p3 = new Person("Hank", "Urchif", 19, 'M', false, yetAnotherAddress);

Certainly, constructors allow us to greatly simplify our code when we need to create objects in
our program.

Suppose though, that we do not know the initial parameter values to
use. This would be analogous to the situation in real life where
someone fills out a form but leaves some information blank. What do
we do when the person leaves out information ? We have two
possible choices. Either (1) do not let them leave out any
information, or (2) choose some kind of “default” values for the blank
parts (i.e., make some assumptions by filling in something
appropriate).

The above constructor forces the user of our objects to supply parameters for ALL of the
instance variables when they use (i.e., call) our constructor ... which is approach number (1)
above. But we can be more accommodating, because in JAVA we are allowed to create more
than one constructor as long as the constructors each have a unique list of parameter types.

What if, for example, we did not know the person’s age, nor their address.

Person p1, p2;

p1 = new Person("Hank", "Urchif", , 'M', false,);

p2 = new Person("Holly", "Day", , 'F', true,);

For this situation, we can actually define a second constructor that leaves out these two
parameters:

public Person(String f, String l, char g, boolean r) {

 firstName = f;

 lastName = l;

 gender = g;

 retired = r;

 age = 0;

 address = null;

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 42 -

Notice that there are two less parameters now (i.e., no age and no address). However, you
will notice that we still set the age and address to some default values of our choosing. What
is a good default age and address ? Well, we used 0 and null. Since we do not have an
Address object to store in the address instance variable, we leave it undefined by setting it to
null. Alternatively, we could have created a “dummy” Address object with some kind of
values that would be recognizable as invalid such as:

 address = new Address();

It is entirely up to you to decide what the default values should be. Make sure not to pick
something that may be mistaken for valid data. For example, some bad default values for
firstName and lastName would be “John” and “Doe” because there may indeed be a real
person called “John Doe”.

Here is one more constructor that takes no parameters. It has a special name and is known
as either a zero-parameter constructor, the zero-argument constructor or the default
constructor. This time there are no parameters at all, so we need to pick reasonable default
values for every one of the attributes:

public Person() {

 firstName = "UNKNOWN";

 lastName = "UNKNOWN";

 gender = '?';

 retired = false;

 age = 0;

 address = null;

}

You can actually create many constructors in the same class. You just need to write them all
one after each other in your class definition and the user can decide which one to use at any
time. Here is our resulting Person class definition showing the four constructors …

public class Person {

 String firstName;

 String lastName;

 int age;

 char gender;

 boolean retired;

 Address address;

 // This is the zero-parameter constructor

 public Person() {
 firstName = "UNKNOWN";

 lastName = "UNKNOWN";

 gender = '?';

 retired = false;

 age = 0;

 address = null;

 }

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 43 -

 // This is a 4-parameter constructor
 public Person(String f, String l, int a, char g) {

 firstName = f;

 lastName = l;

 age = a;

 gender = g;

 retired = false;

 address = null;

 }

 // This is another 4-parameter constructor

 public Person(String f, String l, char g, boolean r) {

 firstName = f;

 lastName = l;

 gender = g;

 retired = r;

 age = 0;

 address = null;
 }

 // This is a 6-parameter constructor

 public Person(String f, String l, int a, char g, boolean r, Address d) {

 firstName = f;

 lastName = l;

 age = a;

 gender = g;
 retired = r;

 address = d;

 }

}

At any time we can use any of these constructors:

Person p1, p2, p3, p4;

p1 = new Person();

p2 = new Person("Sue", "Purmann", 58, 'F');

p3 = new Person("Holly", "Day", 'F', true);

p4 = new Person("Hank", "Urchif", 19, 'M', false, new Address(...));

Note that it is always a good idea to ensure that you have a zero-parameter constructor. As it
turns out, if you do not write any constructors, JAVA provides a zero-parameter constructor for
free. That is, we can always say new Car(), new Person(), new Address(), new
BankAccount() etc.. without even writing those constructors. However, once you write a
constructor that has parameters, the free zero-parameter constructor is no longer available.
So, for example, if you write constructors in your Person class that all take one or more
parameters, then you will no longer be able to use new Person(). JAVA will generate an

error saying:

cannot find symbol constructor Person()

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 44 -

In general, you should always make your own zero-parameter constructor along with any
others that you might like to use … mainly because others who use your class may expect
there to be a zero-parameter constructor available.

 3.2 Defining Methods

At this point you should understand that objects are used to group variables together in order
to represent something called a data structure. Each object therefore has a set of attributes
(also called instance variables) that represent the differences between members of the same
class. For example, a Vehicle object may define a color attribute ... that is ... each vehicle
has a color. However, that color value can vary from vehicle to vehicle:

However, in real life, vehicles also vary in terms of their performance characteristics, their
functionality, their abilities and their features/options:

Likewise, in object-oriented programming, in addition to defining attributes, we can also define
how one particular kind of object's performance and behaviors differ from another's. Defining
an object's behavior is as simple as deciding the kind of functionality that the object should
have. We just need to decide on which functions or procedures are required to access,
modify or compute information based on the object's attributes.

Simply put ... when we define an object, we

(1) define its attributes
(2) define the functions and procedures that work on/with the object

Object =

STATE

+

BEHAVIOR

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 45 -

What does all of this mean ? Instead of writing a single program with a list of functions/
procedures, we will now be associating some of the functions/procedures with various objects.
So, we will actually move some of the functions/procedures into our various class definitions.

For example, consider code that causes two cars to
accelerate across the screen. We could create a Car class
which maintains a car's location and speed.

public class Car {

 int x, y;

 float speed;

}

We could then write a test
program with procedures that
cause a car to be drawn on the
screen or to move across the
screen. Then at any time, we
could cause the car to be
repeatedly moved and drawn by
calling these procedures.

Notice that the draw() and move()
procedures take (as an incoming
parameter) the Car object that is
to be drawn or moved. This is the
object that gets affected by the
procedure call. So, in a way, the
procedure represents a behavior
for the car, as it will affect/modify
the Car object that is passed in.

public class CarTestProgram {

 public static void draw(Car aCar) {

 /* code not shown */
 }
 public static void move(Car aCar) {

 /* code not shown */

 }

 public static void main(String[] args) {

 Car myCar = new Car();

 Car yourCar = new Car();

 for (int i=0; i<100; i++) {

 draw(myCar);

 move(myCar);

 draw(yourCar);

 move(yourCar);

 }

 }

}

However, when doing object-oriented programming,
we give an object behavior by defining procedures
within its class. So, we would define the Car class as
shown here. Notice that the draw() and move()
procedures are now written in the Car class ... that is
... each Car object now knows how to move and draw
itself. Notice as well that there are no parameters now
in the two procedures. That is because these
procedures are written within the Car class definition
itself, so they will be applied to the car that they are
called upon.

public class Car {

 int x, y;

 float speed;

 public void draw() {

 /* code not shown */

 }

 public void move() {

 /* code not shown */

 }

}

In the test program, notice that the
procedures are no longer here.
Since they are in the Car class
now, we call/access them by using
the dot operator (which means "go
inside"). So, we tell JAVA to go
inside the Car class to find the
draw() and move() procedures.

public class CarTestProgram {

 public static void main(String[] args) {
 Car myCar = new Car();

 Car yourCar = new Car();

 for (int i=0; i<100; i++) {

 myCar.draw();

 myCar.move();

 yourCar.draw();

 yourCar.move();

 }

 }

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 46 -

We will write most of our functions and
procedures (now referred to as

methods) within our class definitions

along with the attributes. So we can
think of an object as being a set of
attributes (i.e., representing the object's
state) as well as a set of methods (i.e.,
representing the object's behavior) all
included "inside" the class:

Example:

Consider the Person class. Assume that we want to write a function that computes and
returns the discount for a person who attends the theatre on “Grandma/Granddaughter Night”.
Assume that the discount should be 50% for women who are retired or to girls who are 12 and
under. For all other people, the discount should otherwise be 0%. If we had the Person
passed in as a parameter to the function, we could write this code:

public int computeDiscount(Person p) {

 if ((p.gender == 'F') && (p.age < 13 || p.retired))

 return 50;

 else

 return 0;

}

To write this as a method in JAVA, we would place this method in the Person class after the
instance variables and constructors are defined:

public class Person {

 // Define attributes first

 ...

 // Now define the constructors

 ...

 // Finally, write your methods here

 public int computeDiscount() {

 if ((this.gender == 'F') &&

 (this.age < 13 || this.retired))

 return 50;

 return 0;

 }

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 47 -

Notice that the Person parameter is no longer there and that the word this is now being used
in place of that parameter. The word this is a special word in JAVA that can be used in
methods (and constructors) to represent the object that we are applying the behavior to. That
is, whatever object that we happen to call the method on, that object is represented by the
word this within the method's body. You can think of the word this as being a nickname for
the object being "worked on" within the method. Outside of the method, the word this is
actually undefined (and therefore unusable outside of the method) .

So, if we called the computeDiscount() method for different Person objects, this would
represent the different objects p1, p2 and p3, each time the method is called, respectively:

Person p1, p2, p3;

p1 = new Person("Hank", "Urchif", 19, 'M');

p2 = new Person("Holly", "Day", 67, 'F', true, null);

p3 = new Person("Bobby", "Socks", 12, 'F');

System.out.println("p1's discount = " + p1.computeDiscount());

System.out.println("p2's discount = " + p2.computeDiscount());

System.out.println("p3's discount = " + p3.computeDiscount());

As it turns out, if you leave off the keyword this, JAVA will "assume" that you meant the object
that received the method call in the first place and will act accordingly. Therefore, the
following code is equivalent and often preferred since it is shorter:

public class Person {

 public int computeDiscount() {

 if ((gender == 'F') && (age < 13 || retired))

 return 50;

 else

 return 0;

 }

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 48 -

It is important for you to understand that the gender, age and retired attributes are obtained
from the Person object on which we called the computeDiscount() method.

You may have also noticed that the method was declared as public. This allows any code
outside of the class to use the method.

When we test the method using p3.computeDiscount()... this is a picture of what is

happening inside the object:

Consider writing another method that determines whether one person is older than another
person. We can call the method isOlderThan(Person x) and have it return a boolean value:

public boolean isOlderThan(Person x) {

 if (this.age > x.age)

 return true;

 else

 return false;

}

... or the more efficient version:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 49 -

public boolean isOlderThan(Person x) {

 return (this.age > x.age);

}

Here is a portion of a program that determines the oldest of 3 people:

Person p1, p2, p3, oldest;

p1 = new Person("Hank", "Urchif", 19, 'M');

p2 = new Person("Holly", "Day", 67, 'F', true, null);

p3 = new Person("Bobby", "Socks", 12, 'F');

if (p1.isOlderThan(p2) && p1.isOlderThan(p3))

 oldest = p1;

else if (p2.isOlderThan(p1) && p2.isOlderThan(p3))

 oldest = p2;

else

 oldest = p3;

Consider what happens inside p1 as we call p1.isOlderThan(p2):

The method accesses the age that is stored within both Person objects this and x.

How could we write a similar method called oldest() that returns the oldest of the two Person
objects, instead of just returning a boolean ?

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 50 -

public Person oldest(Person x) {

 if (this.age > x.age)

 return this;

 else

 return x;

}

Notice how the code is similar except that it now returns the Person object instead. Now we
can simplify our program that determines the oldest of 3 people:

Person p1, p2, p3, oldest;

p1 = new Person("Hank", "Urchif", 19, 'M');

p2 = new Person("Holly", "Day", 67, 'F', true, null);

p3 = new Person("Bobby", "Socks", 12, 'F');

oldest = p1.oldest(p2.oldest(p3));

Do you understand how this code works ? Notice how the innermost oldest() method returns
the oldest of the p2 and p3. Then this oldest one is compared with p1 in the outermost
oldest() method call to find the oldest of the three.

In addition to writing such functions, we could write procedures that simply modify the object.
For example, if we wanted to implement a retire() method that causes a person to retire, it
would be straight forward as follows:

public void retire() {

 this.retired = true;

}

Notice that the code simply sets the retired status of the person and that the method has a
void return type, indicating that there is no "answer" returned from the method's computations.

How about a method to swap the names of two people ?

public void swapNameWith(Person x) {

 String tempName;

 // Swap the first names

 tempName = this.firstName;

 this.firstName = x.firstName;

 x.firstName = tempName;

 // Swap the last names

 tempName = this.lastName;

 this.lastName = x.lastName;

 x.lastName = tempName;

}

Notice how the temporary variable is required to store the String that is being replaced.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 51 -

At this point let’s step back and see what we
have done. We have created 5 interesting
methods (i.e., behaviors) for our Person object
(i.e., computeDiscount(), isOlderThan(),
oldest(), retire() and swapNameWith()).
All of these methods were written one after
another within the class, usually after the
constructors. Here, to the right, is the
structure of the class now as it contains all the
methods that we wrote (the method code has
been left blank to save space).

Now although these methods were defined in the
class, they are not used within the class. We wrote
various pieces of test code that call the methods in
order to test them. Here is a more complete test
program that tests all of our methods in one shot:

public class FullPersonTestProgram {

 public static void main(String args[]) {

 Person p1, p2, p3;

 p1 = new Person("Hank", "Urchif", 19, 'M');

 p2 = new Person("Holly", "Day", 67, 'F', true, null);

 p3 = new Person("Bobby", "Socks", 12, 'F');

 System.out.println("The discount for Hank is " +

 p1.computeDiscount());

 System.out.println("The discount for Holly is " +

 p2.computeDiscount());

 System.out.println("The discount for Bobby is " +

 p3.computeDiscount());

 System.out.println("Is Hank older than Holly ? ..." +

 p1.isOlderThan(p2));

 System.out.println("The oldest person is " +

 p1.oldest(p2.oldest(p3)).firstName);

 System.out.println("Holly is retired ? ... " + p2.retired);

 p2.retire();

 System.out.println("Holly is retired ? ... " + p2.retired);

 p2.swapNameWith(p3);

 System.out.println("Holly’s name is now: " +

 p2.firstName + " " + p2.lastName);

 System.out.println("Bobby’s name is now: " +

 p3.firstName + " " + p3.lastName);

 }

}

public class Person {

 // These are the instance variables

 String firstName;

 String lastName;

 int age;

 char gender;

 boolean retired;

 Address address;

 // These are the constructors

 public Person() { ... }

 public Person(String fn, ...) { ... }

 // These are our methods

 public int computeDiscount() { ... }

 public boolean isOlderThan(Person x) { ... }

 public Person oldest(Person x) { ... }

 public void retire() { ... }

 public void swapNameWith(Person x) { ... }

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 52 -

Here is the output:

The discount for Hank is 0

The discount for Holly is 50

The discount for Bobby is 50

Is Hank older than Holly ? ...false

The oldest person is Holly

Holly is retired ? ... false

Holly is retired ? ... true

Holly’s name is now: Bobby Socks

Bobby’s name is now: Holly Day

 3.3 Null Pointer Exceptions

In regards to calling methods, we must make sure that the object whose method we are trying
to call has been through the construction process. For example, consider the following code:

Person p;

System.out.println(p.computeDiscount());

This code will not compile. JAVA will give a compile error for the second line of code saying:

variable p might not have been initialized

JAVA is trying to tell you that you forgot to give a value to the variable p. In this case, we
forgot to create a Person object.

Assume then that we created the Person as follows and then tried to get the streetName:

Person p;

p = new Person("Hank", "Urchif", 'M', false);

System.out.println(p.address.streetName);

This code will now compile. Assume that the Person class was defined as follows:

public class Person {

 String firstName;

 String lastName;

 int age;

 char gender;

 boolean retired;

 Address address;

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 53 -

 public Person(String fn, String ln, char g, boolean r) {

 firstName = fn;

 lastName = ln;

 gender = g;

 retired = r;

 age = 0;

 address = null;

 }

 ...

}

Here the address attribute stores an Address object which is assumed to have an instance
variable called streetName.

What will happen when we run the code:

Person p = new Person("Hank", "Urchif", 'M', false);

System.out.println(p.address.streetName);

The code will generate a java.lang.NullPointerException. That means, JAVA is telling you
that you are trying to do something with an object that was not yet defined. Whenever you get
this kind of error, look at the line of code on which the error was generated. The error is

always due to something in front of a dot . character being null instead of being an actual

object. In our case, there are two dots in the code on that line. Therefore, either p is null or
p.address is null, that is the only two possibilities. Well, we are sure that we assigned a
value to p on the line above, so then p.address must be null. Indeed that is what has
happened, as you can tell from the constructor.

To fix this, you would need to do one of three things:

1. Remove the line that attempts to access the streetName from the address, and access
it later in the program after you are sure there is an address there.

2. Check for a null before you try to print it and then don’t print if it is null … but this may
not be desirable because it is excessive error checking.

3. Think about why the address is null. Perhaps you just forgot to set it to a proper value.
You can make sure that it is not null by giving it a proper value before you attempt to
use it.

NullPointerExceptions are one of the most common errors that you will get when
programming in JAVA. Most of the time, you get the error simply because you forgot to
initialize a variable somewhere (i.e., you forgot to create a new object and store it in the
variable).

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 54 -

 3.4 Overloading

When we write two methods in the same class with the same name, this is called
overloading. Overloading is only allowed if the similar-named methods have a different set
of parameters. Normally, when we write programs we do not think about writing methods with
the same name … we just do it naturally. For example, imagine implementing a variety of
eat() methods for the Person class as follows:

public void eat(Apple x) { … }

public void eat(Orange x) { … }

public void eat(Banana x, Banana y) { … }

Notice that all the methods are called eat(), but that there is a variety of parameters, allowing
the person to eat either an Apple, an Orange or two Banana objects. Imagine the code below
somewhere in your program that calls the eat() method, passing in an object z of some type:

Person p;

p = new Person();

p.eat(z);

How does JAVA know which of the 3 eat() methods to call ? Well, JAVA will look at what kind

of object z actually is. If it is an Apple object, then it will call the 1st eat() method. If it is an

Orange object, it will call the 2nd method. What if z is a Banana ? It will NOT call the 3rd

method … because the 3rd method requires 2 bananas and we are only passing in one. A call

of p.eat(z, z) would call the 3rd method if z was a Banana. In all other cases, the JAVA

compiler will give you an error stating:

 cannot find symbol method eat(...)

where the ... above is a list of the types of parameters that you are trying to use.

JAVA will NOT allow you to have two methods with the same name AND parameter types
because it cannot distinguish between the methods when you go to use them. So, the
following code will not compile:

public double calculatePayment(BankAccount account){...}
public double calculatePayment(BankAccount x){...}

You will get an error saying:

calculatePayment(BankAccount) is already defined in Person

Recall our method called isOlderThan() that returns a boolean indicating whether or not a
person is older than the one passed in as a parameter:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 55 -

public boolean isOlderThan(Person x) {

 return (this.age > x.age);

}

We could actually write another method in the Person class that took two Person objects as
parameters:

public boolean isOlderThan(Person x, Person y) {

 return (this.age > x.age) && (this.age > y.age);

}

... and even a third method with 3 parameters:

public boolean isOlderThan(Person x, Person y, Person z) {

 return (this.age > x.age) && (this.age > y.age) && (this.age > z.age);

}

As a result, we could use any of these methods in our program:

Person p1, p2, p3, p4, oldest;

p1 = new Person("Hank", "Urchif", 19, 'M');

p2 = new Person("Holly", "Day", 67, 'F');

p3 = new Person("Bobby", "Socks", 12, 'M');

p4 = new Person("Sue", "Purmann", 58, 'F');

if (p1.isOlderThan(p2,p3,p4))

 oldest = p1;

else if (p2.isOlderThan(p3,p4))

 oldest = p2;

else if (p3.isOlderThan(p4))

 oldest = p3;

 else

 oldest = p4;

Keep in mind, however, that the parameters need not be the same type. You can have any
types of parameters. Remember as well that the order makes a difference. So these would
represent unique methods:

public int computeHealthRisk(int age, int weight, boolean smoker) { ... }

public int computeHealthRisk(boolean smoker, int age, int weight) { ... }

public int computeHealthRisk(int weight, boolean smoker, int age) { ... }

But these two cannot be defined together in the same class because the parameter types are
in the same order:

public int computeHealthRisk(int age, int weight, boolean smoker) { ... }

public int computeHealthRisk(int weight, int age, boolean smoker) { ... }

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 56 -

 3.5 Instance vs. Class (i.e., static) Methods

The methods that we have written so far have defined behaviors that worked on specific object
instances. For example, when we used the computeDiscount() method, we did this:

Person p1, p2;

p1 = new Person("Hank", "Urchif", 19, 'M');

p2 = new Person("Holly", "Day", 67, 'F');

System.out.println("p1's discount = " + p1.computeDiscount());

System.out.println("p2's discount = " + p2.computeDiscount());

In this example, p1 and p2 are variables that store instances of the Person class (i.e., specific
individual Person objects). Therefore, the computeDiscount() method is considered to be
an instance method of the Person class, since it operates on a specific instance of the
Person class.

Instance methods represent behaviors (functions and procedures) that are to be

performed on the particular object that we called the method for (i.e., the receiver of the
method).

Instance methods typically access the inner parts of the receiver object (i.e., its attributes) and
perform some calculation or change the object’s attributes in some way.

A method that does not require an instance of an object to work is called a class method:

Class methods represent behaviors (functions and procedures) that are

performed on a class ... without a particular object in mind.

Therefore, class methods do not represent a behavior to be performed on a particular receiver
object. Instead, a class method represents a general function/procedure that simply happens
to be located within a particular class, but does not necessarily have anything to do with
instances of that class. Generally, class methods are not used to modify a particular instance
of a class, but usually perform some computation.

For example, recall the code for the computeDiscount() method:

public int computeDiscount() {

 if ((this.gender == 'F') && (this.age < 13 || this.retired))

 return 50;

 else

 return 0;

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 57 -

We could have re-written the computeDiscount() method by supplying the appropriate
Person object as a parameter to the method as follows:

public int computeDiscount(Person p) {

 if ((p.gender == 'F') && (p.age < 13 || p.retired))

 return 50;

 else

 return 0;

}

Notice how the method now accesses the person p that is passed in as the parameter, instead
of the receiver this. If we do this, the code result is now fully-dependent on the attributes of
the incoming parameter p, and hence independent of the receiver altogether. To call this
method, we would need to pass in the person as a parameter:

Person p1, p2;

p1 = new Person("Hank", "Urchif", 19, 'M');

p2 = new Person("Holly", "Day", 67, 'F', true, null);

System.out.println("p1's discount = " + p1.computeDiscount(p1));

System.out.println("p2's discount = " + p2.computeDiscount(p2));

We would never do this, however, since within the computeDiscount() method, the parameter
p and the keyword this both point to the same Person object. So, the extra parameter is not
useful since we can simply use this to access the person. Instead, what we probably wanted
to do is to make a general function that can be written anywhere (i.e., in any class) that allows
a discount to be computed for any Person object that was passed in as a parameter.
Consider this class for example:

public class Toolkit {

 ...

 public int computeDiscount(Person p) {

 if ((p.gender == 'F') && (p.age < 13 || p.retired))

 return 50;

 else

 return 0;

 }

 ...

}

Now to call the method, we would need to make an instance of Toolkit as follows:

new Toolkit().computeDiscount(p1);

But this seems awkward. If we wanted to use this "tool-like" function on many people, we
could do this:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 58 -

Person p1, p2, p3;

Toolkit toolkit;

toolkit = new Toolkit();

p1 = ...;

p2 = ...;

p3 = ...;

System.out.println(toolkit.computeDiscount(p1));

System.out.println(toolkit.computeDiscount(p2));

System.out.println(toolkit.computeDiscount(p3));

Now we can see that toolkit is indeed a separate class from Person and that it acts as a
container that holds on to the useful computeDiscount() function. However, we can simplify
the code.

Whenever we write a method that does not modify or access the attributes of an instance of
the class that it is written in, the method is independent of that object’s state. In other words,
the code is not changing from instance to instance ... and is therefore considered static.
In our example, the code inside of the computeDiscount() method does not access or modify
and attributes of the Toolkit class ... it simply accesses the attributes of the Person passed in
as a parameter as performs a computation. Therefore this method should be made static.

How do we do this ? We simply add the static keyword in front of the method definition:

public class Toolkit {

 ...

 public static int computeDiscount(Person p) {

 if ((p.gender == 'F') && (p.age < 13 || p.retired))

 return 50;

 else

 return 0;

 }

 ...

}

Now we do not need to make a new Toolkit object in order to call the method. Instead, we
simply use the Toolkit class name to call the method. Here is how the code changes. Notice
how much simpler it is to use the method once it has been made static. (to save space,
System.out.println has been written as S.o.p below):

Using it as an instance method Using it as a class method
Person p1, p2, p3;

Toolkit toolkit;

toolkit = new Toolkit();

p1 = ...;

p2 = ...;

p3 = ...;

S.o.p(toolkit.computeDiscount(p1));

S.o.p(toolkit.computeDiscount(p2));

S.o.p(toolkit.computeDiscount(p3));

Person p1, p2, p3;

p1 = ...;

p2 = ...;

p3 = ...;

S.o.p(Toolkit.computeDiscount(p1));

S.o.p(Toolkit.computeDiscount(p2));

S.o.p(Toolkit.computeDiscount(p3));

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 59 -

This is the essence of a class/static method … the idea that the method does not need to be
called by using an instance of the class.

Hopefully, you will have noticed that the main difference between an instance method and a
class/static method is simply in the way in which it is called. To repeat … instance methods
are called by supplying a specific instance of the object in front of the method call (i.e., a
variable of the same type as the class in which the method is defined in), while class methods
supply a class name in front of the method call:

// calling an instance method...

variableOfTypeX.instanceMethodWrittenInClassX(…);

// calling a class method...

ClassNameY.staticMethodWrittenInClassY(…);

Often, we use class methods to write functions that may have nothing to do with objects at all.
For example, consider methods that convert a temperature value from centigrade to fahrenheit
and vice-versa:

public static double centigradeToFahrenheit(double temp) {

 return temp * (9.0 /5.0) + 32.0;

}

public static double fahrenheitToCentigrade(double temp) {

 return 5.0 * (temp - 32.0) / 9.0;

}

Where do we write such methods since they only deal with primitives, not objects ? The
answer is … we can write them anywhere. We can place them at the top of the class that we
would like to use them in. Or … if these functions are to be used from multiple classes in our
application, we could make another tool-like class and put them in there:

public class ConversionTools {

 ...

}

Then we could use it as follows:

double f = ConversionTools.centigradeToFahrenheit(18.762);

As you browse through the JAVA class libraries, you will notice that there are some useful
static methods, however ... most methods that you will write for your own objects will be
instance methods.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 60 -

 3.6 Encapsulation - Protecting An Object's Internals

When creating and defining an object it is a good idea to keep it simple so that anybody who
uses that object in the future (including yourself) can remember how to use it. Often, there are
details about an object that we don’t need to know about in order to use the object. For
example, when we drive a car, we need to know simple things such as:

• starting/ stopping

• steering

• changing gears

• braking, etc..

However, we do not need to worry about things such as:

• assembling the carburetor

• adjusting the spark plug timing

• installing gas lines

• changing the muffler, etc..

Cars are clearly designed to be easy to drive, requiring a simple and easy-to-understand
interface. Similarly, it is important that we make our code easy to use and easy to
understand. Otherwise, making changes to the code, debugging it and extending it with new
features can quickly become very difficult and time consuming.

In order to keep our code simple, we need to make the interface (or
"outside view") of our objects as simple as possible. To do this, we
need to “hide the details” of our object that most people would
not need to worry about. That is, we will hide some of the
attributes (complicated parts) and some of the methods
(complicated procedures) of our object “under the hood”.

In addition to simplicity, there is another reason to hide some of the
details of our object. We would like to prevent outsiders from "messing
around with" the inner details of an object. For example we lock our car
doors and trunk so that people don't get in there are take things away or
damage them etc.. Similarly, for example, if we allow anyone to access
the attributes of our object and perform behaviors on it in the wrong
order, then this could lead to corrupt data and/or various types of errors
in our code.

The idea of hiding the unnecessary details of an object and
protecting inner parts of that object from general users is called
encapsulation:

Encapsulation involves enclosing an object with a

kind of “protective bubble” so that it cannot be accessed or
modified without proper permission.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 61 -

In JAVA, we protect and hide attributes and behaviors by using something called an access
modifier.

An access modifier is a permission setting for our attributes

and methods so that they will be visible/modifiable/usable from some
places in our code but not from other places.

Access modifiers are like access levels in a high security building
(e.g., No access, Level 1 access, Level 2 access, etc..)

There is an advantage to using access modifiers when working with a team of software
developers on a large program. They can be set so that some developers will have the
freedom to access or modify attributes or methods of an object, while other developers will not
be allowed such freedom to view or change portions the object.

We have already been using an access modifier called public when we wrote our classes,
constructors and various methods:

public class Person { … }

public Person(String firstName, ...) { … }

public static void main(String[] args) { … }

public int computeDiscount() { … }

public void retire() { … }

The keyword public at the front of a method declaration means that the method is publicly
available to everyone, so that these methods may be called from anywhere.

For most classes, constructors and methods, we do not need to write public. If we leave off
this access modifier, then the class/constructor/method will have what is known as default
access … meaning that the methods may be called from any code that is in the same package
or folder that this method’s class is saved in. If we write all of our code in the same folder,
then default and public access means the same thing.

There are two other access modifier options available called private and protected. When
we declare a method as private, we would not be able to use this method from any class other
than the class in which it is defined. Protected methods are methods that may be called from
the method’s own class or from one of its subclasses (more on this soon). So here is a
summary of the access modifiers for methods:

• none - can be called from any class in the same folder

• public - can be called from anywhere

• private - can only be called from this class

• protected - can be called from this class or any subclasses (discussed later)

In this course, most of the methods that we write will be public … which allows the most
freedom to access and modify our objects. Usually, private methods are known as helper
methods since they are often created for the purpose of helping to reduce the size of a larger
public method or when a piece of code is shared by several methods.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 62 -

For example, consider bringing in your car for repair. The publicly-available method would be
called to repair() the car. However, many smaller sub-routines are performed as part of the
repair process (e.g., runDiagnostics(), disassembleEngine() etc...). From the point of view
of the user of the class, there is no need to understand the inner workings of the repair
process. The user of the class may simply need to know that the car can be repaired,
regardless of how it is done. Here is an example of breaking up the repair problem into helper
methods that do the sub-routines as part of the repair …

public class Car {

 public void repair() {

 this.runDiagnostics();

 this.disassembleEngine();

 this.repairBrokenParts();

 this.reassembleEngine();

 this.runDiagnostics();

 }

 private void runDiagnostics() { /*...*/ }

 private void disassembleEngine() { /*...*/ }

 private void repairBrokenParts() { /*...*/ }

 private void reassembleEngine() { /*...*/ }

}

Notice that the helper methods are private since users of this class probably do not need to
call them. Here is an example showing how we might attempt to call these methods from
some other class:

public class SomeCarApplicationProgram {

 public static void main(String[] args) {

 Car c = new Car();

 c.repair(); // OK to call this method

 c.disassembleEngine(); // Won’t compile, since it is private

 c.repairBrokenParts(); // Won’t compile, since it is private

 }

}

Now what about protecting an object’s attributes ? Well, the public/private/protected and
default modifiers all work the same way as with behaviors. When used on instance variables,
it allows others to be able to access/modify them according to the specified restrictions.

So far, we have never specified any modifiers for our attributes, allowing them all default
access from classes within the same package or folder.

However, in real world situations, it is often best NOT to allow outside users
to modify the internal private parts of your object. The reason is that results
can often be disastrous. It is easy to relate to this because we well
understand how we hide our own private parts ☺.

As an example, consider the following code, which may appear in any class. It shows that we
can directly access the balance of a BankAccount.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 63 -

This is clearly undesirable since there is little protection. Could you imagine if anyone could
modify the balance of your bank account directly ?

BankAccount myAccount = new BankAccount("Mine");

myAccount.balance = 1000000.00f; // YAY

myAccount.balance = -1000000.00f; // WHY ...

In order to prevent direct access to important information we would need to prevent the code
above from compiling/running. If we were to declare the balance instance variable as private
within the BankAccount class, then the above code would not compile, thus solving the issue.

In general, while freedom to access/modify anything from anywhere seems like a friendly thing
to do, it is certainly dangerous. Anyone could "stomp" all over our instance variables
changing them at will. A general "rule-of-thumb" that should be followed is to declare ALL of
your instance variables as private as follows:

public class Patient {

 private String name;

 private int age;

 private float height;

 private char gender;

 private boolean retired;

 ...

}

Once we do this, then the following code will not work (when written in a class other than the
Patient class):

public class SomeApplicationProgram {

 public static void main(String[] args) {

 Patient p = new Patient();

 p.name = "Sandy Beach"; // will NOT compile

 p.age = 15; // will NOT compile

 p.height = 5.85f; // will NOT compile

 p.gender = 'M'; // will NOT compile

 p.retired = false; // will NOT compile

 System.out.println(p.name); // will NOT compile

 System.out.println(p.age); // will NOT compile

 System.out.println(p.height); // will NOT compile

 System.out.println(p.gender); // will NOT compile

 System.out.println(p.retired); // will NOT compile

 }

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 64 -

What we have essentially done is to erect a wall around the object ... like
the wall around a city. We have encapsulated it with a protective bubble.
Although we are still able to create the object, we are prevented from
accessing or modifying its internals now from outside the class. By doing
this, we have protected the object so much that we cannot get information
neither into it nor out from it. We have kind of secluded the object from the
rest of the world by doing this. However, just as a walled city has gates or doors to allow
access, we too can set up a form of gated access by means of public methods.

We will grant access to "some" of our object's attributes (i.e., instance variables) by creating
methods known as get and set methods (also known as getters and setters). The idea of
creating these gateways to our object’s data is common practice and is considered to be a
robust strategy when creating classes to be used in a large software application.

In this course, since we are only creating a few classes and since we are the only code writers,
we may not immediately see the benefits of declaring private attributes and then creating
these methods. However, in a larger/complicated system with hundreds of classes, the
benefits become quite clear:

• object attributes are easier to understand and use

• attributes are protected from external/unknown changes

• we are following proper and robust coding style

Let us first consider get methods. They let us look at information that is within the object by
getting the object’s attribute values (i.e., get the values of the instance variables). Get
methods have:

• public access

• return type matching attribute’s type

• name matching attribute’s name

• code returning attribute’s value

Here is how we would write the standard get methods
for a Patient class:

public class Patient {

 private String name;

 private int age;

 private float height;

 private char gender;

 private boolean retired;

 // Get methods for name, age, height, gender and retired attributes

 public String getName() { return this.name; }

 public int getAge() { return this.age; }

 public float getHeight() { return this.height; }

 public char getGender() { return this.gender; }

 public boolean isRetired() { return this.retired; }

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 65 -

Notice that all the methods look the same in structure. They are all public, all have return
types and names that match the attribute type, all have no parameters and all are one line
long.

When we call the method to get the attribute value, the method simply returns the attribute
value to us. It’s quite simple. By convention, all get methods start with “get” followed by the
attribute name, with the exception of attributes that are of type boolean. In that case, we
usually use “is” followed by the attribute name, as it makes the method call more natural.

Now let us examine the set methods. Set methods allow us to put values into the instance
variables (i.e., to set the object's attributes). Set methods have:

• public access

• void return type

• name matching attribute’s name

• a parameter matching attribute’s type

• code giving the attribute a value

Here is how we would write the standard set methods for the Patient class:

 // Set method for name attribute

 public void setName(String n) {

 this.name = n;

 }

 // Set method for age attribute

 public void setAge(int a) {

 this.age = a;

 }

 // Set method for height attribute

 public void setHeight(float h) {

 this.height = h;

 }

 // Set method for gender attribute

 public void setGender(char g) {

 this.gender = g;

 }

 // Set method for retired attribute

 public void setRetired(boolean r) {

 this.retired = r;

 }

The single line of code in a set method is quite simple also.

When we call the method to give the attribute a new value (i.e., we supply the new value as a
parameter to the method), the method simply takes that new attribute value and sets the
attribute to it by using the = operator.

Normally, we write all the get and set methods together, and sometimes shorten them onto
one line. Also, they are often listed in the code right after the public constructors as follows:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 66 -

public class Patient {

 private String name;

 private int age;

 private float height;

 private char gender;

 private boolean retired;

 // Constructor

 public Patient() {

 name = "Unknown";

 age = 0;

 height = 0;

 gender = '?';

 retired = false;

 }

 // Get methods

 public String getName() { return this.name; }

 public int getAge() { return this.age; }

 public float getHeight() { return this.height; }

 public char getGender() { return this.gender; }

 public boolean isRetired() { return this.retired; }

 // Set methods

 public void setName(String n) { this.name = n; }

 public void setAge(int a) { this.age = a; }

 public void setHeight(float h) { this.height = h; }

 public void setGender(char g) { this.gender = g; }

 public void setRetired(boolean r) { this.retired = r; }

}

Here is how the get method works:

Notice that primitive attribute values are returned as simple values but object attribute values
are returned as pointers/references to the object. The Patient object remains unchanged as a
result of a get method call.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 67 -

Here is how the set method works:

Notice that primitive attribute values are simply replaced with the new value. For object
attribute values, after the set call, the attribute will point to the new object. The previous
object that the attribute used to point to is discarded (i.e., garbage collected) if no other objects
are holding on to it. Once we create these get/set methods, we can then access and modify
the object from anywhere in our program as before:

public class TestPatientProgram {

 public static void main(String[] args) {

 Patient p = new Patient();

 System.out.println("Before Setting ...");

 System.out.println(p.getName()); // was println(p.name);

 System.out.println(p.getAge()); // was println(p.age);

 System.out.println(p.getHeight()); // was println(p.height);

 System.out.println(p.getGender()); // was println(p.gender);

 System.out.println(p.isRetired()); // was println(p.retired);

 p.setName("Sandy Beach"); // was p.name = "Sandy Beach";

 p.setAge(15); // was p.age = 15;

 p.setHeight(5.85f); // was p.height = 5.85f;

 p.setGender('F'); // was p.gender = 'F';

 p.setRetired(true); // was p.retired = true;

 System.out.println("\nAfter Setting ...");

 System.out.println(p.getName()); // was println(p.name);

 System.out.println(p.getAge()); // was println(p.age);

 System.out.println(p.getHeight()); // was println(p.height);

 System.out.println(p.getGender()); // was println(p.gender);

 System.out.println(p.isRetired()); // was println(p.retired);

 }

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 68 -

Here is what the output would be (however, initial values depend on the Patient constructor):

Before Setting ...

Unknown

0

0.0

?

false

After Setting ...

Sandy Beach

15

5.85

F

true

Now if we think for a moment ... what did we really do by making all the get and set methods
? Really, we wrote a lot of code (e.g., 5 get methods and 5 set methods for the Patient class)
but did not gain anything new. The code does the same thing as before. In fact, the test
code seems longer and perhaps slower (since we are calling a method to get/set the instance
variables for us instead of accessing them directly). So why did we do this ? Let us review
the advantages again:

1. First, get/set methods actually make life simpler for users of your
class because the user does not have to understand the “guts” of
the object being used. It allows them to treat the object as a “black
box”. The user does not need to know about all the instance
variables. Some are used to hold data that is temporary or
private. You should only create public get methods for the
instance variables that the user of the class would need to know
about.

2. Second, it prevents the users of a class from directly modifying the
object's internals. Recall, for example, that we should never be
able to directly change the balance of our bank account without
going through the proper transaction procedures such as
depositing and withdrawal. Of course, if we always create public
get/set methods for all our attributes, then we still would have no
such protection. So, it is important to create set methods only for the attributes that
you want the user of the class to be able to change directly. Therefore, you do not
always need to make set methods.

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 69 -

 3.7 Changing How Objects Look When Printed

As just described, properly-designed model classes will use encapsulation to hide any
unnecessary information from those who will make use of those classes and to keep things
simple. Sometimes however, it is desirable to be able to visually distinguish one object from
another. For example, consider the following code:

public class MyObjectTestProgram {

 public static void main(String[] args) {

 System.out.println(new Patient()); // a patient object

 System.out.println(new Patient()); // another patient object

 }

}

The result on the screen is as follows:

Patient@7d8a992f

Patient@164f1d0d

By default, JAVA displays all of the objects that you make in this manner, showing you the type
of object (i.e., the class name) followed by something that represents the object's location in
memory. This format for displaying objects is not very useful for debugging. If we had a
dozen or so Patient objects displayed in this manner, we would not be able to "pick out" one
that we may be looking for. It would be more advantageous if we had something a little more
descriptive ... perhaps showing the patient's name.

As it turns out, JAVA converts the Patient object to a String
object first and then displays the resulting characters to the
screen. In fact, every object in JAVA has, by default, a
method called toString() which will convert the object to a
String.

The Strings returned from the call to toString() have the
exact same characters that are displayed when we just
display the objects directly using System.out.println(). That is because whenever JAVA
attempts to display anything to the console, it automatically calls the toString() method for the
object to convert it to characters before displaying. So, the two lines shown below do exactly
the same thing:

Patient p = new Patient();

System.out.println(p); // displays Patient@7d8a992f

System.out.println(p.toString()); // displays Patient@7d8a992f

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 70 -

Why do we care ? Well, we can actually replace the default toString() behavior by writing our
own toString() method for all of our own objects that defines exactly how to convert our object
to a String. That is, we can control the way our object “looks” when we print it on the screen
or when we display it in our user interface.

Suppose that we want our Patient object to display something like this when printed:

Patient named Hank

You should notice that the first two words of this output are "fixed" and it is only the last part
(i.e., the first name of the Patient) that varies from patient to patient. We can make this to be
the standard output format for all Patient objects simply by writing the following method in the
Patient class:

public String toString() {

 return ("Patient named " + this.name);

}

This method overrides the default toString() method, essentially replacing it. Notice that the
method is called toString() with no parameters and that it has a return type of String. This is
important in order for the method to properly override the one inherited from the Object class.

Consider the output of the following code:

Patient p1, p2, p3;

p1 = new Patient(); // assume first name is set to "" within constructor

p2 = new Patient();

p2.setName("Holly");

p3 = new Patient();

p3.setName("Hank");

System.out.println(p1);

System.out.println(p2);

System.out.println(p3);

Here is the output …

Patient named

Patient named Holly

Patient named Hank

Now what if we wanted the output to be in this format instead:

19 year old Patient named Hank

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 71 -

To write an appropriate toString() method, we need to understand what is fixed in this output
and what will vary. The number 19 should vary for each patient as well as the first and last
names. Here is how we could write the code (replacing our previous toString() method):

public String toString() {

 return (this.age + " year old Patient named " + this.name);

}

Notice that the basic idea behind creating a toString() method is to simply keep joining
together String pieces to form the resulting String. Now here is a harder one. Let us see if
we can make it into this format:

19 year old non-retired patient named Hank

Here we have the age and names being variable again but now we also have the added
variance of their retirement status.

Here is one attempt:

public String toString() {

 return (this.age + " year old " + this.retired + " patient named "

 + this.name);

}

However, this is not quite correct. This would be the format we would end up with:

19 year old false patient named Hank

Notice that we cannot simply display the value of the retired attribute but instead need to write
“retired” or “non-retired” for the retired status.

To do this then, we will need to use an IF statement. However, in JAVA, we cannot write an IF
statement in the middle of a return statement. So we will need to do this using more than one
line of code. We can make an answer variable to hold the result and then break down our
method into logical pieces that append to this answer:

public String toString() {

 String answer;

 answer = this.age + " year old ";

 answer = answer + this.retired;

 answer = answer + " patient named " + this.name);

 return answer;

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 72 -

Now we can insert the appropriate IF statements as follows:

public String toString() {

 String answer;

 answer = this.age + " year old ";

 if (this.retired)

 answer = answer + "retired";

 else

 answer = answer + "non-retired";

 answer = answer + " patient named " + this.name;

 return answer;

}

The result is what we wanted. Note however, that we can simplify this code a little further:

public String toString() {

 String answer = this.age + " year old ";

 if (!this.retired)

 answer = answer + "non-";

 return (answer + "retired patient named " + this.name);

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 73 -

 3.8 A Bank Example

Consider implementing some software for a bank. Likely we need a Bank object that will
contain BankAccount objects where each account is owned by a bank Customer. So, we
will need a few interacting objects. Let's begin with a Customer object. We can define it as
a simpler version to a Person object with get/set methods and a toString() method as follows:

public class Customer {

 private String firstName;

 private String lastName;

 private Address address;

 private String phoneNumber;

 // This is the zero-parameter constructor

 public Customer() {

 firstName = "UNKNOWN";

 lastName = "UNKNOWN";

 address = null;

 phoneNumber = "(???)???-????";

 }

 // This is a 4-parameter constructor

 public Customer (String f, String l, Address a, String p) {

 firstName = f;

 lastName = l;

 address = a;

 phoneNumber = p;

 }

 // These are the get/set methods

 public String getFirstName() { return firstName; }

 public String getLastName() { return lastName; }

 public Address getAddress() { return address; }

 public String getPhoneNumber() { return phoneNumber; }

 public void setFirstName(String s) { firstName = s; }

 public void setLastName(String s) { lastName = s; }

 public void setAddress(Address a) { address = a; }

 public void setPhoneNumber(String p) { phoneNumber = p; }

 // This returns a String representation of the customer

 public String toString() {

 return "Customer: " + firstName + " " + lastName +

 " living at " + address;

 }

}

Of course, we will need to make the Address object too. We can make something quite
simple like this (we will leave off city/province/postal code to keep things simple):

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 74 -

public class Address {

 private String streetNumber;

 private String streetName;

 // This is the 2-parameter constructor

 public Address(String number, String name) {
 streetNumber = number;

 streetName = name;

 }

 // These are the get/set methods

 public String getStreetNumber() { return streetNumber; }

 public String getStreetName() { return streetName; }

 public void setStreetName(String s) { streetName = s; }

 public void setStreetNumber(String s) { streetNumber = s; }

 // This returns a String representation of the address

 public String toString() {

 return streetNumber + " " + streetName;

 }

}

Now, let us define a BankAccount with the following attributes and constructors as follows:

public class BankAccount {

 private Customer owner;

 private int accountNumber;

 private float balance;

}

Likely, when someone makes a new BankAccount, they DO NOT get to choose their own
account number, as this is usually assigned by the bank itself. Let us assume that the first
created account is assigned the account number 100001, the second gets 100002, the third
100003 and so on. In this scenario, we can simply keep a counter that starts at 100001 and
increases each time a new account is created.

To do this, we can create a static/class variable in the BankAccount class to represent this
counter. We can call it LAST_ACCOUNT_NUMBER which will store the account number that
was last given out. We can give this variable an initial value of 100000 as follows …

private static int LAST_ACCOUNT_NUMBER = 100000;

Then, when a new BankAccount is created, we can give it an
accountNumber which is one more than the
LAST_ACCOUNT_NUMBER and then increment this counter to get it
ready for the next time. This counter of ours will work exactly like one
of those ticket dispensers when you wait in line at a store.

This can be done by adjusting all of the BankAccount constructors so
that they do not allow the user to "specify" the accountNumber. But

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 75 -

rather set it to the next available number and then increment the counter. Here is the code
that we would need to write:

public class BankAccount {

 private static int LAST_ACCOUNT_NUMBER = 100000;

 private Customer owner;

 private int accountNumber;

 private float balance;

 // This is the zero-parameter constructor

 public BankAccount() {
 owner = null;

 accountNumber = ++LAST_ACCOUNT_NUMBER;

 balance = 0;

 }

 // This is a 1-parameter constructor

 public BankAccount(Customer c) {

 owner = c;

 balance = 0;

 accountNumber = ++LAST_ACCOUNT_NUMBER;

 }

 // These are the get methods

 public Customer getOwner() { return owner; }

 public int getAccountNumber() { return accountNumber; }

 public float getBalance() { return balance; }

}

Notice that each bank account will always get a new number because all available
constructors increment the global counter before assigning the bank account number to the
new account. Also, notice that there are no set methods. That is because an account
should never be allowed to change its owner nor its accountNumber once it has been created.
Also, there should not be any permission to directly modify (i.e., set) the balance ... there
should be deposit and withdraw procedures that must be followed.

Now, what about a toString() method ? What should a bank account look like when printed ?
That is up to us. Perhaps we want it to look like this:

Bank Account #100001 with balance $1765.92

The above does not display the account’s owner. Here is how we would write the code:

 public String toString() {

 return "Bank Account #" + accountNumber + " with balance $" +

 String.format("%,1.2f", balance);

 }

Of course, we need a way of depositing and withdrawing money:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 76 -

 public void deposit(float amount) {

 balance += amount;

 }

 public boolean withdraw(float amount) {

 if (amount <= balance) {

 balance -= amount;

 return true;

 }

 return false;

 }

Notice that the withdraw() method returns a boolean that will inform us as to whether or not
there was enough money in the account. Both of these methods would need to be added to
the account.

Here is a test program to see if it all works:

public class AccountTestProgram {

 public static void main(String args[]) {

 BankAccount b1, b2, b3;

 b1 = new BankAccount(new Customer("Tim", "Foil",

 new Address("12", "Elm St."), "613-555-5555"));

 b2 = new BankAccount(new Customer("Dan", "Sing",

 new Address("1267A", "Oak St."), "613-555-5556"));

 b3 = new BankAccount(new Customer("Fran", "Tick",

 new Address("4761", "Pine Cres."), "613-555-5557"));

 b1.deposit(125);

 b2.deposit(3245.02f);

 b2.withdraw(1000);

 b3.withdraw(20);

 System.out.println(b1);

 System.out.println(b2);

 System.out.println(b3);

 }

}

Here is the expected output:

Bank Account #100001 with balance $125.00

Bank Account #100002 with balance $2,245.02

Bank Account #100003 with balance $0.00

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 77 -

Notice that the account numbers assigned are consecutive (i.e., 100001, 100002 and 100003).
Of course, each time we run the program, the account numbers start over at 100001 again. If
we wanted to ensure that our code assigned new numbers even when we restart the program,
we would have to store the last account number counter in a file and then re-save the changed
counter each time to the file. We will discuss the reading and writing of files later in the course.

Finally, we need a way of keeping the accounts all together. We can do this by making a
Bank class which keeps an array of BankAccount objects. Since we are using arrays, we
will also want to define a fixed size for the array ... perhaps defined as a constant. Here is
what we can do:

public class Bank {

 private static final int ACCOUNT_CAPACITY = 100;

 private String name;

 private BankAccount[] accounts;

 private int numberOfAccounts;

 public Bank(String n) {

 name = n;

 numberOfAccounts = 0;

 accounts = new BankAccount[ACCOUNT_CAPACITY];

 }

 // These are the get methods (set methods are not allowed)

 public String getName() { return name; }

 public BankAccount[] getAccounts() { return accounts; }

 public int getNumberOfAccounts() { return numberOfAccounts; }

 // This returns a string representation of the bank

 public String toString() {

 return name + " with " + numberOfAccounts + " accounts";

 }

}

Of course, we need a way of opening accounts at the bank:

 // Add an account to the bank

 private void addAccount(BankAccount b){

 if (numberOfAccounts < ACCOUNT_CAPACITY)

 accounts[numberOfAccounts++] = b;

 }

Notice that the method is private. That is because we don't want others passing in accounts
that may be invalid or ones that belong to different banks. Instead, we will make a public
method as a means of creating a new account, given a Customer:

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 78 -

 // Open a bank account for this customer

 public void openAccount(Customer c){

 addAccount(new BankAccount(c));

 }

We will want to also probably allow depositing and withdrawals from the accounts based on an
account number:

 // Deposit an amount of money into account with given accountNumber

 public boolean deposit(int accNum, float amount) {

 for (int i=0; i<numberOfAccounts; i++) {

 if (accounts[i].getAccountNumber() == accNum) {

 accounts[i].deposit(amount);

 return true;

 }

 }

 return false;

 }

 // Withdraw an amount of money from account with given accountNumber

 public boolean withdraw(int accNum, float amount) {

 for (int i=0; i<numberOfAccounts; i++) {

 if (accounts[i].getAccountNumber() == accNum)

 return accounts[i].withdraw(amount);

 }

 return false;

 }

We can then write any interesting methods that we want such as these:

 // Determine total of all account balances

 public float totalOfAllBalances() {

 float answer = 0;

 for (int i=0; i<numberOfAccounts; i++) {

 answer += accounts[i].getBalance();

 }

 return answer;

 }

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 79 -

 // List all accounts

 public void listAccounts() {

 for (int i=0; i<numberOfAccounts; i++)

 System.out.println(accounts[i]);

 }

We can test it all out using the following program:

public class BankTestProgram {

 public static void main(String[] args) {

 // Make a Bank

 Bank myBank = new Bank("Mark's Bank");

 // Make some bank accounts with customers

 myBank.openAccount(new Customer("Tim", "Foil",

 new Address("12", "Elm St."), "613-555-5555"));

 myBank.openAccount(new Customer("Dan", "Sing",

 new Address("1267A", "Oak St."), "613-555-5556"));

 myBank.openAccount(new Customer("Fran", "Tick",

 new Address("4761", "Pine Cres."), "613-555-5557"));

 myBank.deposit(100001, 125);

 myBank.deposit(100002, 3245.02f);

 myBank.withdraw(100002, 1000);

 myBank.withdraw(100003, 20);

 System.out.println("\nHere are the bank accounts:");

 myBank.listAccounts();

 System.out.println("\n\nThe bank has this much money: $" +

 String.format("%,1.2f", myBank.totalOfAllBalances()));

 }

}

Here is the expected output:

Here are the bank accounts:

Bank Account #100001 with balance $125.00

Bank Account #100002 with balance $2,245.02

Bank Account #100003 with balance $0.00

The bank has this much money: $2,370.02

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 80 -

As you can see, object-oriented programming requires you to define and
implement many objects and to get them to work together in
meaningful ways. Often, the object class definitions that you write
can be re-used in many applications. It is therefore a good idea to
ensure that these objects are robust and that their methods provide
proper results. To do this, you should perform proper testing of your
objects.

Unfortunately, testing is often tedious. It is therefore poorly done and
ignored by many programmers. Companies that hire programmers
do not like laziness … and even worse … they hate code with bugs
or errors in it. To avoid disappointing your boss, possibly losing your
job, and just to feel good about the quality of your work … you should properly test your code.

Normally, it is not common to test your constructors nor get/set methods, but it is certainly
important to test methods that perform computations, search, sort, etc… For problems that
require numerical parameters, it is a good idea to test different values that could potentially
cause problems. For example, if we were to fully test the deposit() method for the
BankAccount class, we would want to test depositing the following amounts:

• 0.0 // deposit nothing

• 0.67 // a cents amount

• 100.57 // a typical positive amount

• 100.2234343 // an amount with many decimal places

• -34 // an invalid amount

We could create a simple test program to do this, making sure that we properly display the
results to confirm that they are correct as follows …

public class DepositTestProgram {

 public static void main(String args[]) {

 BankAccount acc;

 acc = new BankAccount(new Customer("Rusty", "Can",

 new Address("33", "Birch Ave."), "613-555-5558"));

 System.out.println("Account at start: " + acc);

 acc.deposit(0.0f);

 System.out.println("Account after depositing $0.00: " + acc);

 acc.deposit(0.67f);

 System.out.println("Account after depositing $0.67: " + acc);

 acc.deposit(100.57f);

 System.out.println("Account after depositing $100.57: " + acc);

 acc.deposit(100.2234343f);

 System.out.println("Account after depositing $100.2234343:" + acc);

 acc.deposit(-34);

 System.out.println("Account after depositing $-34: " + acc);

 }

}

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 81 -

Here is the output:

Account at start: Account #100000 with $0.00

Account after depositing $0.00: Account #100000 with $0.00

Account after depositing $0.67: Account #100000 with $0.67

Account after depositing $100.57: Account #100000 with $101.24

Account after depositing $100.2234343:Account #100000 with $201.46

Account after depositing $-34: Account #100000 with $167.46

Notice the careful use of System.out.println() in the program to provide a kind of “log”
showing exactly what we tested and the order that things were tested in. If you were to read
the output, you should be able to follow along as the deposit transactions were made to
confirm the correct balance each time.

From the output, you may notice something that needs changing. For example, you may
decide to prevent depositing negative amounts of money. You might do this by changing the
code to generate an exception (more on this later) or perhaps simply perform a check and
ignore deposits of negative amounts.

It really depends on the application and whether or not it is tied-in with the user interface. For
example, at a bank machine, it is impossible to deposit a negative amount of money because
the machine does not allow you to enter a negative sign. In such a situation, you may choose
simply to ignore the problem altogether, since it would never occur. However, a simple check
may be best, in case you port your code into a different program:

public void deposit(float amount) {

 if (amount > 0)

 balance += amount;

}

Then we would re-run the same test code to see whether or not it worked:

Account at start: Account #100000 with $0.00

Account after depositing $0.00: Account #100000 with $0.00

Account after depositing $0.67: Account #100000 with $0.67

Account after depositing $100.57: Account #100000 with $101.24

Account after depositing $100.2234343:Account #100000 with $201.46

Account after depositing $-34: Account #100000 with $201.46

Now this was a simple test program which is often known as a “Test Unit”. In larger, more
complicated, real-world programs, in order to keep organized, it would be necessary to create
multiple simple “unit tests” that test particular aspects of the program. For example …

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 82 -

public class BankAccountTestUnit1 {

 public static void main(String args[]) {

 BankAccount acc = new BankAccount(new Customer("Rusty", "Can",

 new Address("33", "Birch Ave."), "613-555-5558"));

 System.out.println("Account before depositing $100.57: " + acc);

 acc.deposit(100.57f);

 System.out.println("Account after depositing $100.57: " + acc);

 }

}

public class BankAccountTestUnit2 {

 public static void main(String args[]) {

 BankAccount acc = new BankAccount(new Customer("Rusty", "Can",

 new Address("33", "Birch Ave."), "613-555-5558"));

 System.out.println("Account before withdrawing $100: " + acc);

 acc.withdraw(100);

 System.out.println("Account after withdrawing $100: " + acc);

 }

}

In fact, it is often the case that we would like to perform transactions and test cases on a
particular bank account. In this case, we can break down the separate test units as test
methods in a larger test program:

public class BankAccountTestUnit3 {

 public static void deposit1(BankAccount acc) {

 System.out.println("Account before depositing $100.57: " + acc);

 acc.deposit(100.57f);

 System.out.println("Account after depositing $100.57: " + acc);

 }

 public static void deposit2(BankAccount acc) {

 System.out.println("Account before depositing $0.01: " + acc);

 acc.deposit(0.01f);

 System.out.println("Account after depositing $0.01: " + acc);

 }

 public static void withdraw1(BankAccount acc) {

 System.out.println("Account before withdrawing $100.57: " + acc);

 acc.withdraw(100.57f);

 System.out.println("Account after withdrawing $100.57: " + acc);

 }

 public static void withdraw2(BankAccount acc) {

 System.out.println("Account before withdrawing $0.01: " + acc);

 acc.withdraw(0.01f);

 System.out.println("Account after withdrawing $0.01: " + acc);

 }

COMP1406 - Chapter 3 – Defining Object Behavior Winter 2018

 - 83 -

 public static void main(String args[]) {

 BankAccount acc;

 acc = new BankAccount(new Customer("Rusty", "Can",

 new Address("33", "Birch Ave."), "613-555-5558"));

 acc.deposit(0);

 deposit1(acc);

 deposit2(acc);

 withdraw1(acc);

 withdraw2(acc);

 acc = new BankAccount(new Customer("Ann", "Tenna",

 new Address("84", "Maple Ave."), "613-555-5559"));

 acc.deposit(10);

 deposit1(acc);

 deposit2(acc);

 withdraw1(acc);

 withdraw2(acc);

 acc = new BankAccount(new Customer("Ella", "Vator",

 new Address("873", "Spruce Dr."), "613-555-5560"));

 acc.deposit(200);

 deposit1(acc);

 deposit2(acc);

 withdraw1(acc);

 withdraw2(acc);

 }

}

There are actually principles and guidelines for writing test cases for large systems. However,
it is beyond the scope of this course. You will learn more about proper testing next year.

