

Chapter 4

Class Hierarchies and Inheritance

What is in This Chapter ?

This chapter discusses how objects are organized into a class hierarchy and then explains
the notion of inheritance as a means of sharing attributes and behaviors among classes. It
also explains the notion of abstract classes and java interfaces that allow seemingly
unrelated classes to share common behavior.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 85 -

 4.1 Organizing Classes

As we have already seen, defining objects as a new kind of data structure simply involves
creating new classes, each in their own file (e.g., Car, Person, Address, Bank, etc..). In fact,
a definition of the word ‘class’ in English is:

"A collection of things sharing a common attribute".

So, for example, when we create a Person class, we are implying that all Person objects have
some attributes in common. Similarly, a Car class would define the common attributes that all
Car objects have. In general, since Person and Car are different classes, their list of
attributes will differ.

In real life, however, there are some objects that “share” attributes in common. For example,
Person objects may have name and phoneNumber attributes, but so can Employee,
Manager, Customer and Company objects. Yet, there may be additional attributes of these
other objects that Person does not have. For example, an Employee object may maintain
employeeID information or a Company object may have a clientList attribute, whereas
Person objects in general do not keep such information:

In addition to commonality between attributes, classes may also share common behavior.
That is, two or more objects may have the ability to perform the same function or procedure.
For example, if a Person, Car and Company are all insurable, then they may all have a
function called calculateInsurancePremium() that determines the pricing information for their
insurance plan.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 86 -

All object-oriented languages (e.g., JAVA) allow you to organize your classes in a way that
allows you to take advantage of the commonality between classes. That is, we can define a
class with certain attributes (and/or behaviors) and then specify which other classes share
those same attributes (and/or behaviors). As a result, we can greatly reduce the amount of
duplicate code that we would be writing by not having to re-define the common attributes
and/or behaviors for all of the classes that share such common features.

JAVA accomplishes this task by arranging all of its classes in a "family-tree”-
like ordering called a class hierarchy. A class hierarchy is often
represented as an upside down tree (i.e., the root of the tree at the top).
The more “general” kinds of objects are higher up the tree and the more
“specific” (or specialized) kinds of objects are below them in the hierarchy.
So, a child object defined in the tree is a more specific kind of object than its
parent or ancestors in the tree. Hence, there is an "is a" (i.e., "is-a-kind-of")
relationship between classes:

Each class is a subclass (i.e., a specialization) of some other class which is called its
superclass (i.e., a generalization). The direct superclass is the class right “above” it:

Here, Snake, and Lizard are subclasses of Reptile (i.e., they are special kinds of reptiles).
Also Whale and Dog are subclasses of Mammal. All of the classes are subclasses of Animal
(except Animal itself). Animal is a superclass of all the classes below it, and Mammal is a

Whale Dog Lizard Snake

Mammal Reptile

Animal

Iguana Gecko direct subclass
of Reptile

direct superclass
of Whale & Dog

subclass of Animal,
Reptile & Lizard

superclass of
Lizard, Snake,

Iguana & Gecko

Whale Dog Lizard Snake

Mammal Reptile

Animal

Iguana Gecko

Reptile
is an

Animal

Snake
is a

Reptile

Gecko is a
Lizard which
is a Reptile

more
general

more
specific

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 87 -

superclass of Whale and Dog. As we can see, we can go even deeper in the hierarchy by
creating subclasses of Lizard. Usually, when we use the term superclass, we are referring to
the class that is directly above a particular class (i.e., the direct superclass).

The Animal hierarchy above represents a set of classes that we may define ourselves. But
where do they fit-in with all the other pre-made JAVA classes like String, Date, Rectangle
etc... ? Well, all objects have one thing in common ... they are all Objects. Hence, at the very
top of the hierarchy is a class called Object. Therefore, all classes in JAVA are subclasses of
Object:

All of the classes that we created so far have been direct subclasses of Object. That means
that they did not share attributes with one another, but that they shared attributes only with
Object. However, we have the freedom to re-arrange our classes in a manner that will allow
them to share attributes with one another.

The way in which we arrange our classes will depend on how similar our objects are with
respect to their attributes. For example, a Car and a Truck have something in common ...
they are both drivable. Whereas an MP3Player and a BankAccount have little or nothing in
common with Car or Truck objects. So, intuitively, Car and Truck classes should somehow
be grouped together (i.e., placed nearby) in the hierarchy.

As an example, consider creating many kinds of bank accounts. We might arrange them in a
hierarchy like this:

SuperSavings PowerSavings BusinessChecking PowerChecking

SavingsAccount CheckingAccount

BankAccount

Object

Object

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 88 -

Here are a few more examples of hierarchies of classes that we may create:

We will talk more about how and why we arrange these classes as above. But remember, a
class should only be a subclass of another class if it "is a kind of" its superclass.

Sometimes, students misunderstand the class hierarchy,
thinking that a class becomes a subclass
of another one if the superclass
"is made of" the subclasses.

That is, they mistakenly assume that
it is a "has a" relationship instead of
an "is a" relationship. Therefore, the
following hierarchies would be wrong 

Apple Orange Potato Carrot

Fruit Vegetable

Food

HomeImprovementLoan

Lease Mortgage

Loan

TownHome SingleFamilyHome Warehouse Office

Residential Commercial

BuildingStructure

Factory

Object Object

Object

Distributor SparkPlug Hood Door

Engine Body

Car

Employee Office Customer

Company

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 89 -

In JAVA, in order to create a subclass of
another class, use the extends keyword in
our class definition. For example, assume
that we wanted to ensure that class A was
placed in the hierarchy as a subclass of class
B as shown here.

To make this happen, we simply write
extends B immediately after we specify name
of class A as follows:

public class A extends B {

 ...

}

If the extends keyword is not used (i.e., as we left it out from all our previous class definitions),
it is assumed that the class being defined extends the Object class. So, all the classes that
we defined previously were direct subclasses of Object.

How do we know how deep we should make the class hierarchy (i.e., tree) ?

Most of the time, any “is a” relationship between objects should
certainly result in the creation of a subclass. Object-oriented code
usually involves a lot of small classes as opposed to a few large ones.

It is often the case that our class hierarchies become rearranged over
time, because we often make mistakes in deciding where to place the
classes. We make such mistakes because it is not always easy to choose a hierarchy ... it
depends on the application.

For example, hierarchies of classes representing students in a university may be arranged in
many different ways ... here are just 4 possibilities …

 A

 B

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 90 -

How do we know which one to use ? It will depend on the state (i.e., attributes) and behavior
(i.e., methods) that is common between the subclasses. If we find that the main differences in
attributes or behavior are between full time and part time students (e.g., fee payment rules),
then we may choose the top hierarchy. If however the main differences are between graduate
and undergraduate (e.g., privileges, requirements, exam styles etc..), then we may choose the
middle hierarchy. The bottom hierarchy further distinguishes between full and part time
graduate and undergraduate students, if that needs to be done. So ... the answer is ... we
often do not know which hierarchy to choose until we thought about which hierarchy allows
the maximum sharing of code.

 4.2 Inheritance

You may have heard the term inherit before which has various meanings in English such as:

• “to receive from a predecessor” or

• “to receive by genetic transmission”

Through birth, all of us have inherited traits and behaviors
from our parents. Something similar happens in JAVA with
regards to the class hierarchy. A subclass (i.e., child)
inherits the attributes (i.e., instance variables) and
behavior (i.e., methods) from all of its superclasses (i.e.,
ancestors in the class hierarchy). So as a general
definition, in Object-Oriented Programming:

Inheritance is the act of receiving shared

attributes and behavior from more general
types of objects up the hierarchy.

This means that a subclass has the same "general" attributes/behaviors as its superclasses as
well as possibly some new additional attributes/behaviors which are specific for the subclass.
There are many advantages of using Inheritance:

• allows code to be shared between classes
... promotes software re-usability

• saves programming time since code is shared
...less code needs to be written

• helps keep code simple since inheritance is natural in real life

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 91 -

Some languages (e.g., C++) allow Multiple Inheritance, which means that a class
can inherit state and behavior from more than one class. However, JAVA does not support
multiple inheritance. We can however, partially "fake" it (with respect to methods) through the
use of interfaces (which we will discuss later).

Consider making an object to represent an Employee in a company which maintains: name,
address, phoneNumber, employeeNumber and hourlyPay. We may make a single class:

public class Employee {

 String name;

 Address address;

 String phoneNumber;

 int employeeNumber;

 float hourlyPay;

 …

}

Assume now that we have many employees in a company in which a few of them are
managers. If the managers are all essentially the same as employees, except perhaps that
they have a higher hourlyPay, then there is no need to create any new classes. The
Employee class is sufficient to represent them.

However, what if there were some more significant differences between managers and
employees ? Perhaps it would be beneficial to create a separate class for them. We would
need to determine what is different between these two classes with respect to their attributes
and behaviors. For example, a Manager may have:

• additional attributes (e.g., a list of duties, a list of employees that work for them, etc...)

• additional (or different) behavior (e.g., they may compute their pay differently, or have

different benefit packages, etc...)

In these situations, a Manager may be considered as a special “kind of” Employee. It would
therefore make sense for the Manager to be a subclass of Employee as follows:

public class Employee {

 String name;

 Address address;

 String phoneNumber;

 int employeeNumber;

 float hourlyPay;

 …

}

public class Manager extends Employee {

 String[] duties;

 Employee[] subordinates;

 …

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 92 -

Notice here that Manager would inherit all of the attributes of the Employee class, so that
Employees have 5 attributes, while Managers have 7. All Employee behaviors would also
be inherited by Managers.

Now, what if we wanted to represent a Customer as well in our application ? Our application
may require keeping track of a customer’s name, address and phoneNumber. But these
attributes are also being used for our Employee objects. We could make two separate
unrelated classes ... one called Customer ... the other called Employee. We could define
Customer as follows:

public class Customer {

 String name;

 Address address;

 String phoneNumber;

 …

}

This would work fine. However, you will notice that both
Employee and Customer have some attributes in
common. So, if we defined the Customer class in this
manner, we would need to repeat the same definitions, and
perhaps some of the behaviors. It would be better if we
could somehow use inheritance to allow Customers to
share attributes and behaviors that are in common with
Employees. So, we should perhaps have Customer
inherit from something. We have a few choices. We can
have Customer inherit from Manager, Employee inherit
from Customer or Customer inherit from Employee as
follows …

However, neither of these hierarchies will work according to the "is a" relationship because (1)
a Customer is not always a Manager, (2) an Employee is not always a Customer, and (3) a
Customer is not always an Employee.

One possible solution is to change the name Customer to Person. In this way, a customer is
simply represented by a Person object and we can use the following hierarchy:

public class Person {

 String name;

 Address address;

 String phoneNumber;

}

public class Employee extends Person {

 int employeeNumber;

 float hourlyPay;

}

public class Manager extends Employee {

 String[] duties;

 Employee[] subordinates;

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 93 -

Now Employee inherits 3 attributes from Person, so it has 5 altogether, while Manager
inherits 3 from Person and 2 from Employee, making 7 altogether. Customers, are then
represented simply as Person objects.

This is a good solution as long as ALL of the attributes (e.g., name, address, phoneNumber)
for a customer (i.e., Person object) is also shared with Employee and Manager. Also, there
must not be any attributes or behaviors in the Person class that do not apply to an Employee
and a Manager. For example, if the application required us to keep track of a list of items
purchased by the customer or perhaps even a purchase history, then such attributes may not
make sense for an Employee or Manager. So, if there is different behavior or attributes that is
unique to customers, then we must create a separate Customer class to define these
differences. In this case, we can still share the name, address and phoneNumber by creating
an extra Person class to hold the common attributes. We can create the following hierarchy:

public class Person {

 String name;

 Address address;

 String phoneNumber;

}

public class Employee extends Person {

 int employeeNumber;

 float hourlyPay;

}

public class Customer extends Person {

 String[] itemsPurchased;

 Date[] purchaseHistory;

}

public class Manager extends Employee {

 String[] duties;

 Employee[] subordinates;

}

This will allow all common attributes (i.e., name, address, phoneNumber) to be shared by all
the classes while allowing Customer objects to have their own attributes and behaviors.

At this point, we should clarify the advantages of the attribute-related inheritance that is
occurring within our hierarchy. Here is a simple example piece of code showing the attributes
that are readily available to each type of object defined in our example …

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 94 -

Person p = new Person();

Employee e = new Employee();

Customer c = new Customer();

Manager m = new Manager();

p.name = "Hank Urchiff"; // own attribute

p.address = new Address(); // own attribute

p.phoneNumber = "1-613-555-2328"; // own attribute

e.name = "Minnie Mumwage"; // attribute inherited from Person

e.address = new Address(); // attribute inherited from Person

e.phoneNumber = "1-613-555-1231"; // attribute inherited from Person

e.employeeNumber = 232867; // own attribute

e.hourlyPay = 8.75f; // own attribute

c.name = "Jim Clothes"; // attribute inherited from Person

c.address = new Address(); // attribute inherited from Person

c.phoneNumber = "1-613-555-5675"; // attribute inherited from Person

c.itemsPurchased[0] = "Pencil Case"; // own attribute

c.purchaseHistory[0] = Date.today(); // own attribute

m.name = "Max E. Mumwage"; // attribute inherited from Person

m.address = new Address(); // attribute inherited from Person

m.phoneNumber = "1-613-555-8732"; // attribute inherited from Person

m.employeeNumber = 232867; // attribute inherited from Employee

m.hourlyPay = 8.75f; // attribute inherited from Employee

m.duties[0] = "Phone Clients"; // own attribute

m.subordinates[0] = e; // own attribute

Notice that we use the inherited attributes just as if they were defined as part of that class
directly. For example, the Employee object e, Customer object c and Manager object m, all
access the name attribute as if it was defined in their class … even though it is actually defined
in the Person class … written in a different .java file!! You can see that through inheritance,
we do not have to re-define the name attribute in each of these classes. The same holds true
for the address and phoneNumber attributes, as well as any other inherited attributes in the
subclasses.

At this point, we only examined how to decide upon a class hierarchy based on the differences
in attributes. However, we would have to think in the same manner by examining the
behaviors of the individual classes. For example, even if managers did not have the duties
and subordinates attributes shown above, we may still want to make a separate class for
managers if there are behaviors that differ (e.g., different computePay() method).

Now, we will consider an example that shows how inheritance applies to behaviors within a
simple hierarchy of BankAccount objects.

Consider creating an application for a bank that maintains account information for its
customers. All bank accounts at this bank must maintain 3 common attributes (the owner's
name, the accountNumber and the balance of money remaining in the account).
Also, an account, by default, should have simple behaviors to deposit and withdraw from the
account. So, in its simplest form, a BankAccount object can be defined and used as follows:

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 95 -

public class BankAccount {

 String owner; // person who owns the account

 int accountNumber; // the account number

 float balance; // amount of money currently in the account

 // Some constructors

 public BankAccount() {

 this.owner = "";

 this.accountNumber = 0;

 this.balance = 0;

}

 public BankAccount(String ownerName) {

 this.owner = ownerName;

 this.accountNumber = 0;

 this.balance = 0;

 }

 // Deposit money into the account

 public void deposit(float amount) {

 this.balance += amount;

 }

 // Withdraw money from the account

 public void withdraw(float amount) {

 if (this.balance >= amount)

 this.balance -= amount;

 }

}

Now assume that the bank wants to distinguish between “savings” accounts and
“non-savings” accounts in that the customer cannot withdraw money from a
“savings” account once it has been deposited (i.e., to get the money out of the
account, the customer must close the account).

We would need to have a way of disabling the withdraw behavior for savings accounts. We
could do this through inheritance by creating a subclass of BankAccount to represent a
special “kind of” account … we will call it SavingsAccount:

public class SavingsAccount extends BankAccount {

}

Just by writing this simple “virtually empty” class definition in which
SavingsAccount extends BankAccount, we have “invented” a new type of
bank account that inherits all 3 attributes from BankAccount as well as the
deposit() and withdraw() methods.

BankAccount

Object

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 96 -

We could verify this by writing a simple piece of test code:

SavingsAccount s = new SavingsAccount();

System.out.println(s.balance); // displays 0.0

s.deposit(120);

System.out.println(s.balance); // displays 120.0

s.withdraw(20);

System.out.println(s.balance); // displays 100.0

Something important to know, however, is that a subclass does not automatically inherit the
constructors in its superclass. So, SavingsAccount does not inherit the two constructors in
BankAccount … but it does get to use its own default constructor (i.e., zero-parameter
constructor) for free. We can verify this by altering the first line in our test code so read:

SavingsAccount s = new SavingsAccount("Bob");

If we made such an alteration to the code, our test code would no longer compile. We would
receive the following compile error:

cannot find symbol constructor SavingsAccount(java.lang.String)

which is telling us that we don’t have a constructor in our SavingsAccount class that takes a
single String parameter. Then, how did our new SavingsAccount() code work previously

since it seems to have properly initialized the account number ? Well, as it turns out, the
default constructor that we get for free actually looks as follows:

public SavingsAccount() {

 super();

}

What does this mean ? What does the keyword super do ? The keyword
super is actually a special word that represents the superclass of this class.
In our case, the super class is BankAccount. So, it is essentially doing a
call to BankAccount() … which means it is calling the superclass
constructor.

Therefore, if we want to make use of the attribute initialization code that is
in a constructor in a superclass, we can call the superclass constructor from
our own by using super(…) along with the appropriate parameters.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 97 -

Hence we can write the following constructor in our SavingsAccount class:

public class SavingsAccount extends BankAccount {

 public SavingsAccount(String aName) {

 super(aName);

 }

}

If we do this, then we can use the following code without
compile errors:

SavingsAccount s = new SavingsAccount("Bob");

Keep in mind, however, that the list of parameters (i.e., the types) supplied within the
super(…) call, must match the list of parameters (i.e., the types) of one of the constructors in
the superclass. In order to see the advantage of using constructor inheritance, here is what
the code would look like with and without using inherited constructors:

Without Inheritance (need to re-write code) With Inheritance

public SavingsAccount() { {

 this.owner = "";

 this.accountNumber = 0;

 this.balance = 0;

}

public SavingsAccount(String ownerName) {

 this.owner = ownerName;

 this.accountNumber = 0;

 this.balance = 0;

}

public SavingsAccount() {

 super("");

}

public SavingsAccount(String aName) {

 super(aName);

}

Again … the amount of code that needs to be written is reduced when using inheritance. So,
we have SavingsAccount properly inheriting from BankAccount, however, the
SavingsAccount class still allows withdrawals. In order to disable this behavior, we need to
somehow “prevent” the withdraw method code from being used by savings accounts. The
simplest and most common way of doing this is to write a new withdraw() method in the
SavingsAccount class that simply does nothing as follows …

public class SavingsAccount extends BankAccount {

 // Constructor to call the superclass constructor

 public SavingsAccount(String aName) { super(aName); }

 public SavingsAccount() { super(""); }

// Prevent the withdrawal of money from the account

 public void withdraw(float amount) {

 // Do nothing

 }

}

BankAccount

Object

SavingsAccount

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 98 -

Once we re-compile, we can test it out by running our test code again:

SavingsAccount s = new SavingsAccount();

System.out.println(s.balance); // displays 0.0

s.deposit(120);

System.out.println(s.balance); // displays 120.0

s.withdraw(20); // this will do nothing now

System.out.println(s.balance); // displays 120.0

Notice that the test code remains the same but now it no longer performs the withdrawal
calculation. What is actually happening here ? By writing the withdraw() method in the
SavingsAccount class, we are actually overriding the one that is in the BankAccount class.
That is, we are replacing the inherited behavior with our own unique behavior. So, we are
preventing or disabling the inheritance for this behavior.

At this point, we now have SavingsAccounts that cannot be withdrawn from and normal
BankAccounts that can be withdrawn from. Let us see another way that we can use
overriding … to modify inherited behavior.

Assume that the bank also wants to encourage depositing to savings accounts by
giving $0.50 to the customer for each $100 that they deposit into their
SavingsAccount (i.e., not for regular BankAccounts). For example, if they
deposit $354.23, then their account balance should immediately increase to
$355.73 … showing the extra $1.50 applied to the deposit amount.

To do this, we can completely override the deposit method from BankAccount
by writing the following method in SavingsAccount …

// Deposit money into the account

public void deposit(float amount) {

 this.balance += amount;

 // Now add the bonus 50 cents per $100

 int wholeDollars = (int)(amount/100);

 this.balance += wholeDollars * 0.50f;

}

This method of overriding would work fine and would properly add the extra bonus deposit
incentive. However, the first line is a duplication of the BankAccount class’s deposit()
method. This duplication may seem insignificant in this simple example, but in a real bank
application there may actually be much more code devoted to the deposit process (e.g.,
logging the transaction). Hence, it would be better to make use of inheritance.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 99 -

How though, can we inherit the deposit() method in BankAccount, while also incorporating
the additional bonus deposit behavior necessary for SavingsAccounts ? The answer makes
use of the super keyword again. Here is the solution:

// Deposit money into the account

public void deposit(float amount) {

 // Call the deposit() method in the superclass

 super.deposit(amount);

 // Now add the bonus 50 cents per $100

 int wholeDollars = (int)(amount/100);

 this.balance += wholeDollars * 0.50f;

}

Notice that this time we use a dot . after the super keyword, followed by the method that we

want to call in the superclass. Here, the word super is used to tell JAVA to look for the
deposit() method in the superclass. JAVA will go and evaluate the superclass deposit()
method (which performs the “normal” depositing process) and then return here and complete
the behavior by adding the 50 cent bonus incentive. This method is still considered to
override the deposit() method in BankAccount. It is an example of a situation in which we
want to “borrow” a superclass’s behavior, but then add some additional behavior as well.

Alternatively, we could have combined the deposit amount with the 50 cent bonus incentive
before calling the superclass method as follows:

// Deposit money into the account

public void deposit(float amount) {

 int wholeDollars = (int)(amount/100);

 super.deposit(amount + (wholeDollars * 0.50f));

}

or even simpler:

// Deposit money into the account

public void deposit(float amount) {

 super.deposit(amount + (int)(amount/100)* 0.50f);

}

I’m sure you will agree that the overriding can be quite powerful tool to save coding time.

Just so you understand … what would happen if we used this instead of super as follows:

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 100 -

// Deposit money into the account

public void deposit(float amount) {

 this.deposit(amount + (int)(amount/100)* 0.50f);
}

Well, we would be asking JAVA to call the deposit() method in this class, not the one in
BankAccount. Furthermore, since this code is written inside the deposit() method, we are
telling JAVA to call the method that we are actually trying to write! So the method will keep
calling itself forever … an infinite loop! We would get a pile of runtime error messages that
says something like this:

Exception in thread "main" java.lang.StackOverflowError

 at SavingsAccount.deposit(SavingsAccount.java:13)

 at SavingsAccount.deposit(SavingsAccount.java:13)

 at SavingsAccount.deposit(SavingsAccount.java:13)

 ...

 at SavingsAccount.deposit(SavingsAccount.java:13)

OK. Now assume that the bank application needs to further distinguish
between accounts in that it also has a special “power savings” account that is
a special type of savings account that allows withdrawals, but there is a $1.25
service fee each time a withdrawal is made. As before, this new type of
account should also have the 50 cent incentive for each $100 deposited.

Assuming that we call the new class PowerSavings, where do we put it in the hierarchy ?
We need it to inherit the deposit() method from SavingsAccount but the withdraw() method
from BankAccount. If we make PowerSavings a subclass of SavingsAccount, we will
inherit the deposit() behavior that we want, but would then need to write a new withdraw()
method, since the one in SavingsAccount does nothing. We could do this …

public class PowerSavings extends SavingsAccount {

 // Constructor to call the superclass constructor

 public PowerSavings(String aName) {super(aName);}

 public PowerSavings() {super("");}

// Withdraw money from the account

 public void withdraw(float amount) {

 if (this.balance >= (amount + 1.25f))

 this.balance -= (amount + 1.25f);

 }

}

This code would work fine.

BankAccount

Object

SavingsAccount

Power Savings

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 101 -

Again, we are using overriding by having the withdraw() method in PowerSavings override
the default behavior in SavingsAccount. We can test our new class with the following test
code:

PowerSavings s = new PowerSavings();

System.out.println(s.balance); // displays 0.0

s.deposit(320);

System.out.println(s.balance); // displays 321.50

s.withdraw(20);

System.out.println(s.balance); // displays 300.25

Notice that the withdraw() method properly deducts the $1.25 fee.

However, again we are duplicating code. The code here is small, however in a large system,
there may be more complicated code for withdrawing money (e.g., transaction logging,
overdraft allowances, etc…). So, we do not want to duplicate this code. In fact, it would be
nice if we could do something like this to call the withdraw() method code up in
BankAccount:

public class PowerSavings extends SavingsAccount {

 // Constructor to call the superclass constructor

 public PowerSavings(String aName) { super(aName); }

 public PowerSavings() { super(""); }

// Withdraw money from the account

 public void withdraw(float amount) {

 super.withdraw(amount + 1.50f);

 }

}

But this won’t work. Why not ? Because super refers to the SavingsAccount class here,
and so it calls the withdraw() method in SavingsAccount that does nothing. In a way, what
we want to do is something like this:

super.super.withdraw(amount + 1.50f); // super-duper does not work

Unfortunately, we cannot skip over a class when looking up the class hierarchy for a method.
What can we do then ? The solution is to re-organize our hierarchy. We seem to need
common deposit behavior for savings accounts, but then differing withdrawal behavior. In
reality, we actually need to distinguish between the two kinds of savings accounts. We will
rename SavingsAccount to SuperSavings which will represent the previous savings account
behavior. Then we will create a new SavingsAccount class that will contain the shared
deposit behavior between the two types of savings accounts.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 102 -

Here is the new hierarchy:

Here is the code:

public class SavingsAccount extends BankAccount {

 public SavingsAccount(String aName) { super(aName); }

 public SavingsAccount() { super(""); }

public void deposit(float amount) {

 super.deposit(amount + (int)(amount/100)* 0.50f);

}

}

public class SuperSavings extends SavingsAccount {

 public SuperSavings(String aName) { super(aName); }

 public SuperSavings() { super(""); }

public void withdraw(float amount) { /* Do nothing */ }

}

public class PowerSavings extends SavingsAccount {

 public PowerSavings(String aName) { super(aName); }

 public PowerSavings() { super(""); }

public void withdraw(float amount) {

 super.withdraw(amount + 1.50f);

 }

}

The code will work as we expect it to now, taking full advantage of inheritance.

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 103 -

To properly understand method calling and overriding when dealing with class hierarchies, we
need to consider how JAVA "finds" a method in the class hierarchy when you try to call it. It
can be confusing if there are many "overridden" methods (i.e., all with the same name and
parameter lists), because we may not know which one JAVA will use. Fortunately, there is a
simple way to figure this out.

Whenever you call a method from a class directly (e.g., this.myMethod()), JAVA looks first to
see whether or not you have such a method in the class that you are calling it from. If it finds
it there, it evaluates the code in that method. Otherwise, JAVA tries to look for the method up
the hierarchy (never down the hierarchy) by checking the superclass. If not found there, JAVA
continues looking up the hierarchy until it either finds the method that you are trying to call, or
until it reaches the Object class at the top of the tree.

Here is the general strategy for all instance method lookup:

• If method myMethod()

exists in class H, then
it is evaluated.

• Otherwise, JAVA

checks the superclass
of H for myMethod (in
this case class F).

• If not found there,

JAVA continues looking
up the hierarchy until
Object is reached,
visiting additional
classes C, A and Object.

If not found at all during this search up to the Object class, the compiler will catch this and
inform you that it cannot find method myMethod() for the object you are trying to sending it to:

C:\Test.java:20: cannot resolve symbol
symbol : method myMethod ()

If there were many implementations of myMethod() along the path in the hierarchy
(e.g., classes F, C, and A all implement myMethod()), then JAVA will execute the first one that
it finds during its bottom-up search.

Notice the use of the keyword this in the picture. That tells JAVA to start looking for the
method in "this" class. Alternatively, we can also use the keyword super here (i.e.,,
super.myMethod()) to tell JAVA to start its search for the method in the superclass. If we
used super in the example above, JAVA would start looking for myMethod() in class F first.
If not found, it would then continue on up the tree looking for the method as usual.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 104 -

In fact if there was an implementation of myMethod() in the H class, it would not be called if
we used super, since the search begins in the superclass, not in this class. So, the use of
super merely specifies "where the method lookup should begin the search" ... nothing more.

How Are Access Modifiers Affected By Inheritance ?

It would be good to consider the effects that access modifiers have on attributes and methods
within the class hierarchy. When an inherited attribute is declared as private, the subclasses
still inherit it, but they cannot access it directly from within their own "local" code. For example,
recall our previous example with Customer, Manager and Employee objects. Consider that
all attributes are declared as private:

public class Person {

 private String name;

 private Address address;

 private String phoneNumber;

}

public class Employee extends Person {

 private int employeeNumber;

 private float hourlyPay;

}

public class Customer extends Person {

 private String[] itemsPurchased;

 private Date[] purchaseHistory;

}

public class Manager extends Employee {

 private String[] duties;

 private Employee[] subordinates;

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 105 -

Now consider the following code in this method written in the Manager class which determines
whether or not a Manager has seniority. Assume that a manager has seniority if their
employee number is less than 100 and they have more than 5 employees working for them.

public boolean hasSeniority() {

 return (employeeNumber < 100) && (subordinates.length > 5);

}

The code will NOT compile because the code is written in the Manager class but the inheritted
attribute employeeNumber is declared private within the Employee class. The subordinates
attribute can be accessed without problems because it is defined in the same class as this
method is written (i.e., the Manager class).

Since we need to access the employeeNumber attribute from the method ... how do we fix this
? There are two solutions:

(1) Write a public getEmployeeNumber() method in the Employee class and use it:

public class Employee extends Person {

 private int employeeNumber;

 private float hourlyPay;

 public int getEmployeeNumber() { return employeeNumber; }

}

public class Manager extends Employee {

 private String[] duties;

 private Employee[] subordinates;

 public boolean hasSeniority() {

 return (getEmployeeNumber() < 100) && (subordinates.length > 5);

 }

}

(2) Declare all attributes that may need to be inherited as protected instead of private. By

using protected, all subclasses can access the attribute directly, but no other classes may.

public class Employee extends Person {

 protected int employeeNumber;

 protected float hourlyPay;

}

public class Manager extends Employee {

 private String[] duties;

 private Employee[] subordinates;

 public boolean hasSeniority() {

 return (employeeNumber < 100) && (subordinates.length > 5);

 }

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 106 -

Now how do private and protected modifiers affect methods ? Consider four methods within
the Employee class with various access modifiers as follows:

Now consider some code within the Manager class that attempts to access these methods:

public class Manager extends Employee {

 public void tryThingsOut() {

 System.out.println(this.getEmployeeNumber()); // access allowed

 System.out.println(this.getPhoneNumber()); // access allowed

 System.out.println(this.changePassword("12345678"));// compile error

 System.out.println(this.jobsCompleted()); // access allowed

 }

}

Notice that the only method not allowed to be accessed is the private method, since the
tryThingsOut() method is written in the Manager class, not in Employee.

Consider now the Customer class restrictions:

public class Customer extends Person {

 public void buyFrom(Employee emp) {

 System.out.println(emp.getEmployeeNumber()); // access allowed

 System.out.println(emp.getPhoneNumber()); // access allowed

 System.out.println(emp.changePassword("12345678"));// compile error

 System.out.println(emp.jobsCompleted()); // compile error

 }

}

Now we can no longer call the jobsCompleted() method, since it has been declared
protected and Customer is not a subclass of Employee.

Manager

Employee

Customer

Person

 String getEmployeeNumber();

public String getPhoneNumber();

private String changePassword(String newOne);

protected ArrayList<String> jobsCompleted();

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 107 -

There is one more "protective" keyword that can be used with methods. We can declare a
method as final to prevent subclasses from modifying the behavior. That is, when we declare
a method as being final, JAVA prevents anyone from overriding that method. Hence no
subclasses can have a method with that same name and signature:

public final void withdraw(float amount) {

 ...

}

Why would we want to do this ? Perhaps the behavior defined in the method is very critical
and overriding this behavior "improperly" may cause problems with the rest of the program.
__

Restricting Class Access

In regards to class definitions, we are also allowed to indicate either default or public access
to the class. So far, all of our classes have had public access, but we can have default
access by leaving off the keyword public:

public class Manager { // public access from classes anywhere

 ...

}

class Employee { // default access from classes within package/folder

 ...

}

Interestingly, we can also declare a class as final. This means that it CANNOT have
subclasses:

public final class Manager {

 ...

}

Why would we want to do this ? Perhaps the class has very weird code that the author does
not want you to inherit ... maybe because it is too complicated and may easily be misused.
Many of the JAVA classes (e.g., ArrayList) are declared as final which means that we cannot
make any subclasses of them. It is a kind of security issue to prevent us from "messing up"
the way those classes are meant to be used. It’s a shame, because often we would like to
have special types of ArrayLists and other similar objects.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 108 -

 4.3 Abstract Classes & Methods

Recall our example in the previous section pertaining to the various types of bank accounts.
We had two types of accounts: SuperSavings and PowerSavings, which both inherited from
a more general class called SavingsAccount and indirectly from BankAccount a little further
up the hierarchy. Assume further that we distinguished between savings
accounts and chequing accounts … where chequing accounts allow their
owners to write cheques.

Assume that the real bank actually has exactly 4 types of accounts so that
when someone goes to the bank teller to open a new account, they specify
whether or not they want to open a SuperSavings, PowerSavings,
BusinessChequing or PowerChequing account. Here is a revised hierarchy …

In our class hierarchy however, there are 7 account-related classes. The four classes
representing the accounts that we can actually open are called concrete classes.

A concrete class in JAVA is a class that we can make instances of directly by using

the new keyword.

That is, throughout our code, we will find ourselves creating one of these 4 classes. For
example:

account1 = new SuperSavings(…);

account2 = new PowerSavings(…);

account3 = new BusinessChequing(…);

account4 = new PowerChequing(…);

However, we will likely never need to create instances of the other 3 account-related classes:

account5 = new BankAccount(…);

account6 = new SavingsAccount(…);

account7 = new ChequingAccount(…);

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

BusinessChequing PowerChequing

ChequingAccount

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 109 -

Why not ? Well, put simply, these types of objects are not specific enough because they
cause ambiguity. For example, if you went to the bank teller and asked to open just “a bank
account”, the teller does not know which of the 4 types of accounts you actually want. The
teller would likely ask you questions to help you narrow down your choices, but ultimately, the
type of account that is opened (i.e., the account that is actually created) MUST be one of the 4
accounts that the bank offers. Likewise, in our program, if we were to create instances of
BankAccount, SavingsAccount and ChequingAccount, then these objects would not be
specific enough to define account behavior that matches one of the 4 real account types.

So in a sense, the BankAccount, SavingsAccount and ChequingAccount classes are not
concrete, they are more abstract in that they don’t exactly match the real-life objects.
In JAVA, we actually use the term abstract class to define a class that we do not want to
make instances of. So, BankAccount, SavingsAccount and ChequingAccount should all
be abstract classes. We will draw abstract classes with dotted lines as follows …

So, in JAVA ...

An abstract class is a class for which we cannot create instances.

That means, we can never call the constructor to make a new object of this type.

new BankAccount(…) // does not compile

new SavingsAccount(…) // does not compile

new ChequingAccount(…) // does not compile

All of the classes that we created so far in this course were concrete classes, although some
could have been easily made abstract. We define a class to be abstract simply by using the
abstract keyword in the class definition:

public abstract class BankAccount {

 ...

}

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

BusinessChequing PowerChequing

ChequingAccount

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 110 -

public abstract class SavingsAccount extends BankAccount {

 ...

}

public abstract class ChequingAccount extends BankAccount {

 ...

}

That is all that is involved in creating an abstract class. There really is nothing more to it. In
fact, the remainder of the code in that class definition may remain as is.

So, in fact, by making a class abstract, all we have done is to prevent the user of the class
from calling any of its constructors directly. This may raise an interesting question. If we
cannot ever create new objects of the abstract class, then why would we ever want to create
an abstract class in the first place ?

Well ... why did we create the BankAccount and SavingsAccount classes in the first place ?
Inheritance was the key reason. These classes still contain the common attributes and
shared behavior for all of their subclasses. The BankAccount class, for example, contains
the 3 instance variables common to all accounts (i.e., owner, accountNumber and balance).

Also, the SavingsAccount, for example, contains the deposit() method that is shared
between SuperSavings and PowerSavings. Hence, you can see that even though a class
may be declared as abstract it is still useful and important in keeping our code organized
properly in our class hierarchy. Their attributes and behaviors are still being used by their
concrete subclasses.

How do we know which classes to make abstract and which ones to leave as concrete ? If
we are not sure, it is better to leave them as concrete. However, if we discern that a particular
class has subclasses that cover all of the possible concrete classes that we would ever need
to create in our application, then it would be reasonable to make the superclass abstract.

Is there any advantage of making a class abstract rather than simply leaving it concrete ?
Yes. By making a class abstract, you are informing the users of that class that they should
not be creating instances of that class. In a way, you are telling them “If you want to use
this class, you should make your own concrete subclass of it.”. You are actually forcing
them to create a subclass if they want to use your abstract class. It forces the user of your
class to be more specific in their object creation, thereby reducing ambiguity in their code.

Here are a few more examples of class hierarchies that we already discussed, showing how
we could make some classes abstract:

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 111 -

Abstract Methods:

In addition to having abstract classes, JAVA allows us to make abstract methods:

An abstract method is a method with no code for which all concrete subclasses

are forced to implement the method.

So, an abstract method is merely a specification of a method’s signature (i.e., return type,
name and list of parameters), but the body of the code remains blank. To define an abstract
method, we use the abstract keyword at the beginning of the method’s signature.

Here are a couple of examples:

public abstract void deposit(float amount);

public abstract void withdraw(float amount);

Notice that there are no braces { } to specify the method body … the method signature simply

ends with a semi-colon ;

At this point you should be wondering: “Why would any sane person would write
a method that has no code in it ?”. That is certainly a reasonable question since,
after all, methods are called so that we can evaluate the code that is in them.

Abstract methods are actually never called, so JAVA never attempts to evaluate
their code. Just as an abstract class is used to force the user of that class to have
subclasses, an abstract method forces the subclasses to implement (i.e., to write

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 112 -

code for) that method. So, by defining an abstract method, you are really just informing
everyone that the concrete subclasses must write code for that method. All concrete
subclasses of an abstract class MUST implement the abstract methods defined in their
superclasses, there is no way around it.

When JAVA compiles an abstract method for a class (e.g., class A), it checks to see whether
or not all the subclasses of A have implemented the method (i.e., that they have written a
method with the same return type, name and parameters). That is really all that happens in
regard to the abstract methods.

For example, if we make deposit(float amount) and withdraw(float amount) methods
abstract in the BankAccount class, then, all of its concrete subclasses (SuperSavings,
PowerSavings, BusinessChequing and PowerChequing) would be forced to implement
those methods … complete with code as follows …

Each of the 4 concrete subclasses would implement their deposit() and withdraw() code
according to the bank's rules for that type of account (i.e., apply certain fees, limit amount,
etc...).

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 113 -

Alternatively, we can take advantage of inheritance. If, for example, the SuperSavings and
PowerSavings accounts both deposit() in the same manner, instead of duplicating the code
we can implement a non-abstract deposit() method in the SavingsAccount class that
performs the required behavior. This method would then be shared (i.e., used) by both the
SuperSavings and PowerSavings subclasses through inheritance.

In this case, the SuperSavings and PowerSavings classes would NOT need to implement
the deposit() method, since it is inherited …

Only abstract classes are allowed to have such abstract methods. However, as you know, an
abstract class may have regular methods as well.

If we were to find that all 4 types of concrete accounts did the exact same thing when a
deposit() was made, then we would likely simply write the shared deposit() method in the
BankAccount class, INSTEAD OF making the abstract deposit() method in the first place.
This allows a kind of default deposit() behavior for all subclasses to inherit, not forcing any
classes to implement this method.

It is often the case that we define more than one abstract method in a class. This allows us to
specify a set of “standard” behavior that ALL of its subclasses MUST have.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 114 -

HomeImprovementLoan

Lease Mortgage

Loan

Object

For example, assume that we have the following
hierarchy in which an abstract Loan class has 3
specific subclasses as shown here:

We may decide on some particular behavior
that all types of loans must exhibit. For
example, we may want to ensure that we have
a way to calculate a monthly payment for the
loan, a way to make payments on the loan, a
way to re-finance the loan and perhaps a way to
extract the client’s information that pertains to
the loan.

If this is the case, perhaps some of the behavior is similar for all loans (e.g., getting the client’s
information), while other behaviors may be unique depending on the type of loan (e.g., leases
and mortgages may be re-financed differently). Here is how we might define the Loan class:

public abstract class Loan {

 public abstract float calculateMonthlyPayment();

 public abstract void makePayment(float amount);

 public abstract void renew(int numMonths);

 public Client getClientInfo() { // a non-abstract method

 ...

 }

}

Notice that the getClientInfo() method is non-abstract, so that we can write code in there that
is shared by all the subclasses. The other 3 methods shown are abstract … so the Lease,
Mortgage and HomeImprovementLoan classes MUST implement all 3 of these methods,
with the appropriate code. Remember … an abstract class is just like any other class in
regards to its attributes and behaviors. So there may be many more methods (abstract or
non-abstract) and/or attributes defined in the Loan class.

Do you see the benefit of defining abstract methods ? They allow you to define a set of
behaviors that all your subclasses must have while giving them the flexibility to specify their
own unique code for those behaviors. What would happen if we did not make any of the
methods abstract ?:

public abstract class Loan {

 public float calculateMonthlyPayment(){ return 0;}

 public void makePayment(float amount){ }

 public void renew(int numMonths){ }

 public Client getClientInfo() { ... }

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 115 -

Two things would be different. First, the methods would need to have a body. We could
leave the code body blank or we could put in some default code of our choosing.

Second, the subclasses would not be “forced” to write these methods. So if the subclass did
not supply the method, then these methods here would be inherited. This is not such a “big
deal”, but if we simply forgot to implement these methods, then the inherited behavior may be
unexpected and in some cases undesirable. By making the 3 methods abstract, the compiler
will force us to write the methods, eliminating the possibility of us forgetting to implement them.

 4.4 JAVA Interfaces

Inheritance allows all classes along the same path in the class hierarchy to share attributes
and behaviors. The structure of the class hierarchy helps to identify common behavior that
subclasses have with their superclasses. How though, would we define (and perhaps force)
common behavior between seemingly unrelated classes in different parts of the class
hierarchy ?

There is a mechanism in JAVA for doing this:

An interface is a specification (i.e., a list) of a set of methods such that any classes

implementing the interface are forced to write these methods.

Using an interface is similar to the idea of having a set of abstract methods, except that the
interface exists on its own, that is, it is defined by itself in its own file.

We define such a list of methods as if we were defining a new class, except that we use the
keyword interface instead of class:

public interface InterfaceName {

 ...

}

Just like classes, interfaces are types and are defined in their own .java files. So, the above
interface would be saved into a file called InterfaceName.java.

Here is an example of an interface that defines a Loanable object:

public interface Loanable {

 public float calculateMonthlyPayment();

 public void makePayment(float amount);

 public void renew(int numMonths);

}

The methods themselves are defined like abstract methods, but without the word abstract.
For comparison purposes, recall the similar abstract class called Loan with abstract methods:

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 116 -

public abstract class Loan {

 public abstract float calculateMonthlyPayment();

 public abstract void makePayment(float amount);

 public abstract void renew(int numMonths);

 public Customer getClientInfo() { // a non-abstract method

 //...

 }

 //....

}

There are some similarities between the two:

• both define three similar methods with no code.

• like abstract classes, we cannot create instances of interfaces. So, we cannot
do the following anywhere in our code: new Loan() nor new Loanable()

There are also some differences between the two:

• We cannot declare/define any attributes nor static constants in
an interface, whereas an abstract class may have them

• In previous versions of JAVA, we were only able to declare “empty” methods in an
interface, we could not supply code for them (newer versions of JAVA allow interfaces to have

code). In contrast, an abstract class in generals will often have non-abstract methods
with complete code.

• All methods in an interface must be declared public

Since interfaces are defined by themselves in their own files (i.e., the interface does not
"belong" to any particular class), we must have a way to inform JAVA which objects will be
implementing the methods that are defined in the interface.

Consider defining an interface called Insurable that defined the common behavior that all
insurable objects MUST have as follows:

public interface Insurable {

 public int getPolicyNumber();

 public int getCoverageAmount();

 public double calculatePremium(int days);

 public java.util.Date getExpiryDate();

}

The code above would need to be saved and compiled before we can use it.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 117 -

Assume now that we want to have some classes in our hierarchy that are considered to be
insurable. Perhaps Person, Car and Company objects in our application are all considered
to be Insurable objects.

We would want to make sure that they all implement the methods defined in the Insurable
interface as shown here:

To do this in JAVA, we simply add the keyword implements in the class definition, followed by
the name of the interface that the class will implement as follows:

public class Person implements Insurable {

 ...

}

public class Company implements Insurable {

 ...

}

public class Car implements Insurable {

 ...

}

By adding this to the top of the class definition, we are informing the whole world that these
objects are insurable objects. It represents a "stamp of approval" to everyone that these
objects are able to be insured. It provides a "guarantee" that these classes will have all the

Company Car

Insurable
Object

Employee

Manager

Person

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 118 -

methods required for insurable items (i.e., getPolicyNumber(), getCoverageAmount(),
calculatePremium() and getExpiryDate()). So then, for each of the implementing classes,
we must go and write the code for those methods:

public class Car implements Insurable {

 //...

 public int getPolicyNumber() { /* write code here */ }

 public double calculatePremium(int days) { /* write code here */ }

 public java.util.Date getExpiryDate() { /* write code here */ }

 public int getCoverageAmount() { /* write code here */ }

 //...

}

public class Person implements Insurable {

 //...

 public int getPolicyNumber() { /* write code here */ }

 public double calculatePremium(int days) { /* write code here */ }

 public java.util.Date getExpiryDate() { /* write code here */ }

 public int getCoverageAmount() { /* write code here */ }

 //...

}

public class Company implements Insurable {

 //...

 public int getPolicyNumber() { /* write code here */ }

 public double calculatePremium(int days) { /* write code here */ }

 public java.util.Date getExpiryDate() { /* write code here */ }

 public int getCoverageAmount() { /* write code here */ }

 //...

}

Remember that these classes may define their own attributes and methods but somewhere in
their class definition they must have ALL 4 methods listed in the Insurable interface.

Interestingly, a class may implement more than one interface:

Insurable

Object

Sellable

Drivable

Car Company Product

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 119 -

Here, the Car object implements 3 interfaces. To allow this in our code, we just need to specify
each implemented interface in our class definition (in any order), separated by commas:

public class Car implements Insurable, Drivable, Sellable {

 ...

}

Of course, the Car class would have to implement ALL of the methods defined in each of the
three interfaces. Like classes, interfaces can also be organized in a hierarchy:

As with classes, we form the interface hierarchy by using the extends keyword:

public interface Insurable {

 public int getPolicyNumber();

 public int getCoverageAmount();

 public double calculatePremium(int days);

 public java.util.Date getExpiryDate();

}

public interface DepreciatingInsurable extends Insurable {

 public double computeFairMarketValue();

 public void amortizePayments();

}

public interface FixedInsurable extends Insurable {

 public int getEvaluationPeriod();

}

Insurable Object

Company Person Car

Fixed
Insurable

Depreciating
Insurable

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 120 -

Classes that implement an interface must implement its "super" interfaces as well. So
Company and Person would need to implement the method in FixedInsurable as well as the
four in Insurable, while Car would have to implement the two methods in
DepreciatingInsurable and the four in Insurable as well.

In summary, how do interfaces help us ? They provide us with a way in which we can specify
common behavior between arbitrary objects so that we can ensure that those objects have
specific methods defined. There are many pre-defined interfaces in JAVA and you will see
them used often when we discuss user interfaces.

 4.5 Polymorphism

Recall that we can convert (or type-cast) primitives to convert a value from one
type to another:

(int)871.34354; // results in 871

(char)65; // results in 'A'

(long)453; // results in 453L

Some type-casting is done automatically by JAVA when we assign a value of one particular
type to a variable of a different type. However, we can also explicitly type-cast in order to
simplify the data (e.g., from float to int) or for display purposes (e.g., from byte to char).

In JAVA, we can also type-cast objects from one type to another type. However, type-casting
objects is different from type-casting primitives in that the objects are not converted or
modified in any way. Instead, when we type-cast an object variable, it is simply restricted with
respect to the kinds of behaviors that it is capable of doing from then on in our program.

Why would we want to do type-casting if all that we are doing is restricting the object in some
way. Would it not be better (i.e., more flexible) to simply allow the object’s methods to be used
at any time ? These are valid questions. However, there are reasons for type-casting.

Perhaps the main advantage of type-casting is that it allows for:

Polymorphism is the ability to use the same

behavior for objects of different types.

That is, it allows different objects to respond to the exact "same"
methods. The result is that we have much less to remember
when we go to use the object. That is, by using polymorphism,
we just need to understand a few commonly used methods that
all these objects understand. For example:

• We can ask all Person objects what their name is. This is independent as to whether
or not they are instances of Employees, Managers, Customers etc...

• We can deposit to any BankAccount, independent of its type.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 121 -

And so … by treating an object more generally (i.e., type-casting it), we are simplifying the way
that we will use the object by restricting its usage to a few well understood methods. As a
result, our code becomes

• easier to understand

• more intuitive and

• quicker to write since the programmer does not need to remember as many methods.

It is important to understand the type-casting of objects because JAVA often type-casts objects
automatically. Therefore, we must understand how to type-cast and when it is done
automatically. The type-casting of objects is done the same way (i.e., with the round
brackets) as with primitives. Here are a few examples:

p = (Person)anEmployee;

c = (Customer)anArray[i];

b = (SavingsAccount)aBankAccount;

Notice that there is an object type (i.e., class name) within the round brackets/parentheses.

When we type-cast an object to another type we are not modifying it in any way.
Rather, we are simply causing the object to be “treated” more generally from then on
in the program. As a result, the object will then be less flexible in that we can no
longer call some of the methods that we used to call on it. In a way, we are ignoring
some of the behavior that is available to the object.

This may sound strange, but we do this in real life. Let us consider a couple of examples.

Consider meeting your professor with his family outside of class, perhaps
at a local shopping mall. Likely, you would “treat” your professor as a
general/normal Person ... not as your "professor". So, you might ask him
questions that you would ask anyone such as: “Is this your family?” or
“What are you shopping for today?”. However, you would likely not ask
him a question like “What kind of questions will be on the final exam?” and
hopefully you would not pull out a laptop and ask him to help you debug
the code on your assignment. So, in a sense, you have type-casted the
Professor to a more general Person object by restricting the available
behaviors to those that are applicable to more general people, avoiding
any professor-specific behavior.

As another example, consider an Apple …
normally you may polish, peel or eat it ... but in a
food fight, you may type-cast (i.e., treat) your apple
as a general throwable projectile. Then, the apple
takes on different behavior such as throw, catch,
splatter, etc... The fact is ... it is still an Apple, but
it is being treated differently. You may even type-
cast other objects to be projectiles such as grapes,
sandwiches, pineapples (ouch), chairs, etc...

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 122 -

getName()
getAddress()

getPhoneNumber()

getEmployeeNumber()
getHourlyPay()

getItemsPurchased()
getPurchaseHistory()

getDuties()
getSubordinates()

Manager

Employee
Customer

Person

Object

…

“Earl”

address

name

employee variable

Employee object

person variable

phoneNumber

employeeNumber 10012

hourlyPay 8.50f

…

Now let us look at a real coding example. Consider the following class hierarchy of Employee,
Person, Manager and Customer objects with some instance methods belonging to each
class as shown:

Consider what happens when we create a single Employee object and then type-cast it to a
Person. Take note of the methods that are available for use and those which will not compile.
Note that we create 2 variables, yet both point to the same object …

Person person;

Employee employee;

employee = new Employee("Earl");

employee.getName();

employee.getAddress();

employee.getPhoneNumber();

employee.getEmployeeNumber();

employee.getHourlyPay();

// now treat Earl like a person

person = (Person)employee;

person.getName();

person.getAddress();

person.getPhoneNumber();

// these two will not compile

person.getEmployeeNumber();

person.getHourlyPay();

// type-cast back and all is ok

((Employee)person).getEmployeeNumber();

((Employee)person).getHourlyPay();

You will notice that once the type-cast to (Person) occurs, we are no longer able to use the
getEmployeeNumber() and getHourlyPay() methods since they are Employee-specific

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 123 -

methods and we are now treating Earl as simply a Person. However, the person variable is
still pointing to Earl … the exact same object.

When we type-cast the person variable back to (Employee) again, and then try the same two
methods, they work fine because we are now treating Earl as an Employee again.

Notice what we are not able to do:

Employee employee;

Manager manager;

Customer customer;

employee = new Employee("Earl");

manager = (Manager)employee; // Type-cast is not allowed

customer = (Customer)employee; // Type-cast is not allowed

We are only allowed to use class type-casting to generalize an object. Therefore we can only
type-cast to classes up the hierarchy (e.g., Person and Object) but not down the hierarchy
(e.g., Manager) or across the hierarchy (e.g., Customer) from the original object class (e.g.,
Employee). In summary, objects may ONLY be type-casted to:

• a type which is one of its superclasses
• an interface which the class implements
• or back to their own class again

In the following example, an Employee object can only be type-casted to (or stored in a
variable of type) Employee, Person, Object or Insurable:

Attempts to type-cast to anything else will generate a ClassCastException. So Employees
CANNOT be type-casted to Manager, Customer, Company or Car. Such restrictions make
sense, after all, why would we "treat" a Manager as a Company or a Car.

Some coding advantages arise through implicit or automatic type-casting. Sometimes JAVA
will automatically type-cast an object, even if we do not explicitly do so with the brackets ().

Employee Customer

Insurable

Object

Manager

Person

Company Car

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 124 -

Circle Triangle

Shape

Rectangle

Object

There are two main situations in which automatic type-casting occurs:

1. when we assign an object to a variable with a more general type:

Person person;

Employee employee;

employee = new Employee("Earl");

person = employee; // same as person = (Person)employee;

2. when we pass in the object as a parameter to a method which has a more general type:

Employee employee;

employee = new Employee("Earl");

doStandardHiringProcess(employee);

...

public void doStandardHiringProcess(Person p) {

 // employee object is type-casted to Person upon entering method

 ...

}

In both cases, you should be aware that an automatic type-cast has taken place. In fact, it
usually does not matter if you “know” that the type-casting is taking place, because the
compiler will tell you. However, it tells you this by means of a compile error … which is
somewhat unpleasant, as you well know. Also, sometimes the compiler message is not
straightforward to understand.

Let us now look at a simple example to see how
much we can reduce our code through the use
of automatic type-casting. Consider a hierarchy
of shape-related objects as shown here. We
can create a Circle, a Triangle and a
Rectangle and all three can be stored into a
variable of type Shape:

Shape s;

Circle c = new Circle(20);

Triangle t = new Triangle(10, 20, 30);

Rectangle r = new Rectangle(10, 10, 20, 20);

s = c; // s points to object c

s = t; // s points to object t

s = r; // s points to object r

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 125 -

Notice that we did not make any explicit type-cast to Shape (although we
could have done so). Here we simply re-assigned variable s to have three
different values corresponding to three different types of objects. The
example code itself is pointless, but it helps us to see how we can use
automatic type-casting.

Assume now that we want to draw a shape and that the Circle, Triangle
and Rectangle classes all have an appropriate method for drawing themselves called draw():

public class Circle extends Shape {

 ...

 public void draw() { ... }

}

public class Triangle extends Shape {

 ...

 public void draw() { ... }

}

public class Rectangle extends Shape {

 ...

 public void draw() { ... }

}

Consider now our Shape variable s which can hold any kind of shape:

 Shape s = ...;

At any given time, we may not know exactly which kind of shape is currently stored in the
Shape variable s. How then do we know which draw() method to call ? Well, we could check
the type of the object, perhaps with the instanceof keyword (which returns a boolean
indicating whether or not the object is an instance of a particular class) and then use some if
statements as follows:

if (s instanceof Circle)

 s.draw();

if (s instanceof Triangle)

 s.draw();

if (s instanceof Rectangle)

 s.draw();

However, looking at the code, it is clear that regardless of the type of shape we have, we just
need to call draw(). Since we called all of the methods draw(), this is an example of
polymorphism … that is … all shape objects understand the draw() method. For this to
compile though, there should also be a draw() method defined in the Shape class, which may
be blank.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 126 -

As a result, because of polymorphism and the explicit type-cast, we don't even need the IF
statements. Our code can be simplified to:

s.draw();

Incredible!!! What a reduction in code! But why does this work ? How does JAVA know
which draw() method to call ? Well, remember, whatever we store in the Shape variable s
does not change its type. The compiler will look at the kind of object that we put in there and
call the appropriate method accordingly by starting its method lookup in the class
corresponding to that object type (i.e., either Circle, Triangle or Rectangle, depending on
what was stored in s). As you can see, polymorphism can be quite powerful.

Now consider a Pen object which is capable of drawing shapes. We would like to use code
that looks something like this:

Pen aPen = new Pen();

aPen.draw(aCircle);

aPen.draw(aTriangle);

aPen.draw(aRectangle);

However, this is not so straight forward. We would have to define a draw() method in the Pen
class for each kind of shape in order to satisfy the compiler with regards to the particular type
of the parameter:

public class Pen {

 ...

 public void draw(Circle aCircle) {

 // code that draws a Circle

 }

 public void draw(Triangle aTriangle) {

 // code that draws a Triangle

 }

 public void draw(Rectangle aRectangle) {

 // code that draws a Rectangle

 }

}

Since the drawing code is likely different for all 3 shapes we will need the 3 different pieces of
code to do the drawing. However, all of the shape-drawing code must appear here in the
Pen class. This is somewhat intuitive in regards to real life, since Pen’s draw shapes.

However, if we had other drawing classes such as Pencil, Marker or Chalk, we would need to
go to all these classes and insert shape-specific code for each kind of shape. Even worse, if
we wanted to add shapes (e.g., Ellipse, Diamond, Parallelogram, Rhombus, etc..) then we
would have to go to the Pen, Pencil, Marker and Chalk classes to add the appropriate shape-
drawing code.

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 127 -

This is quite terrible since our code is not modular … the adding of one simple Shape class
would require us to recompile 4 other classes.

There must be a better way to do this! The answer is to use a technique known as double-
dispatching. When we call a method in JAVA, this is the same notion as sending a message
to the object. The idea behind double-dispatching is to dispatch a JAVA message two times.
Through double-dispatching, we force a second message to be sent (i.e., we call another
method) in order to accomplish the task.

Before we do the double-dispatch, we need to adjust our code a little. We can simplify the
draw() methods in the Pen, Pencil, Marker and Chalk classes by combining them all in one
method. The new method will take a single parameter of type Shape. Hence, through type-
casting, we can pass in any subclass of Shape to the method. Here is the code …

public class Pen {

 ...

 public void draw(Shape anyShape) {

 if (anyShape instanceof Circle)

 // Do the drawing for circles

 if (anyShape instanceof Triangle)

 // Do the drawing for triangles

 if (anyShape instanceof Rectangle)

 // Do the drawing for rectangles

 }

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 128 -

At this point, we still have to decide how to draw the different Shapes. So then when new
Shapes are added, we still need to come into the Pen class and make changes. However,
we can correct this problem by shifting the drawing responsibility to the individual shapes
themselves, as opposed to it being the Pen's responsibility. This "shifting" (or flipping) of
responsibility is where the notion of double-dispatching comes in. It is similar to the
expression "passing-the-buck" in English. In other words, we are saying: "I'm not going to
do it ... you do it yourself".

We perform double-dispatching by making a method in each of the specific Shape subclasses
that allows the shape to draw itself using a given Pen object:

public class Circle extends Shape {

 ...

 public void drawWith(Pen aPen) { ... }

}

public class Triangle extends Shape {

 ...

 public void drawWith(Pen aPen) { ... }

}

public class Rectangle extends Shape {

 ...

 public void drawWith(Pen aPen) { ... }

}

Then, we do the double-dispatch itself by calling the drawWith() method from the Pen class:

public class Pen {

 ...

 public void draw(Shape aShape) {

 aShape.drawWith(this);

 }

}

Notice that the code is incredibly simple. When the Pen is asked to draw a Shape, it basically
says: "No way! Let the shape draw itself using ME!". That is the second message call, which
itself does the real drawing work. We would write a similar one-line method in the Pencil,
Chalk and Marker classes. In order for this to compile, you must also have a
drawWith(Pen aPen) method declared in class Shape even if that method does nothing.

Do you see the tremendous advantages here ? Regardless of the kind of Shape that we may
add in the future, we NEVER have to go into the Pen, Pencil, Marker or Chalk classes to
make changes. This code remains intact. Instead, we simply write a drawWith() method in
the new Shape class to do the drawing of itself. And who would know better how to draw the

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 129 -

shape than itself. The code is much more modular and has a nice clean separation.
Furthermore, the code is logical and easy to understand.

Type-casting also provides advantages when multiple unrelated classes implement the same
interface. Objects can be type-casted to an interface type, provided that the class implements
that interface. In the hierarchy below, we can type-cast any instances of Car, Company,
Customer, Employee or Manager to Insurable.

Assume that Insurable has a method defined called getPolicyNumber() and that the Car
class has a getMileage() method. Notice the type-casting as follows:

Car jetta = new Car();

Insurable item = (Insurable)jetta;

item.getPolicyNumber(); // OK since Insurable

jetta.getMileage(); // OK (assuming it is a Car method)

item.getMileage(); // Compile Error

((Car)item).getMileage(); // OK now

Notice the compile error when calling getMileage() on item. Even though item is actually a
Car object, it has been type-casted to Insurable, and so only methods that are defined in the
Insurable interface can be used on it.

What is the advantage of type-casting to an interface ? Well, we can treat “seemingly
unrelated” objects the same way. This is often useful when we have a collection of such
items.

Consider an Array of a variety of Insurable items and then trying to list all of the policies and
totaling the amounts of all the policies:

Employee Customer

Insurable

Object

Manager

Person

Company Car

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 130 -

float total = 0;

Insurable[] insurableItems;

insurableItems = new Insurable[5];

insurableItems[0] = new Car("Porsche", "Carerra", "Red", 340);

insurableItems[1] = new Customer("Guy Rich");

insurableItems[2] = new Company("Elmo’s Edibles", 2009);

insurableItems[3] = new Employee("Jim Socks");

insurableItems[4] = new Manager("Tim Burr");

System.out.println("Here are the policies:");

for (int i=0; i<insurableItems.length; i++) {

 System.out.println(" " + insurableItems[i].getPolicyNumber());

 total += insurableItems[i].getPolicyAmount();

}

System.out.println("Total policies amount is $" + total);

In the above example, all 5 unique objects are automatically type-casted to Insurable when
added to the array. Then when listing the policies, we simply use the common
getPolicyNumber() method (which must be defined in Insurable and implemented by all the
classes). Similarly, we total all the policy amounts by using the common getPolicyAmount()
method.

What would the code look like without having the Insurable interface ? Well, in order to store
the items in the same array we would still need to know what they have in common.
Without the Insurable interface, the only other thing that all the objects have in common is that
they are subclasses of Object. So we would have to make an Object[5] array of general
objects: Object[] insurableItems = new Object[5];

Once we make these changes, then the compiler will prevent us from calling the
getPolicyNumber() or getPolicyAmount() methods because it assumes that the item
extracted in the FOR loop is a general Object … but general objects do not have such
methods. Therefore, we would be forced to check the type of every object, beforehand …
implying that we knew all the different types that would ever be placed in the array. Our code
would be longer, more complicated, messier and non-modular:

...

for (int i=0; i<insurableItems.length; i++) {

 if (insurableItems[i] instanceof Car) {

 System.out.println(" " + ((Car)insurableItems[i]).getPolicyNumber());

 total += ((Car)insurableItems[i]).getPolicyAmount();

 }

 else if (insurableItems[i] instanceof Employee) {

 System.out.println(" " + ((Employee)insurableItems[i]).getPolicyNumber());

 total += ((Employee)insurableItems[i]).getPolicyAmount();

 }

 else if (...)

 ...

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 131 -

Of course, an alternative to using the shared interface would be to have all insurable objects
extend (i.e., inherit from) a common abstract class, perhaps called Insurable as well. We
could then define the getPolicyNumber() and getPolicyAmount() methods as abstract
methods, forcing all subclasses to implement them. Then, we could use the same identical
code that worked with the Insurable interface.

However, the big disadvantage of doing things this way, is that we are restricting the
inheritance of Insurable objects to be insurable-related. That means, we cannot take
advantage of other kinds of inherited attributes and behaviors.

Here is a diagram showing how we could get such shared behavior either with interfaces or
with abstract methods …

As another more tangible example, consider defining a Controllable interface for objects that
can be controlled via remote control. The interface may look as follows:

abstract int getPolicyNumber();
abstract float getPolicyAmount();

int getPolicyNumber();
float getPolicyAmount();

Employee Customer

Insurable

Object

Manager

Person

Company Car

Employee Customer

Insurable

Manager

Person

Company Car

Object

Shared Behavior Using Abstract Methods

Shared Behavior Using a Common Interface

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 132 -

public interface Controllable {

 public void turnLeft();

 public void turnRight();

 public void moveForward();

 public void moveBackward();

}

Now, consider a Robot object which is Controllable and implements this interface:

public class Robot implements Controllable {

 private int batteryLevel;

 private Behavior[] behaviors;

 // These are the Controllable-related methods

 public void turnLeft() { ... }

 public void turnRight() { ... }

 public void moveForward() { ... }

 public void moveBackward() { ... }

 // There will likely also be some other methods

 // which are robot-specific

 public Behavior computeDesiredBehavior() { ... }

 public int readSensor(Sensor x) { ... }

 ...

}

Now, what about a ToyCar, or even a Lawnmower ? We can implement the
Controllable interface for each of these as well. In fact, suppose that we
want to set up a handheld remote control for Controllable objects. We can
then treat all of the objects (Robots, ToyCars, Lawnmowers, etc...) as a
single type of object ... a Controllable object:

public class RemoteControl {

 private Controllable machine;

 public RemoteControl(Controllable m) {

 machine = m;

 }

 public void handleButtonPress(int buttonNumber) {

 if (buttonNumber == 1)

 m.moveForward();

 else if (buttonNumber == 2)

 m.moveBackward();

 else if (buttonNumber == 3)

 m.turnLeft();

 else

 m.turnRight();

 }

 ...

}

COMP1406 - Chapter 4 - Class Hierarchies and Inheritance Winter 2018

 - 133 -

Notice that the remote control constructor is supplied with any object that is of type
Controllable (i.e., a Robot, ToyCar, Lawnmower, etc..) Therefore, as can be seen in the
handleButtonPress() method, the code for controlling the machine from the remote is
independent of the type of object being controlled.

This is a nice clean separation of code in that any new Controllable object that is developed in
the future can be controlled by this RemoteControl object. The programmer would not need
to make any changes to the RemoteControl class code whatsoever:

ToyPlane aPlane = new ToyPlane();

ToyBoat aBoat = new ToyBoat();

RemoteControl planeRemote = new RemoteControl(aPlane);

RemoteControl boatRemote = new RemoteControl(aBoat);

