

Chapter 6

Proper Coding Style Using MVC

What is in This Chapter ?

In this chapter, we will discuss proper coding style. We begin with an explanation of the
Model/View/Controller paradigm and then show how these can be incorporated together
cleanly with a modular coding style. We discuss how to prepare your model classes for use in
a GUI. We will then discuss how the view and controller code of the user interface can be
separated cleanly. As a result, this chapter gives a template that you should follow for all of
your Graphical User Interface applications.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 169 -

 6.1 Separating Model, View and Controller Components

In the previous chapter, we discussed the difference between model classes and those
classes that are part of the user interface. The model classes deal with the business logic
aspects of the application and the user interface is the "front end" which allows the user to
interact with the model classes.

We can further split the user interface classes into two portions called the view and the
controller:

The view displays the necessary information from the model into a form suitable for

interaction, typically a user interface element.

The controller accepts input from the user and modifies the model accordingly.

The idea is depicted in the picture below. The user sees the view of the application and then
interacts with the controller. Such interaction usually results in the model being modified in
some way. Then these model changes are reflected back to the view of the user interface
and the user often gets visual feedback that the model has changed:

So far, in our examples in the last chapter, we did not have a really useful model and the
notion of a view and a controller was not identifiable as all our GUI code was lumped together
into one Application class, with perhaps an extra Pane subclass.

Now we will discuss the "proper" way of splitting up the model, the view and the controller
into a nice & clean modular style that allows us to modify and replace any of the three
components cleanly. This arrangement represents what is called the MVC software
architecture and sometimes referred to as a software design pattern. There are 3 main
advantages of using the MVC architecture:

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 170 -

1. it decouples the models and views,
2. it reduces the complexity of the overall architectural design and
3. it increases flexibility and maintainability of code.

There are many ways to implement the MVC architecture in your programs. In this course we
will consider just one specific way of writing the code. In industry, however, you will see
various other ways of implementing the same architecture.

In order to create a well-structured, stable, reliable and maintainable application ... it is
necessary to have a properly working model that is designed nicely so that the user interface
can connect to it in a simple and safe way. In the next section, we will discuss what is
necessary to create this "proper" kind of model.

 6.2 Preparing Your Model Classes for the GUI

You already know how to build model classes ... they are the classes that make up your
application apart from the user interface components. It is a good idea to prepare your model
so that you can interact with it in a simple and clean manner from your user interface. A bank
machine, for example, is somewhat pointless unless the underlying Bank model is fully
operational.

To finalize our model classes, we should decide what kinds of methods should be publically
available so that the main application's user interface can access, modify and manipulate the
model in meaningful ways.

For example, suppose that we wanted to develop the application that we described earlier that
allowed us to make a list of things to purchase at the grocery store. What is the model in this
application ?

To figure this out, we just have to understand what "lies
beneath" the user interface.

What is it that we are displaying and changing ?

It is the list of items.

Let us develop a proper model for this interface.

We can call it ItemList and it can keep track of an array
of Strings that represent the list.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 171 -

Here is the basic code for this simple model:

public class ItemList {

 public final int MAXIMUM_SIZE = 100;

 private String[] items;

 private int size;

 public ItemList() {

 items = new String[MAXIMUM_SIZE];

 size = 0;

 }

 public int getSize() { return size; }

 public String[] getItems() { return items; }

}

Looking back at the user interface, it is likely that we will want to add items (based on the text
that is entered through the text field) to the list when the Add button is pressed. The item to
be added will likely go at the bottom of the list. So, we should make a public method to do this:

public void add(String item) {

 // Make sure that we do not go past the limit

 if (size < MAXIMUM_SIZE)

 items[size++] = item;

}

Likewise, the Remove button will likely cause the currently selected item in the list to be
removed from the list. We will probably remove it according to its index into the list. Here is a
public method to do this:

public void remove(int index) {

 // Make sure that the given index is valid

 if ((index >= 0) && (index < size)) {

 // Move every item after the deleted one up in the list

 for (int i=index; i<size-1; i++)

 items[i] = items[i+1];

 size--; // Reduce the list size by 1

 }

}

Therefore, here is our completed model:

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 172 -

public class ItemList {

 public final int MAXIMUM_SIZE = 100;

 private String[] items;

 private int size;

 public ItemList() {

 items = new String[MAXIMUM_SIZE];

 size = 0;

 }

 public int getSize() { return size; }

 public String[] getItems() { return items; }

 public void add(String item) {

 // Make sure that we do not go past the limit

 if (size < MAXIMUM_SIZE)

 items[size++] = item;

 }

 public void remove(int index) {

 // Make sure that the given index is valid

 if ((index >= 0) && (index < size)) {

 // Move every item after the deleted one up in the list

 for (int i=index; i<size-1; i++)

 items[i] = items[i+1];

 size--; // Reduce the list size by 1

 }

 }

}

Once we have the model implemented with useful methods, it is always a good idea to test it!
The easiest way to do this is to write a simple test program to try out the various methods.
We should write a test program that does a thorough testing. We should at least try to add a
few items to the list, remove one, remove too many and add too many:

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 173 -

 public class ItemListTestProgram {

 public static void main(String[] args) {

 // Make a new list

 ItemList groceryList = new ItemList();

 System.out.println("List has " + groceryList.getSize() + " items");

 // Add a few items

 System.out.println("\nAdding Apples, Oranges and Bananas ...");

 groceryList.add("Apples");

 groceryList.add("Oranges");

 groceryList.add("Bananas");

 System.out.println("List has " + groceryList.getSize() + " items");

 System.out.println("Here are the items in the list:");

 for (int i=0; i<groceryList.getSize(); i++)

 System.out.println(groceryList.getItems()[i]);

 // Remove an item

 System.out.println("\nRemoving Apples ...");

 groceryList.remove(0);

 System.out.println("List has " + groceryList.getSize() + " items");

 System.out.println("Here are the items in the list:");

 for (int i=0; i<groceryList.getSize(); i++)

 System.out.println(groceryList.getItems()[i]);

 // Try to remove too many items

 System.out.println("\nTrying to remove too many items ...");

 groceryList.remove(0);

 groceryList.remove(0);

 groceryList.remove(0);

 groceryList.remove(0);

 System.out.println("List has " + groceryList.getSize() + " items");

 System.out.println("Here are the items in the list:");

 for (int i=0; i<groceryList.getSize(); i++)

 System.out.println(groceryList.getItems()[i]);

 // Try to add too many items

 System.out.println("\nTrying to add too many items ...");

 for (int i=0; i<200; i++)

 groceryList.add("Item# " + i);

 System.out.println("List has " + groceryList.getSize() + " items");

 System.out.println("Here are the items in the list:");

 for (int i=0; i<groceryList.getSize(); i++)

 System.out.println(groceryList.getItems()[i]);

 }

}

Notice how the test program is nicely formatted with comments indicating what is being tested.
Also, notice that there are descriptive print statements that explains what is happening. You
should follow a similar style and approach when writing your test programs.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 174 -

 6.3 Developing a Proper View

Once you have developed and properly tested the model
for your application, you can then begin to write the user
interface. Sometimes, however, it may be beneficial to
have a rough idea as to what your user interface will do
before you develop the model. For example, we did not
write the add() and remove() methods in the ItemList
class until we realized that we needed them based on
what we want our completed application to do.

The next step will be to develop the view for the
application. In general, there may be many views in an
application, just as there may be many models and
controllers. However, we will assume for now that we
have a single view.

To keep things simple, we will develop our views as Pane objects that can be placed onto our
Application windows. Looking back at the chapter on Graphical User Interfaces, you will
recall that we made a similar window in our FruitListApp. The following code should
therefore be easily understood (refer back to chapter 4 if you do not recall):

import javafx.collections.FXCollections;

import javafx.scene.control.*;

import javafx.scene.layout.Pane;

public class GroceryListView extends Pane {

 public GroceryListView() {

 // Create and position the "new item" TextField

 TextField newItemField = new TextField();

 newItemField.relocate(10, 10);

 newItemField.setPrefSize(150, 25);

 // Create and position the "Add" Button

 Button addButton = new Button("Add");

 addButton.relocate(175, 10);

 addButton.setPrefSize(100, 25);

 // Create and position the "Remove" Button

 Button removeButton = new Button("Remove");

 removeButton.relocate(175, 45);

 removeButton.setPrefSize(100, 25);

 // Create and position the grocery ListView with some groceries in it

 ListView<String> groceryList = new ListView<String>();

 String[] groceries = {"Apples", "Oranges", "Bananas", "Toilet Paper", "Ketchup",

 "Cereal", "Milk", "Cookies", "Cheese", "Frozen Pizza" };

 groceryList.setItems(FXCollections.observableArrayList(groceries));

 groceryList.relocate(10, 45);

 groceryList.setPrefSize(150, 150);

 // Add all the components to the window

 getChildren().addAll(newItemField, addButton, removeButton, groceryList);

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 175 -

 }

}

For the purposes of a quick test to make sure that our view is properly formatted, we can
create and run a simple program like this:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.stage.Stage;

public class GroceryListViewTestProgram extends Application {

 public void start(Stage primaryStage) {

 GroceryListView myPanel = new GroceryListView();

 primaryStage.setTitle("View Test");

 primaryStage.setResizable(true);

 primaryStage.setScene(new Scene(myPanel, 285,205));

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

Now, for the view to work properly it must refresh its
look based on the most up-to-date information in the
model. Therefore, we need a way of having the
view update itself given a specific model. There
are many ways to do this, but a simple way is to
write a method called update() that will refresh the
"look" of the view whenever it is called. Of course,
to be able to update, the view must have access to
the model. We can pass the model in as a
parameter to the view constructor and store it as an
attribute of the view:

public class GroceryListView extends Pane {

 private ItemList model; // The model to which this view is attached

 public GroceryListView(ItemList m) {

 model = m; // Store the model for access later

 ...

 }

 // This method is called whenever the model changes

 public void update() {

 // ... code for refreshing the view

 }

}

Since the model attribute is simply a reference (i.e., a pointer in memory) to the ItemList, then
any changes to the ItemList will also affect the model stored in this model instance variable.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 176 -

Our update() method may be as simple as replacing the entire ListView with the new items
currently stored in the model. So, regardless of what changes take place in the ItemList
model, we simply read the list of items and re-populate the ListView with the latest items.

To be able to do this, we will need access to that ListView.
However, the ListView is defined as a local variable in the
constructor. In order to be able to access it from the update()
method, we will need to define the variable outside of the
constructor as an instance variable. Then, to change the contents of
the ListView, a quick search in the JAVA API informs us that there is a
setItems() method which will allow us to pass in an array of items to show in the
list. Here is the view code now:

public class GroceryListView extends Pane {

 private ItemList model; // model to which this view is attached

 private ListView<String> groceryList; // visible list representing model

 public GroceryListView(ItemList m) {

 model = m; // Store the model for access later

 ...

 groceryList = new ListView<String>();

 ...

 }

 // This method is called whenever the model changes

 public void update() {

 groceryList.setItems(FXCollections.observableArrayList(

 model.getItems()));

 }

}

Notice how the ListView is now easily accessible in the update() method. One problem,
however, is that our model's array is always of size 100 regardless of how many items have
been placed in it. The setItems() method will end up making a list of 100 items in it ... leaving
many blanks. We can add additional code here to make a new array (for display purposes)
which has a length exactly equal to the size of the items array. Change the update() method
to this:

// This method is called whenever the model changes

public void update() {

 // Create and return a new array with the

 // exact size of the number of items in it

 String[] exactList = new String[model.getSize()];

 for (int i=0; i<model.getSize(); i++)

 exactList[i] = model.getItems()[i];

 groceryList.setItems(FXCollections.observableArrayList(exactList));

}

Thinking ahead a little, we know that eventually the application will need to respond to user
input through pressing the Add or Remove button, typing in the text field or selecting from the
list. This will be part of the controller. However, in order to accomplish this, as you will soon
see, we need to allow the controller to access the Button, ListView and TextField objects.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 177 -

We can allow such access by making instance variables for all four window components and
then provide get methods to access them.

As a final programming aspect of the view class, it is a good idea to call the update() method
at the end of the constructor. That way, when the view is first created, it can be refreshed
right away to show the true state of the model upon startup.

You should follow this same standard approach when designing your views:

import javafx.collections.FXCollections;

import javafx.scene.control.*;

import javafx.scene.layout.Pane;

public class GroceryListView extends Pane {

 private ItemList model; // model to which this view is attached

 // The user interface components needed by the controller

 private ListView<String> groceryList;

 private Button addButton;

 private Button removeButton;

 private TextField newItemField;

 // public methods to allow access to window components

 public ListView<String> getList() { return groceryList; }

 public Button getAddButton() { return addButton; }

 public Button getRemoveButton() { return removeButton; }

 public TextField getNewItemField() { return newItemField; }

 public GroceryListView(ItemList m) {

 model = m; // Store the model for access later

 // Create and position the "new item" TextField

 newItemField = new TextField();

 newItemField.relocate(10, 10);

 newItemField.setPrefSize(150, 25);

 // Create and position the "Add" Button

 addButton = new Button("Add");

 addButton.relocate(175, 10);

 addButton.setPrefSize(100, 25);

 // Create and position the "Remove" Button

 removeButton = new Button("Remove");

 removeButton.relocate(175, 45);

 removeButton.setPrefSize(100, 25);

 // Create and position the "fruit" ListView with some fruits in it

 groceryList = new ListView<String>();

 String[] groceries = {"Apples", "Oranges", "Bananas", "Toilet Paper",

 "Ketchup", "Cereal", "Milk", "Cookies", "Cheese",

 "Frozen Pizza" };

 groceryList.setItems(FXCollections.observableArrayList(groceries));

 groceryList.relocate(10, 45);

 groceryList.setPrefSize(150, 150);

 // Add all the components to the window

 getChildren().addAll(newItemField, addButton, removeButton, groceryList);

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 178 -

 // Call update() to make sure model contents are shown

 update();

 }

 // This method is called whenever the model changes, to make

 // sure that the view shows the model's current state

 public void update() {

 // Create and return a new array with the

 // exact size of the number of items in it

 String[] exactList = new String[model.getSize()];

 for (int i=0; i<model.getSize(); i++)

 exactList[i] = model.getItems()[i];

 groceryList.setItems(FXCollections.observableArrayList(exactList));

 }

}

We can run a quick test to make sure that this is working...

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.stage.Stage;

public class GroceryListViewTestProgram2 extends Application {

 public void start(Stage primaryStage) {

 ItemList groceryList = new ItemList();

 groceryList.add("Apples");

 groceryList.add("Toilet Paper");

 groceryList.add("Ketchup");

 GroceryListView myPanel = new GroceryListView(groceryList);

 primaryStage.setTitle("View Test");

 primaryStage.setResizable(true);

 primaryStage.setScene(new Scene(myPanel, 285,205));

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

The window should come up now with three items in
the list. We will add some more functionality to the
View later, but for now, we need to understand how
to complete the final portion of our MVC application...
the controller ...

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 179 -

 6.4 Developing a Proper Controller

The final piece of our application is the controller. The controller is responsible for taking in
user input and making changes to the model accordingly. These changes can then be
refreshed with a simple call to update() in the view class.

The controller will be our Application class. It will tie
together the model and the view. In addition, the
controller is where we "hook up" our event handlers to
handle the user interaction. It will handle all user input
and then change the model accordingly ... updating the
view afterwards.

To begin, we can define the class such that it creates a
new view and a new model. Here is the basic structure ... we will be adding the event
handlers one by one. Take note of how cleanly separated the model and the view are ... as
they are stored separately as attributes of the controller:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.stage.Stage;

public class GroceryListApp extends Application {

 private ItemList model; // model to which this view is attached

 private GroceryListView view; // view that shows the state of the model

 public void start(Stage primaryStage) {

 // Create the model and view

 model = new ItemList(); // Start with an empty list

 view = new GroceryListView(model);

 // Add the event handlers

 // ... coming soon ...

 primaryStage.setTitle("My Grocery List");

 primaryStage.setResizable(true);

 primaryStage.setScene(new Scene(view, 285,205));

 primaryStage.show();

 }

 public static void main(String[] args) { launch(args); }

}

Now it is time to get everything working. We will approach this slowly by adding functionality
as we go along. Make sure you understand where the new pieces of code will "fit" into the
three classes that we already have.

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 180 -

Adding Items

To add an item to the Grocery List, we will require the user to type the item into the text field
and then press the Add button. Let us write an event handler for when the Add button is
pressed. It will need to get the contents of the text field and then insert that string as a new
item in the model. Then the view should be updated. So we should add this method to the
controller (i.e., the main application):

// The Add Button event handler

private void handleAddButtonPress() {

 model.add(view.getNewItemField().getText());

 view.update();

}

Notice that this method is private, since no external classes should be calling it. The code
does two main things that ALL of your event handlers should do:

1. Change the Model
2. Update the View

Now, we need to "plug it in" to the Button. We will need to add an
EventHandler<ActionEvent> to the button.

Insert the following into the controller's constructor:

 view.getAddButton().setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent actionEvent) { handleAddButtonPress(); }

 });

Notice how the Button is accessed from the view.
The code hooks up to the event handler method that
we just wrote. The code should now work and allow
new items to be added to the list.

However, a slight problem occurs when the user
does not have anything typed into the text field and
then presses the Add button. A "blank" item is
added to the list. This is not pleasant.

We can ensure that no blank items are added by
altering our code a little:

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 181 -

private void handleAddButtonPress() {

 String text = view.getNewItemField().getText().trim();

 if (text.length() > 0) {

 model.add(text);

 view.update();

 }

}

You may have noticed the trim() method added here. This is a String method that removes
any leading and trailing space and tab characters. That will ensure that we do not add any
items consisting of only spaces or tab characters.

Removing Items

Similarly, to remove an item from the Grocery List, we will require the user to select the item
from the list and then press the Remove button. Let us write an event handler for when the
Remove button is pressed. It will need to get the index of the selected item from the list and
call the model's remove() method using this index. Then the view should be updated.

To get the selected item from the list, we can look in the JAVA API and determine that the
ListView method we need to call is getSelectionModel().getSelectedIndex(). This will
return -1 if nothing is selected, so we should handle that.

So we should add this method to the controller (i.e., the main application):

// The Remove Button event handler

private void handleRemoveButtonPress() {

 int index = view.getList().getSelectionModel().getSelectedIndex();

 if (index >= 0) {

 model.remove(index);

 view.update();

 }

}

Of course, to get it to work, we need to insert the following into the controller's constructor:

 view.getRemoveButton().setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent actionEvent) { handleRemoveButtonPress(); }

 });

We are now done with the basic functionality of our program. We could stop here. However,
we will continue with some additional fine-tuning...

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 182 -

Disabling the Remove Button

It would be a good idea to disable the Remove button when
nothing has been selected in the list. That way the user knows
visually that the Remove operation is not valid until something is
selected. It is a good form of feedback to the user and it makes
the user interface more intuitive to use.

Since this is simply a visual change, we could simply add a line
to the update() method in the view class:

public void update() {

 // Create and return a new array with the

 // exact size of the number of items in it

 String[] exactList = new String[model.getSize()];

 for (int i=0; i<model.getSize(); i++)

 exactList[i] = model.getItems()[i];

 groceryList.setItems(FXCollections.observableArrayList(exactList));

 // enable/disable the remove button accordingly

 removeButton.setDisable(groceryList.getSelectionModel().getSelectedIndex() <0);

}

Logically, this code will disable the button if the selected index in the list is -1 (i.e., when
nothing is selected). If we start up the application, the Remove button will be disabled
properly since likely, nothing has been selected in the list. When should it be re-enabled ?
According to our update() method, whenever something is selected from the list it will be
enabled. However, we need to ensure that the update() method is called when the user
selects something from the list. Whenever the user clicks in the list, we can simply update the
view to ensure that the Remove button is re-enabled. Here is the simple event handler to put
into the controller class:

// The ListView selection event handler

private void handleListSelection() {

 view.update();

}

There are a few ways to cause this to occur. The simplest is to add a mousePressed event
handler to the ListView. Again, we plug it in by adding this to the constructor:

 view.getList().setOnMousePressed(new EventHandler<MouseEvent>() {

 public void handle(MouseEvent mouseEvent) {

 handleListSelection();

 }

 });

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 183 -

However, a minor issue arises in that when we update the list by repopulating its contents, the
currently selected item becomes unselected. We can fix this by remembering what is selected
before we update the list and then re-select that item again afterwards. In the view, we can
alter the update() method to do this:

public void update() {

 // Create and return a new array with the

 // exact size of the number of items in it

 String[] exactList = new String[model.getSize()];

 for (int i=0; i<model.getSize(); i++)

 exactList[i] = model.getItems()[i];

 int selectedIndex = groceryList.getSelectionModel().getSelectedIndex();

 groceryList.setItems(FXCollections.observableArrayList(exactList));

 groceryList.getSelectionModel().select(selectedIndex);

 // enable/disable the remove button accordingly

 removeButton.setDisable(groceryList.getSelectionModel().getSelectedIndex() <0);

}

Disabling the Add Button

Finally, it would also be a good idea to disable the Add button
when nothing is typed in the text field.

To do this, we need to add a single line to the update() method
in the view that is similar to the one we added to enable/disable
the Remove button. However, this time we look at the text in
the text field:

public void update() {

 // ...

 // enable/disable the Add button accordingly

 addButton.setDisable(newItemField.getText().trim().length() <= 0);

}

Of course, once again we need to have the button re-enabled when the user starts typing into
the text field. We need an event that occurs when the user types into a text field. Again the
event handler is simple:

// The TextField typing event handler

private void handleTextEntry() {

 view.update();

}

As with the ListView selection event handling, there are a few ways to plug in the event
handler for the TextField. The simplest way is to handle a KeyReleased event. So,

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 184 -

whenever the user types a character into the text field (i.e., a character or delete, or ENTER,
etc...), then the event will be called. However, take note that it will not be called if the user
cuts or pastes something into the text field via a mouse operation. Also, a KeyPressed event
will not work here because it will generate the event before the typed character is part of the
text field's data, so we will always be missing one character when checking the length of the
String. A KeyReleased event will be generated AFTER the character has been added to the
text field, so this is fine. Here is the code to plug in a KeyReleased event handler:

 view.getNewItemField().setOnKeyReleased(new EventHandler<KeyEvent>() {

 public void handle(KeyEvent keyEvent) { handleTextEntry(); }

 });

Clearing the Text Field

One final alteration to the program would be to clear the text field after an item has been
added. Otherwise, after each item has been added, the user will have to delete the text
before adding the next item. This can be tedious.

To accomplish this, we simply add one more line to the Add button event handler to clear the
text:

private void handleAddButtonPress() {

 String text = view.getNewItemField().getText().trim();

 if (text.length() > 0) {

 view.getNewItemField().setText("");

 model.add(text);

 view.update();

 }

}

Finally, our application works as desired. We are done. Here is the final code:

import javafx.application.Application;

import javafx.event.*;

import javafx.scene.Scene;

import javafx.scene.input.*;

import javafx.stage.Stage;

public class GroceryListApp extends Application {

 private ItemList model; // model to which this view is attached

 private GroceryListView view; // view that shows the state of the model

 public void start(Stage primaryStage) {

 // Create the model and view

 model = new ItemList(); // Start with an empty list

 model.add("Apples");

 model.add("Toilet Paper");

 model.add("Ketchup");

 view = new GroceryListView(model);

COMP1406 - Chapter 6 - Proper Coding Style Using MVC Winter 2018

 - 185 -

 // Plug in the event handlers

 view.getAddButton().setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent actionEvent) { handleAddButtonPress(); }

 });

 view.getRemoveButton().setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent actionEvent) {

 handleRemoveButtonPress(); }

 });

 view.getList().setOnMousePressed(new EventHandler<MouseEvent>() {

 public void handle(MouseEvent mouseEvent) { handleListSelection(); }

 });

 view.getNewItemField().setOnKeyReleased(new EventHandler<KeyEvent>() {

 public void handle(KeyEvent keyEvent) { handleTextEntry(); }

 });

 primaryStage.setTitle("My Grocery List");

 primaryStage.setResizable(true);

 primaryStage.setScene(new Scene(view, 285,205));

 primaryStage.show();

 }

 // The Add Button event handler

 private void handleAddButtonPress() {

 String text = view.getNewItemField().getText().trim();

 if (text.length() > 0) {

 view.getNewItemField().setText("");

 model.add(text);

 view.update();

 }

 }

 // The Remove Button event handler

 private void handleRemoveButtonPress() {

 int index = view.getList().getSelectionModel().getSelectedIndex();

 if (index >= 0) {

 model.remove(index);

 view.update();

 }

 }

 // The ListView selection event handler

 private void handleListSelection() { view.update(); }

 // The TextField typing event handler

 private void handleTextEntry() { view.update(); }

 public static void main(String[] args) { launch(args); }

}

