

Chapter 8

Abstract Data Types

What is in This Chapter ?

In this chapter we discuss the notion of Abstract Data Types (ADTs) as they pertain to storing
collections of data in our programs. There are many common ADTs used in computer
science. We will discuss here some of the common ones such as Lists, Queues, Deques,
Linked-Lists, Stacks, Sets and Dictionaries. You will understand the differences between
these various ADTs in terms of the operations that you can perform on them. Lastly, we will
implement a Doubly-Linked Lists data structure to help you understand how pointers can be
used to define a recursive data structure.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 254-

 8.1 Common Abstract Data Types

Every time we define a new object, we are actually defining a new data type. That is, we are
grouping attributes and behaviors to form a new type of data (i.e., object) we can use
throughout our programs as if it were a single piece of data. There are actually some
commonly used models for defining similar types of data:

An abstract data type (ADT) is a mathematical model for a

certain class of data structures that have similar behavior. (Wikipedia)

The word abstract here means that we are discussing data types in a general manner, without
having a particular practical purpose or intention in mind. There are different types of ADTs,
each with their own unique way for storing, accessing and modifying the data. Typically,
ADTs will store general data of any kind, although usually the data inside the ADT is all of the
same kind ... or at least has something in common.

ADTs are a vital part of any programming language since they are used to collect data
together in an "easy-to-use" way. We often use the term collection to represent one of these
data types. There are advantages of using ADTs:

1. They help to simplify descriptions of abstract algorithms, thereby allowing us to write
simplified pseudocode with less details (e.g., we can write pseudocode such as "Add x
to the list" instead of "Put x at position size in the array and then let size = size+1").

2. They allow us to classify and evaluate data structures in regards to the common
behaviors between data types (e.g., one ADT may have a more efficient remove
operation while another may have a more efficient add or search operation. We could
choose the ADT that best fits our needs).

As we have already seen with Arrays, collections allow many objects to be collected/stored
together and then passed around as a single object (i.e., the array itself is an object). Just
about every useful application of any kind requires collections for situations such as:

• storing products on shelves in a store
• maintaining information on customers
• keeping track of cars for sale, for rental or for servicing
• a personal collection of books, CDs, DVDs, cards, etc...
• maintaining a shopping cart of items to be purchased from a website

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 255-

In JAVA, there are a variety of ADT-related classes that can be used to represent these
various programming needs. These ADTs are located in the java.util.Collection package,
along with some other useful tools. In this set of notes, we investigate (very briefly) some of
these JAVA collections in a way that will help a programmer understand which ADT is best for
their particular programming application.

ADTs in JAVA are organized into a “seemingly complicated” hierarchy of JAVA interfaces and
classes. There are two sub-hierarchies ... one is rooted at Collection, the other is rooted at
Map. Here is a diagram showing part of this hierarchy:

In the above hierarchy, the red and dark blue represent java interfaces, the white represents
abstract classes and the yellow represents concrete classes. The solid arrows indicate
inheritance while the dashes lines indicate that a class implements an interface. We will be
discussing some of these classes in detail. You may want to refer back to this diagram once
in a while to ensure that you understand how the classes differ and how they are similar.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 256-

Notice that there are 11 concrete classes, and that all of them indirectly implement the
Collection or Map interface. Recall that an interface just specifies a list of method signatures
... not any code. That means, all of the concrete collection & map classes have something in
common and that they all implement a common set of methods.

The main commonality between the collection classes is that they all store objects called their
elements, which may be heterogeneous objects (i.e., the elements may be a mix of various
(possibly unrelated) objects). Storing mixed kinds of objects in a Collection is allowed, but
not often done unless there is something in common with the objects (i.e., they extend a
common abstract class or implement a common interface).

The Collection interface defines common methods for querying (i.e., getting information from)
and modifying (i.e., changing) the collection in some way. However, there are also various
restrictions for each of the collection classes in terms of what they are allowed and not allowed
to do when adding, removing and searching for data. We will look at the various classes that
implement the Collection and Map interfaces.

It is not the purpose of this course to describe in-depth details on various kinds of collections
and data structures. You will gain a deeper understanding of the advantages and
disadvantages between data structures in your second year data structures course.

 8.2 The List ADT

In real life, objects often appear in simple lists. For example,
Companies may maintain a list of Employees, Banks may keep a
list of BankAccounts, a Person may keep a list of "Things to Do".
etc..

A List ADT allows us to access any of its elements at any time as

well as insert or remove elements anywhere in the list at any time.
The list will automatically shift the elements around in memory to
make the needed room or reduce the unused space. The general
list is the most flexible kind of list in terms of its capabilities.

A list is an abstract data type that implements an ordered collection of values, where

the same value may occur more than once.

We use a general List whenever we have elements coming in and being removed in a random
order. For example, when we have a shelf of library books, we may need to remove a book
from anywhere on the shelf and we may insert books back into their proper location when they
are returned.

The elements in a general list are stored in a particular position in the list. As with arrays,
elements in a general list are accessed according to their index position in the list.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 257-

The basic methods for inserting, removing, accessing and modifying items from a List are as
follows:

add(int index, Object x)

Insert object x at position index in the list.
Objects at positions index + 1 through n-1
move to the right by one position, increasing
the size of the list by 1.

e.g., aList.add(2, x) will do this →

remove(int index)

Remove and return the object at position
index in the list. Objects at positions index +
1 through n-1 move to the left by one position,
decreasing the size of the list by 1.

e.g., aList.remove(2) will return 9 →

set(int index, Object x)

Replace the object at position index in the list
with the new object x. Objects at all other
positions remain in their original position.

e.g., aList.set(2, x) will do this →

get(int index)

Return the object at position index in the list.
The list is not changed in any way.

e.g., x = aList.get(2) will return 9 →

size()

Return the number of elements in the list.

e.g., n = aList.size() will return n →

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 258-

clear()

Remove all elements from the list.

e.g., aList.clear() will do this →

There are additional methods often available for convenience sake. Here are some:

add(Object x)

Insert object x at the end of the list,
increasing the size of the list by 1.

e.g., aList.add(x) will do this →

remove(Object x)

Remove the first occurrence of object x from
the list. Assuming x was found at position i,
then objects at positions i + 1 through n-1
move to the left by one position, decreasing
the size of the list by 1.

 e.g., Integer x = new Integer(9);
 aList.remove(x) will do this →

indexOf(Object x)

Return the position of the first occurrence of
object x in the list.

 e.g., Integer x = new Integer(9);
 i = aList.indexOf(x) will return 2 →

isEmpty()

Return true if the number of elements in
the list is 0, otherwise return false.

does the same as this:

return (aList.size() == 0);

contains(Object x)

Return true if x is contained in the list,
otherwise return false.

does the same as this:

for (int i=0; i<aList.size(); i++)

 if (aList.get(i).equals(x))

 return true;

return false;

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 259-

an ArrayList
myList

"Hello"
25

0 1 2 3

In JAVA, the List ADT is called an ArrayList and it is located in the java.util package, which
must be imported in order to use this data type.

To create an ArrayList, we can simply call a constructor from the ArrayList class. Here is an
example of creating an ArrayList and storing it in a variable so that we can use it:

ArrayList myList;

myList = new ArrayList();

The above code allows us to store any kind of object in the ArrayList. We can then use the
ArrayList’s add() method to add objects to the end of the list in sequence as follows:

import java.util.ArrayList;

public class ArrayListTestProgram {

 public static void main(String[] args) {

 ArrayList myList;

 myList = new ArrayList();

 myList.add("Hello");

 myList.add(25);

 myList.add(new Person());

 myList.add(new Car());

 System.out.println(myList);

 }

}

Notice in the above code that we are
adding a String, an int, a Person object
and a Car object. Notice as well that at
the top of the program we imported
java.util.ArrayList. This is necessary in
order for JAVA to know where to find the
ArrayList class and its methods.

The output for the program is as follows
(assuming that Person and Car are
defined classes that do not have
toString() methods):

[Hello, 25, Person@addbf1, Car@42e816]

Did you notice how ArrayLists look when you print them out ? They show all the
elements/items in the list separated by commas , in between square brackets [].

This is the general format for an ArrayList that can hold any kinds of objects. However, it is
"highly recommended" that we specify the type of objects that will be stored in the ArrayList.

We do this by specifying the type between < and > characters just before the round brackets (
) as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 260-

ArrayList<Object> myList;

myList = new ArrayList<Object>();

If we know, for example, that all of the objects in the ArrayList will be Strings (e.g., names of
people), then we should declare and create the list as follows:

ArrayList<String> myList;

myList = new ArrayList<String>();

...

Similarly, if the objects to be stored in the list were of type Person, BankAccount or Car …
then we would specify the type as <Person>, <BankAccount> or <Car>, respectively.

Here is an example that uses the get() and size() methods:

ArrayList<Object> myList;

myList = new ArrayList<Object>();

System.out.println(myList.size()); // outputs 0

myList.add("Hello");

myList.add(25);

myList.add(new Person());

myList.add(new Car());

System.out.println(myList.get(0)); // outputs "Hello"

System.out.println(myList.get(2)); // outputs Person@addbf1

System.out.println(myList.get(4)); // an IndexOutOfBoundsException

System.out.println(myList.size()); // outputs 4

Since Lists are perhaps the most commonly used data structure in computer science, we will
do a larger example so that we get a full understanding of how to use them properly.

Example:

Consider a realistic use of the ArrayList object by creating classes
called Team and League in which a League object will contain a
bunch of Team objects. That is, the League object will have an
instance variable of type ArrayList to hold onto the multiple Team
objects within the league.

Consider first the creation of a Team class that will represent a single
team in the league. For each team, we will maintain the team’s name
as well as the number of wins, losses and ties for the games that

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 261-

they played. Here is the basic class (review the previous chapters in the notes if any of this is
not clear):

public class Team {

 private String name; // The name of the Team

 private int wins; // The number of games that the Team won

 private int losses; // The number of games that the Team lost

 private int ties; // The number of games that the Team tied

 public Team(String aName) {

 this.name = aName;

 this.wins = 0;

 this.losses = 0;

 this.ties = 0;

 }

 // Get methods

 public String getName() { return name; }

 public int getWins() { return wins; }

 public int getLosses() { return losses; }

 public int getTies() { return ties; }

 // Modifying methods

 public void recordWin() { wins++; }

 public void recordLoss() { losses++; }

 public void recordTie() { ties++; }

 // Returns a text representation of a team

 public String toString() {

 return("The " + this.name + " have " + this.wins + " wins, " +

 this.losses + " losses and " + this.ties + " ties.");

 }

 // Returns the total number of points for the team

 public int totalPoints() {

 return (this.wins * 2 + this.ties);

 }

 // Returns the total number of games played by the team

 public int gamesPlayed() {

 return (this.wins + this.losses + this.ties);

 }

}

We can test out our Team object with the following test code, just to make sure it works:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 262-

name

“Ottawa Senators”

wins 1

losses 0

ties 1

teamA

name

“Montreal Canadians”

wins 0

losses 1

ties 1

teamB

public class TeamTestProgram {

 public static void main(String[] args) {

 Team teamA, teamB;

 teamA = new Team("Ottawa Senators");

 teamB = new Team("Montreal Canadians");

 // Simulate the playing of a game in which teamA beat teamB

 System.out.println(teamA.getName()+" just beat "+teamB.getName());

 teamA.recordWin();

 teamB.recordLoss();

 // Simulate the playing of another game in which they tied

 System.out.println(teamA.getName()+" just tied "+teamB.getName());

 teamA.recordTie();

 teamB.recordTie();

 //Now print out some statistics

 System.out.println(teamA);

 System.out.println(teamB);

 System.out.print("The " + teamA.getName() + " have ");

 System.out.print(teamA.totalPoints() + " points and played ");

 System.out.println(teamA.gamesPlayed() + " games.");

 System.out.print("The " + teamB.getName() + " have ");

 System.out.print(teamB.totalPoints() + " points and played ");

 System.out.println(teamB.gamesPlayed() + " games.");

 }

}

Here is what the Team objects look like after playing the two games:

Here is the output from our little test program:

Ottawa Senators just beat Montreal Canadians
Ottawa Senators just tied Montreal Canadians
The Ottawa Senators have 1 wins, 0 losses and 1 ties.
The Montreal Canadians have 0 wins, 1 losses and 1 ties.
The Ottawa Senators have 3 points and played 2 games.
The Montreal Canadians have 1 points and played 2 games.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 263-

Now let us implement the League class. A league will also have a name as well as an
ArrayList (called teams) of Team objects. Here is the basic class structure (notice the import
statement at the top):

import java.util.ArrayList;

public class League {

 private String name;

 private ArrayList<Team> teams;

 public League(String n) {

 this.name = n;

 this.teams = new ArrayList<Team>(); // Doesn’t make any Team objects

 }

 // This specifies the appearance of the League

 public String toString() {

 return ("The " + this.name + " league");

 }

 // Add the given team to the League

 public void addTeam(Team t) {

 teams.add(t);

 }

}

Notice that the ArrayList is created within the constructor and that it is initially empty. That
means, a brand new league has no teams in it. It is important to note also that there are no
Team objects created at this time.

At this point, we have defined two objects: Team and League. One thing that we will need to
do is to be able to add teams to the league. Here is an example of how we can create a
league with three teams in it:

League nhl;

nhl = new League("NHL");

nhl.addTeam(new Team("Ottawa Senators"));

nhl.addTeam(new Team("Montreal Canadians"));

nhl.addTeam(new Team("Toronto Maple Leafs"));

In order to add the team to the league, we simply add it to the league's teams by using the
addTeam() method which makes use of the add() method that is defined in the ArrayList
class. Here is a diagram showing how the League object stores the 3 Teams …

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 264-

Suppose now that we wanted to print out the teams in the league. We will write a method in
the League class called showTeams() to do this. The method will need to go through each
team in the teams ArrayList and display the particular team’s information … perhaps using the
toString() method from the Team class.

Hopefully, you “sense” that printing out all the teams involves repeating some code over and
over again. That is, you should realize that we need a loop of some type. We have already
discussed the for and while loops, but there is a special kind of for loop in JAVA that is to be
used when traversing through a collection such as an ArrayList. This loop is called the “for-
each” loop, and its structure is a little simpler than the traditional for loop. Below is how we
can use the typical FOR loop as well as the "better" FOR-EACH loop to write the
showTeams() method.

Using a Typical FOR Loop Using a FOR-EACH Loop

public void showTeams() {

 for (int i=0; i<teams.size(); i++) {

 System.out.println(teams.get(i));

 }

}

public void showTeams() {

 for (Team t: teams) {

 System.out.println(t);

 }

}

Notice that the for-each loop starts with for again, but this time the information within the

parentheses () is different. The format of this information is as follows. First we specify the

type of object that is in the ArrayList … in this case Team. Then we specify a variable name

nhl

name

teams

“NHL”

name “OttawaSenators”

wins 0

losses 0

ties 0

name “Montreal Canadians”

wins 0

losses 0

ties 0

name “Toronto Maple Leafs”
wins 0

losses 0

ties 0

0 1 2

nhl.teams ArrayList

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 265-

which will be used to represent the particular team as we loop through them all … in this case
we called it simply t.

Then we use a colon : character followed by the name of the ArrayList that we want to loop

through … in this case teams. So, if we were to translate the for-each loop into English, it
would sound something like this: “For each team t in the teams array list do the loop”.

Notice that within the loop, we simply use t as we would use any other variable. In our
example, t is the Team object that we are examining during that round through the loop. So t
points to the 1st team in the league when we begin the loop, then it points to the 2nd team the
next time through the loop, then the 3rd team etc..

Let us test our method out using the following test program:

public class LeagueTestProgram {

 public static void main(String[] args) {

 League nhl;

 nhl = new League("NHL");

 //Add a pile of teams to the league

 nhl.addTeam(new Team("Ottawa Senators"));

 nhl.addTeam(new Team("Montreal Canadians"));

 nhl.addTeam(new Team("Toronto Maple Leafs"));

 nhl.addTeam(new Team("Vancouver Cannucks"));

 nhl.addTeam(new Team("Edmonton Oilers"));

 nhl.addTeam(new Team("Washington Capitals"));

 nhl.addTeam(new Team("New Jersey Devils"));

 nhl.addTeam(new Team("Detroit Red Wings"));

 //Display the teams

 System.out.println("\nHere are the teams:");

 nhl.showTeams();

 }

}

Here is the output so far:

Here are the teams:

The Ottawa Senators have 0 wins, 0 losses and 0 ties.

The Montreal Canadians have 0 wins, 0 losses and 0 ties.

The Toronto Maple Leafs have 0 wins, 0 losses and 0 ties.

The Vancouver Cannucks have 0 wins, 0 losses and 0 ties.

The Edmonton Oilers have 0 wins, 0 losses and 0 ties.

The Washington Capitals have 0 wins, 0 losses and 0 ties.

The New Jersey Devils have 0 wins, 0 losses and 0 ties.

The Detroit Red Wings have 0 wins, 0 losses and 0 ties.

Notice that all the teams have no recorded wins, losses or ties. Let's write a method that will
record a win and a loss for two teams that play together, and another method to record a tie
when the two teams play and tie.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 266-

public void recordWinAndLoss(Team winner, Team loser) {

 winner.recordWin();

 loser.recordLoss();

}

public void recordTie(Team teamA, Team teamB) {

 teamA.recordTie();

 teamB.recordTie();

}

If we wanted to test these methods now, we could write test code like this:

League nhl;

Team team1, team2, team3;

nhl = new League("NHL");

nhl.addTeam(team1 = new Team("Ottawa Senators"));

nhl.addTeam(team2 = new Team("Montreal Canadians"));

nhl.addTeam(team3 = new Team("Toronto Maple Leafs"));

nhl.recordWinAndLoss(team1, team2);

nhl.recordTie(team1, team2);

nhl.recordWinAndLoss(team3, team2);

// ... etc ...

You should now notice something tedious. We would have to make variables for each team if
we want to record wins, losses and ties among them. Why ? Because the recording methods
require Team objects ... the same Team objects that we added to the League ... so we would
have to remember them ... hence requiring us to store them in a variable. Perhaps a better
way to record wins, losses and ties would be to do something like this:

League nhl;

nhl = new League("NHL");

nhl.addTeam(new Team("Ottawa Senators"));

nhl.addTeam(new Team("Montreal Canadians"));

nhl.addTeam(new Team("Toronto Maple Leafs"));

nhl.recordWinAndLoss("Ottawa Senators", "Montreal Canadians");

nhl.recordTie("Ottawa Senators", "Montreal Canadians");

nhl.recordWinAndLoss("Toronto Maple Leafs", "Montreal Canadians");

// ... etc ...

This way, we do not need to create extra variables. However, we would have to make new
recording methods that took Strings (i.e., the Team names) as parameters instead of Team
objects. Here are the methods that we would need to implement (notice the difference in the
parameter types):

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 267-

public void recordWinAndLoss(String winnerName, String loserName) {

 //...

}

public void recordTie(String teamAName, String teamBName) {

 //...

}

To make this work, however, we still need to get into the appropriate Team objects and update
their wins/losses/ties. Therefore, we will have to take the incoming team names and find the
Team objects that correspond with those names. We would need to do this 4 times: once for
the winnerName, once for the loserName, once for teamAName and once for teamBName.
Rather than repeat the code 4 times, we will make a method to do this particular sub-task of
finding a team with a given name. Here is the method that we will write:

private Team teamWithName(String nameToLookFor) {

 Team answer;

 //...

 return answer;

}

Notice that it will take the team’s name as a parameter and then return a Team object. How
would we complete this method ? We can use the for-each loop to traverse through all the
teams and find the one with that name as follows:

private Team teamWithName(String nameToLookFor) {

 Team answer = null;

 for (Team t: teams) {

 if (t.name.equals(nameToLookFor))

 answer = t;

 }

 return answer;

}

Notice a few points. First, we set the answer to null. If we do not find a Team with the given
name, the method returns null … which is the only appropriate answer. Next, notice that for
each team t, we compare its name with the incoming string nameToLookFor and if these two

strings are equal, then we have found the Team object that we want, so we store it in the
answer variable to be returned at the completion of the loop.

This method can be shortened as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 268-

private Team teamWithName(String nameToLookFor) {

 for (Team t: teams)

 if (t.getName().equals(nameToLookFor))

 return t;

return null;

}

Now that this method has been created, we can use it in our methods for recording wins/losses
and ties as follows:

public void recordWinAndLoss(String winnerName, String loserName) {

 Team winner, loser;

 winner = this.teamWithName(winnerName);

 loser = this.teamWithName(loserName);

 winner.recordWin();

 loser.recordLoss();

}

public void recordTie(String teamAName, String teamBName) {

 Team teamA, teamB;

 teamA = this.teamWithName(teamAName);

 teamB = this.teamWithName(teamBName);

 teamA.recordTie();

 teamB.recordTie();

}

The methods work as before, but there are potential problems. What if we
cannot find the Team object with the given names (e.g., someone spelt the name
wrong) ? In this case, perhaps winner, loser, teamA or teamB will be null and
we will get a NullPointerException when we try to access the team’s attributes.
We can check for this with an if statement.

public void recordWinAndLoss(String winnerName, String loserName) {

 Team winner, loser;

 winner = this.teamWithName(winnerName);

 loser = this.teamWithName(loserName);

 if ((winner != null) && (loser != null)) {

 winner.recordWin();

 loser.recordLoss();

 }

}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 269-

public void recordTie(String teamAName, String teamBName) {

 Team teamA, teamB;

 teamA = this.teamWithName(teamAName);

 teamB = this.teamWithName(teamBName);

 if ((teamA != null) && (teamB != null)) {

 teamA.recordTie();

 teamB.recordTie();

 }

}

Now the games are only recorded when we have successfully identified the two Team objects
that need to be updated as a result of the played game. Interestingly though, the same
problem may occur in our previous recording methods … that is … the Team objects passed in
may be null. Also, in our code, we already have a method for recording the wins/losses/ties
in the case where we have the Team objects, so we should call those methods from here.
We can simply call the previous recording methods from these two new ones and move the
null-checking into there instead as follows:

private Team teamWithName(String nameToLookFor) {

 for (Team t: teams)

 if (t.name.equals(nameToLookFor))

 return t;

 return null;

}

public void recordWinAndLoss(Team winner, Team loser) {

 if ((winner != null) && (loser != null)) {

 winner.recordWin();

 loser.recordLoss();

 }

}

public void recordTie(Team teamA, Team teamB) {

 if ((teamA != null) && (teamB != null)) {

 teamA.recordTie();

 teamB.recordTie();

 }

}

public void recordWinAndLoss(String winnerName, String loserName) {

 Team winner, loser;

 winner = this.teamWithName(winnerName);

 loser = this.teamWithName(loserName);

 this.recordWinAndLoss(winner, loser);

}

public void recordTie(String teamAName, String teamBName) {

 Team teamA, teamB;

 teamA = this.teamWithName(teamAName);

 teamB = this.teamWithName(teamBName);

 this.recordTie(teamA, teamB);

}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 270-

In fact, we can even shorten the last two methods by noticing that the variables are not really
necessary:

public void recordWinAndLoss(String winnerName, String loserName) {

 this.recordWinAndLoss(this.teamWithName(winnerName),

 this.teamWithName(loserName));

}

public void recordTie(String teamAName, String teamBName) {

 this.recordTie(this.teamWithName(teamAName),

 this.teamWithName(teamBName));

}

Consider a method called totalGamesPlayed() which is supposed to return the total number
of games played in the league. All we need to do is count the number of games played by all
the teams (i.e., we will need some kind of counter) and then divide by 2 (since each game was
played by two teams, hence counted twice). Here is the format:

public int totalGamesPlayed() {

 int total = 0;

 //...

 return total/2;

}

We will also need a for-each loop to go through each team:

public int totalGamesPlayed() {

 int total = 0;

 for (Team t: teams) {

 //...

 }

 return total/2;

}

Now, if you were to look back at the Team class, you would notice a method in there called
gamesPlayed(). That means, we can ask a team how many games they played by simply
calling that method. We should be able to make use of this value as follows:

public int totalGamesPlayed() {

 int total = 0;

 for (Team t: teams)

 total += t.gamesPlayed();

 return total/2;

}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 271-

Notice that the method is quite simple, as long as you break it down into simple steps like we
just did. For more practice, let us find the team that is in first place (i.e., the Team object that
has the most points). We can start again as follows:

public Team firstPlaceTeam() {

 Team teamWithMostPoints = null;

 //...

 return teamWithMostPoints;

}

Notice that it returns a Team object. Likely, you realize that we also need a for-each loop
since we need to check all of the teams:

public Team firstPlaceTeam() {

 Team teamWithMostPoints = null;

 for (Team t: teams) {

 //...

 }

 return teamWithMostPoints;

}

Again, we can make use of a pre-defined method in the Team class called totalPoints() which
returns the number of points for a particular team:

public Team firstPlaceTeam() {

 int points;

 Team teamWithMostPoints = null;

 for (Team t: teams) {

 points = t.totalPoints();

 // ...

 }

 return teamWithMostPoints;

}

But now what do we do ? The current code will simply grab each team’s point values one at
a time. We need to somehow compare them. Many students have trouble breaking this
problem down into simple steps. The natural tendency is to say to yourself “I will compare the
1st team’s points with the 2nd team’s points and see which is greater”. If we do this however,
then what do we do with that answer ? How does the third team come into the picture ?

Hopefully, after some thinking, you would realize that as we traverse through the teams, we
need to keep track of (i.e., remember) the best one so far.

Imagine for example, searching through a basket of apples to find the best one.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 272-

Would you not grab an apple and hold it in your hand and then look through the
other apples and compare them with the one you are holding in your hand ?
If you found a better one, you would simply trade the one currently in your
hand with the new better one. By the time you reach the end of the basket,
you are holding the best apple.

Well we are going to do the same thing. The teamWithMostPoints
variable will be like our good apple that we are holding. Whenever we find
a team that is better (i.e., more points) than this one, then that one becomes
the teamWithMostPoints. Here is the code:

public Team firstPlaceTeam() {

 Team teamWithMostPoints = null;

 for (Team t: teams) {

 if (t.totalPoints() > teamWithMostPoints.totalPoints())

 teamWithMostPoints = t;

 }

 return teamWithMostPoints;

}

Does it make sense ? There is one small issue though. Just like we need to begin our apple-
checking by picking up the first apple, we also need to pick a team (any Team object) to be the
“best” one before we start the search. Currently the teamWithMostPoints starts off at null so
we need to set this to a valid Team so start off. We can perhaps take the first Team in the
teams ArrayList:

public Team firstPlaceTeam() {

 Team teamWithMostPoints = teams.get(0);

 for (Team t: teams) {

 if (t.totalPoints() > teamWithMostPoints.totalPoints())

 teamWithMostPoints = t;

 }

 return teamWithMostPoints;

}

We are not done yet! It is possible, in a weird scenario, that there are no teams in the league!
In this case teams.get(0) will return null and we will get a NullPointerException again when
we go to ask for the totalPoints().

So, we would need to add a special case to return null if the teams list is empty. Here is the
new code …

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 273-

public Team firstPlaceTeam() {

 Team teamWithMostPoints;

 if (teams.size() == 0)

 return null;

 teamWithMostPoints = teams.get(0);

 for (Team t: teams) {

 if (t.totalPoints() > teamWithMostPoints.totalPoints())

 teamWithMostPoints = t;

 }

 return teamWithMostPoints;

}

What would we change in the above code if we wanted to write a method called
lastPlaceTeam() that returned the team with the least number of points ? Try to do it.

How could we write a method called undefeatedTeams() that returned an ArrayList<Team>
of all teams that have never lost a game ? We would begin by specifying the proper return
type:

public ArrayList<Team> undefeatedTeams() {

 ArrayList<Team> undefeated = new ArrayList<Team>();

 for (Team t: teams) {

 //...

 }

 return undefeated;

}

Now we would check each team that has not lost any games and add them to the result list:

public ArrayList<Team> undefeatedTeams() {

 ArrayList<Team> undefeated = new ArrayList<Team>();

 for (Team t: teams) {

 if (t.getLosses() == 0)

 undefeated.add(t);

 }

 return undefeated;

}

Another interesting method would be one that removes all teams from the league that have
never won a game. Intuitively, here is what we may do:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 274-

public void removeLosingTeams() {

 for (Team t: teams) {

 if (t.getWins() == 0)

 teams.remove(t);

 }

}

However, this code will not work since it will generate a ConcurrentModificationException in
JAVA. That is, we need to be careful not to remove items from a list that we are iterating
through. As it turns out, the FOR EACH loop does not allow us to remove while iterating
through the list. Using a standard FOR loop, however, we can make it work. The following
code "almost works" ... in that it does not produce an exception ... but something is still wrong.

public void removeLosingTeams() {

 for (int i=0; i<teams.size(); i++) {

 Team t = teams.get(i);

 if (t.getWins() == 0)

 teams.remove(t);

 }

}

The code above may not remove all teams that
have no wins. Why not ? Consider what
happens if two teams in a row have no wins.

In the picture to the right, imagine that these
values represent the number of wins for the
teams in the teams list. Notice how the index
i is moved along through the loop as shown by
the yellow square. When the team at position
1 is encountered, it has no wins, so it is
removed ... and all other teams are moved
back one position in the list.

Then, we continue with the loop as usual.
However, the next time through the loop the i
has moved to position 2. However, a 0-win
team (shown red) has just been shifted into
position 1 but never checked. Thus, by the
time the loop has ended we never checked the
team in position 1 and therefore it remains in
the list.

How can we fix this ? It is simple. Just
ensure that we do not move the index to the
next position in the case that we are doing a
remove operation. We can accomplish this by

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 275-

subtracting 1 from the index i, so that when the for loop increments i, it cancels out the
increment and i remains in the same position.

public void removeLosingTeams() {

 for (int i=0; i<teams.size(); i++) {

 Team t = teams.get(i);

 if (t.getWins() == 0) {

 teams.remove(t);

 i--;

 }

 }

}

Now the code should work properly. Here is a program that can be used to test our methods:

public class LeagueTestProgram2 {

 public static void main(String[] args) {

 League nhl = new League("NHL");

 // Add a pile of teams to the league

 nhl.addTeam(new Team("Ottawa Senators"));

 nhl.addTeam(new Team("Montreal Canadians"));

 nhl.addTeam(new Team("Toronto Maple Leafs"));

 nhl.addTeam(new Team("Vancouver Cannucks"));

 nhl.addTeam(new Team("Edmonton Oilers"));

 nhl.addTeam(new Team("Washington Capitals"));

 nhl.addTeam(new Team("New Jersey Devils"));

 nhl.addTeam(new Team("Detroit Red Wings"));

 // Now we will record some games

 nhl.recordWinAndLoss("Ottawa Senators", "New Jersey Devils");

 nhl.recordWinAndLoss("Edmonton Oilers", "Montreal Canadians");

 nhl.recordTie("Ottawa Senators", "Detroit Red Wings");

 nhl.recordWinAndLoss("Montreal Canadians", "Washington Capitals");

 nhl.recordWinAndLoss("Ottawa Senators", "Edmonton Oilers");

 nhl.recordTie("Washington Capitals", "Edmonton Oilers");

 nhl.recordTie("Detroit Red Wings", "New Jersey Devils");

 nhl.recordWinAndLoss("Vancouver Cannucks", "Toronto Maple Leafs");

 nhl.recordWinAndLoss("Toronto Maple Leafs", "Edmonton Oilers");

 nhl.recordWinAndLoss("New Jersey Devils", "Detroit Red Wings");

 // This one will not work

 nhl.recordWinAndLoss("Mark's Team", "Detroit Red Wings");

 // Now display the teams again

 System.out.println("\nHere are the teams after recording the " +

 "wins, losses and ties:\n");

 nhl.showTeams();

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 276-

 // Here are some statistics

 System.out.println("\nThe total number of games played is " +

 nhl.totalGamesPlayed());

 System.out.println("The first place team is " +

 nhl.firstPlaceTeam());

 System.out.println("The last place team is " +

 nhl.lastPlaceTeam());

 System.out.println("The undefeated teams are " +

 nhl.undefeatedTeams());

 System.out.println("Removing teams that never won ... ");

 nhl.removeLosingTeams();

 System.out.println("The teams are: ");

 nhl.showTeams();

 }

}

Here would be the output (make sure that it makes sense to you) …

Here are the teams after recording the wins, losses and ties:

The Ottawa Senators have 2 wins, 0 losses and 1 ties.

The Montreal Canadians have 1 wins, 1 losses and 0 ties.

The Toronto Maple Leafs have 1 wins, 1 losses and 0 ties.

The Vancouver Cannucks have 1 wins, 0 losses and 0 ties.

The Edmonton Oilers have 1 wins, 2 losses and 1 ties.

The Washington Capitals have 0 wins, 1 losses and 1 ties.

The New Jersey Devils have 1 wins, 1 losses and 1 ties.

The Detroit Red Wings have 0 wins, 1 losses and 2 ties.

The total number of games played is 10

The first place team is The Ottawa Senators have 2 wins, 0 losses and 1 ties.

The last place team is The Washington Capitals have 0 wins, 1 losses and 1 ties.

The undefeated teams are [The Ottawa Senators have 2 wins, 0 losses and 1 ties.,

The Vancouver Cannucks have 1 wins, 0 losses and 0 ties.]

Removing teams that never won ...

The teams are:

The Ottawa Senators have 2 wins, 0 losses and 1 ties.

The Montreal Canadians have 1 wins, 1 losses and 0 ties.

The Toronto Maple Leafs have 1 wins, 1 losses and 0 ties.

The Vancouver Cannucks have 1 wins, 0 losses and 0 ties.

The Edmonton Oilers have 1 wins, 2 losses and 1 ties.

The New Jersey Devils have 1 wins, 1 losses and 1 ties.

 Supplemental Information

There is an additional class called Vector which has the same functionality as the ArrayList
class. In fact, in most situations, you can simply replace the word ArrayList by Vector and
your code will still compile. There is a small difference between ArrayLists and Vectors.
They have the same functionality, but ArrayLists are faster because they have methods that
are not synchronized. Vectors allow multiple processes (or multiple "programs") to
access/modify them at the same time, so they have extra code in the methods to ensure that
the Vector is shared properly and safely between the processes. We will not talk any more
about this in this course. You should always use ArrayLists when creating simple programs.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 277-

 8.3 The Queue ADT

Consider the Queue ADT.

A queue is an abstract data type that stores

elements in a first-in-first-out order. Elements are
added at one end and removed from the other.

Hence, the first element to be added to the queue is the
first element to be taken out of the queue. This is
analogous to a line-up that we see every day. The first
person in line is the first person served (i.e., first-come-first-
served). When people arrive, they go to the back of the line. People get served from the front
of the line first. Therefore, with a queue, we add to the back and remove from the front.
We are not allowed to insert or remove elements from the middle of the queue. Why is this
restriction a good idea ? Well, depending on how the queue is implemented, it can be more
efficient (i.e., faster) to insert and remove elements since we know that all such changes will
occur at the front or back of the queue. Removing from the front may then simply require
moving the “front-of-the-line pointer” instead of shifting elements over. Also, adding to the
back may require extending the “back-of-the-line pointer”. Typical methods for Queues are:

add(Object x)

Insert object x at the end of the queue. This
operation is sometimes called push(x) or
enqueue(x).

e.g., aQueue.add(x) will do this →

remove()

Remove and return the object at the front of the
queue. The next item in the queue becomes
the front item. This operation is sometimes
called pop() or dequeue().

e.g., x = aQueue.remove() will return 23 →

peek()

Return (but do not remove) the object at the
front of the queue. This operation is
sometimes called front().

e.g., x = aQueue.peek() will do this →

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 278-

size(), isEmpty() and clear() Does the same as with lists

Another more specialized type of queue is the PriorityQueue:

A PriorityQueue is a queue in which the elements also maintain a priority.

That is, we still add to the back of the queue and remove from the front, but elements with
higher priority are automatically shifted closer to the front before lower priority elements.

As a real life example, when we go to the hospital for an
“emergency”, we wait in line (6 to 8 hours typically). We normally get
served in the order that we came in at. However, if someone comes
in after us who is bleeding or unconscious, they automatically get
bumped up ahead of us since their injuries are likely more serious
and demand immediate attention. We may think of a PriorityQueue
as a sorted queue.

The PriorityQueue is used in the same way as a regular Queue,
except that we must ensure that each element added to the queue is
given a priority. Hence, we are sometimes required to specify the
priority of an item when we add it to the queue:

add(int priority, Object x)

However, in JAVA, we simply include the priority of an object as part of the object itself, and so
we will just use add(Object x) for priority queues in this course.

Example:

Consider the following Person class definition:

public class Person {

 protected String name;

 protected int age;

 public Person(String n, int a) {

 name = n;

 age = a;

 }

 public int getAge() { return age; }

 public String getName() { return name; }

 public String toString() {

 return age + " year old " + name;

 }

}

How could we simulate some people getting in a lineup and being served on a first-come-first-
served basis ? We can use a Queue to do this. In JAVA, there are a few different

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 279-

implementations of the Queue ADT. We will use the one called ArrayBlockingQueue which
is in the java.util.concurrent package. Here is a simple test program that creates a lineup
and then serves the people one at a time by taking the first person in line each time. Notice
how the code is arranged so that a nice log output is obtained that we can follow along with to
see if our program does what it is supposed to be doing.

import java.util.concurrent.ArrayBlockingQueue;

public class QueueTestProgram {

 public static void main(String[] args) {

 ArrayBlockingQueue<Person> lineup;

 lineup = new ArrayBlockingQueue<Person>(10);

 System.out.print("Adding three customers to the line ... ");

 lineup.add(new Person("Bob", 12));

 lineup.add(new Person("Mary", 6));

 lineup.add(new Person("Steve", 10));

 System.out.println("Here is who is in line at the moment:");

 System.out.println(lineup);

 System.out.print("Serving next customer ... ");

 System.out.println(lineup.remove());

 System.out.println("Here is who is in line now:");

 System.out.println(lineup);

 System.out.print("Serving another customer ... ");

 System.out.println(lineup.remove());

 System.out.println("Here is who is in line now:");

 System.out.println(lineup);

 System.out.print("Adding three more customers to the line ... ");

 lineup.add(new Person("Ralph", 16));

 lineup.add(new Person("Jen", 13));

 lineup.add(new Person("Max", 18));

 System.out.println("Here is who is in line now:");

 System.out.println(lineup);

 System.out.print("Serving next customer ... ");

 System.out.println(lineup.remove());

 System.out.println("Here is who is in line now:");

 System.out.println(lineup);

 System.out.print("Adding four customers to the line ... ");

 lineup.add(new Person("Dave", 4));

 lineup.add(new Person("Sam", 17));

 lineup.add(new Person("Lyn", 8));

 lineup.add(new Person("Betty", 9));

 System.out.println("Here is who is in line now:");

 System.out.println(lineup);

 System.out.print("Here is who is at the front of the line ...");

 System.out.println(lineup.peek());

 System.out.print("Serving next customer ... ");

 System.out.println(lineup.remove());

 System.out.println("Here is who remains in the line:");

 System.out.println(lineup);

 System.out.println("Serving all remaining customers ... ");

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 280-

 while(!lineup.isEmpty()) {

 System.out.print("Serving next customer ... ");

 System.out.println(lineup.remove());

 }

 System.out.println("Here is who remains in the line:");

 System.out.println(lineup);

 }

}

Here is the output that is produced:

Adding three customers to the line ... Here is who is in line at the moment:

[12 year old Bob, 6 year old Mary, 10 year old Steve]

Serving next customer ... 12 year old Bob

Here is who is in line now:

[6 year old Mary, 10 year old Steve]

Serving another customer ... 6 year old Mary

Here is who is in line now:

[10 year old Steve]

Adding three more customers to the line ... Here is who is in line now:

[10 year old Steve, 16 year old Ralph, 13 year old Jen, 18 year old Max]

Serving next customer ... 10 year old Steve

Here is who is in line now:

[16 year old Ralph, 13 year old Jen, 18 year old Max]

Adding four customers to the line ... Here is who is in line now:

[16 year old Ralph, 13 year old Jen, 18 year old Max, 4 year old Dave, 17

year old Sam, 8 year old Lyn, 9 year old Betty]

Here is who is at the front of the line ...16 year old Ralph

Serving next customer ... 16 year old Ralph

Here is who remains in the line:

[13 year old Jen, 18 year old Max, 4 year old Dave, 17 year old Sam, 8 year

old Lyn, 9 year old Betty]

Serving all remaining customers ...

Serving next customer ... 13 year old Jen

Serving next customer ... 18 year old Max

Serving next customer ... 4 year old Dave

Serving next customer ... 17 year old Sam

Serving next customer ... 8 year old Lyn

Serving next customer ... 9 year old Betty

Here is who remains in the line:

[]

Example:

In a PriorityQueue, when we add items, they usually get shuffled around inside according to
their priority. Therefore, we may not necessarily know the order of the items afterwards …
except that they will be in some sort of prioritized order.

Consider the QueueTestProgram. We can change the ArrayBlockingQueue to
PriorityQueue to have a prioritized queue for our people. However, if we were to run the
code, we would get an exception:

java.lang.ClassCastException: Person cannot be cast to java.lang.Comparable

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 281-

The problem is that JAVA does not know how to compare Person objects in order to be able
to sort them. It is telling us that Person must implement the Comparable interface. Instead
of supplying a priority when we add the objects to the queue, the items are sorted by means of
a Comparable interface. That means, each object that we store in the PriorityQueue,
must implement methods compareTo() … which are used determine the sort order (i.e.,
priority).

So, we should add implements Comparable<Person> to the Person class definition:

public class Person implements Comparable<Person> {

 ...

}

Interestingly, the additional <Person> at the end of Comparable indicates to JAVA that we will
only be comparing Person objects, not Person objects with other types of objects.

But how do we write a compareTo() method ? It takes a single object parameter:

public int compareTo(Person p) { ... }

The method returns an int. This integer reflects the ordering
between the receiver and the parameter. If a negative value is
returned from the method, this informs JAVA that the receiver has
higher priority (i.e., comes before in the ordering) than the incoming
parameter object. Likewise, a positive value indicates lower priority
and a zero value indicates that they are equal priority.

Let's now give it a try for Person objects. If we want to prioritize by means of their increasing
ages (i.e., younger first), this would be the compareTo() method:

public int compareTo(Person p) {

 return (this.age - p.age);

}

Assume now that we ran the following program:

import java.util.PriorityQueue;

public class PriorityQueueTestProgram {

 public static void main(String[] args) {

 PriorityQueue<Person> lineup;

 lineup = new PriorityQueue<Person>(10); // at most 10 allowed in line

 System.out.print("Adding 10 customers to the line ... ");

 lineup.add(new Person("Bob", 12));

 lineup.add(new Person("Mary", 6));

 lineup.add(new Person("Steve", 10));

 lineup.add(new Person("Ralph", 16));

 lineup.add(new Person("Jen", 13));

 lineup.add(new Person("Max", 18));

 lineup.add(new Person("Dave", 4));

 lineup.add(new Person("Sam", 17));

 lineup.add(new Person("Lyn", 8));

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 282-

 lineup.add(new Person("Betty", 9));

 System.out.println("Here is who is in line now:");

 System.out.println(lineup);

 System.out.print("Here is who is at the front of the line ...");

 System.out.println(lineup.peek());

 System.out.println("Serving all customers ... ");

 while(!lineup.isEmpty()) {

 System.out.print("Serving next customer ... ");

 System.out.println(lineup.remove());

 }

 System.out.println("Here is who remains in the line:");

 System.out.println(lineup);

 }

}

Interestingly, the output is as follows:

Adding 10 customers to the line ... Here is who is in line now:

[4 year old Dave, 8 year old Lyn, 6 year old Mary, 12 year old Bob, 9 year

old Betty, 18 year old Max, 10 year old Steve, 17 year old Sam, 16 year old

Ralph, 13 year old Jen]

Here is who is at the front of the line ...4 year old Dave

Serving all customers ...

Serving next customer ... 4 year old Dave

Serving next customer ... 6 year old Mary

Serving next customer ... 8 year old Lyn

Serving next customer ... 9 year old Betty

Serving next customer ... 10 year old Steve

Serving next customer ... 12 year old Bob

Serving next customer ... 13 year old Jen

Serving next customer ... 16 year old Ralph

Serving next customer ... 17 year old Sam

Serving next customer ... 18 year old Max

Here is who remains in the line:

[]

Notice that the items in the queue do not seem sorted at all ! That is because a
PriorityQueue does not actually sort the items, it simple makes sure that the item at the front
of the queue is the one with highest priority. In this case, that is the youngest person … which
is indeed at the front of the queue. To get the items in sorted order, we simply extract them
from the queue one at a time as shown in the while loop from the code above. Indeed, you
can see that as we extract the items one at a time, they come out in properly prioritized order.

What if we wanted to prioritize the people by their last names instead ? To do this, we would
need to alter the compareTo() method to compare names, not ages like this:

public int compareTo(Person p) {

 return (this.name.compareTo(p.name));

}

Notice that there is a compareTo() method in the String class. This compares two strings
alphabetically, making sure that the first one in alphabetical order has higher priority.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 283-

What if we want to be able to sort multiple different ways in our program ? That is, sometimes
we might want to sort increasing by age, decreasing by age, alphabetical, by phone number,
etc.. To do this, we can define some static constants in the Person class ... one for each kind
of sorting strategy ... and then create a static/class variable that indicates which sort strategy
that we want to use at any time. Then, in the compareTo() method, we could simply check
that static variable and make our decision as to how to sort. Here is the code:

public class Person implements Comparable<Person> {

 public static final byte ALPHABETICAL = 0;

 public static final byte INCREASING_AGE = 1;

 public static final byte DECREASING_AGE = 2;

 public static byte SortStrategy = INCREASING_AGE;

 protected String name;

 protected int age;

 public Person(String n, int a) {

 name = n;

 age = a;

 }

 public int compareTo(Person p) {

 switch(SortStrategy) {

 case ALPHABETICAL: return name.compareTo(p.name);

 case INCREASING_AGE: return age - p.age;

 case DECREASING_AGE: return p.age - age;

 }

 return 0;

 }

 public int getAge() { return age; }

 public String getName() { return name; }

 public String toString() {

 return age + " year old " + name;

 }

}

Then to test it out, we simply set the SortStrategy at any time:

import java.util.PriorityQueue;

public class PriorityQueueTestProgram2 {

 public static void main(String[] args) {

 PriorityQueue<Person> lineup = new PriorityQueue<Person>(10);

 System.out.println("Adding 10 customers to the line ... ");

 lineup.add(new Person("Bob", 12));

 lineup.add(new Person("Mary", 6));

 lineup.add(new Person("Steve", 10));

 lineup.add(new Person("Ralph", 16));

 lineup.add(new Person("Jen", 13));

 lineup.add(new Person("Max", 18));

 lineup.add(new Person("Dave", 4));

 lineup.add(new Person("Sam", 17));

 lineup.add(new Person("Lyn", 8));

 lineup.add(new Person("Betty", 9));

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 284-

 // Set priority to be alphabetically

 Person.SortStrategy = Person.ALPHABETICAL;

 // Since items are sorted when added, we need to re-add every item again:

 ArrayList<Person> items = new ArrayList<Person>(lineup);

 lineup.clear();

 lineup.addAll(items);

 System.out.println("Serving all customers ... ");

 while(!lineup.isEmpty()) {

 System.out.print("Serving next customer ... ");

 System.out.println(lineup.remove());

 }

 }

}

Here is the output ... notice how the people are removed in alphabetical order of their name:

Adding 10 customers to the line ...

Serving all customers ...

Serving next customer ... 9 year old Betty

Serving next customer ... 12 year old Bob

Serving next customer ... 4 year old Dave

Serving next customer ... 13 year old Jen

Serving next customer ... 8 year old Lyn

Serving next customer ... 6 year old Mary

Serving next customer ... 18 year old Max

Serving next customer ... 16 year old Ralph

Serving next customer ... 17 year old Sam

Serving next customer ... 10 year old Steve

 8.4 The Deque ADT

Consider the Deque ADT:

A deque is an abstract data type that is analogous

to a double-ended queue. Elements are
added/removed to/from either end.

A deque allows us to add/remove from the front or the back
of the queue at any time, but modifications to the middle are
not allowed. It has the same advantages of a regular single-
ended queue, but is a little more flexible in that it allows
removal from the back of the queue and insertion at the front.
An example of where we might use a deque is when we implement “Undo” operations in a
piece of software. Each time we do an operation, we add it to the front of the deque. When
we do an undo, we remove it from the front of the deque. Since undo operations usually have
a fixed limit defined somewhere in the options (i.e., maximum 20 levels of undo), we remove
from the back of the deque when the limit is reached. Typical methods for Deques are:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 285-

addFirst(Object x) and addLast(Object x)

Insert object x at the front (or back) of the
deque.

e.g., aDeque.addLast(x) will do this →

removeFirst() and removeLast()

Remove and return the object at the front (or
back) of the deque. The next item in the deque
becomes the front (or back) item.

e.g., x = aDeque.removeFirst() will return 23 →

peekFirst() and peekLast()

Return (but do not remove) the object at the
front (or back) of the deque.

e.g., x = aDeque.peekFirst() will do this →

size(), isEmpty() and clear() Does the same as with queues

Example:

Consider simulating an "undo list". Many applications allow the user to perform various
operations and then select undo to undo a mistake that was made. Often, programs will allow
you to select undo many times to undo many previous operations in sequence. However,
most programs have a limit of how many times you can undo (e.g., at most 20 undo
operations). After the limit is reached, it is impossible to undo the older operations.

In JAVA, we can use an ArrayDeque (in the java.util package) to maintain our undo deque.
Each time the user performs an operation, it is added to the end of the deque. Hence the end
of the deque has the most recent operation performed while the front of the deque has the
oldest operation performed.

Assuming that we were to set a limit of 5 undo operations. The undo deque will hold at most 5
operations. When a 6th undo operation is performed ... what do we do ? We need to add it
to the end of the deque, but then remove the oldest undo operation from the front of the deque.

Here is an example of how we could do this. The example here shows how simple operations
(in the form of Strings) can be maintained in an ArrayDeque ADT:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 286-

import java.util.ArrayDeque;

public class DequeTestProgram {

 private static int UNDO_LIST_CAPACITY = 5;

 private static ArrayDeque<String> operations;

 private static void performOperation(String x) {

 if (operations.size() == UNDO_LIST_CAPACITY)

 operations.removeFirst();

 operations.addLast(x);

 }

 private static void undo() {

 operations.removeLast();

 }

 public static void main(String[] args) {

 operations = new ArrayDeque<String>();

 System.out.println("Simulating some cut/paste/move operations ... ");

 performOperation("cut1");

 performOperation("paste1");

 performOperation("move1");

 System.out.println("Here is the undo list now: " + operations);

 System.out.println("Simulating an undo operation ...");

 undo();

 System.out.println("Here is the undo list now: " + operations);

 System.out.println("Simulating another undo operation ...");

 undo();

 System.out.println("Here is the undo list now: " + operations);

 System.out.println("Simulating some more cut/paste/move operations ... ");

 performOperation("cut2");

 performOperation("paste2");

 performOperation("move2");

 performOperation("move3");

 System.out.println("Here is the undo list now: " + operations);

 System.out.println("Simulating some more paste operations ... ");

 performOperation("paste3");

 performOperation("paste4");

 System.out.println("Here is the undo list now: " + operations);

 }

}

Here is the output ... as you can see, the deque is maintained with a size of at most 5:

Simulating some cut/paste/move operations ...

Here is the undo list now: [cut1, paste1, move1]

Simulating an undo operation ...

Here is the undo list now: [cut1, paste1]

Simulating another undo operation ...

Here is the undo list now: [cut1]

Simulating some more cut/paste/move operations ...

Here is the undo list now: [cut1, cut2, paste2, move2, move3]

Simulating some more paste operations ...

Here is the undo list now: [paste2, move2, move3, paste3, paste4]

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 287-

 8.5 The Stack ADT

Consider the Stack ADT:

A stack is an abstract data type that stores elements in a last-

in-first-out (LIFO) order. Elements are added and removed
to/from the top only.

A stack stores items one on top of another. When a new item comes in,
we place it on the top of the stack and when we want to remove an item,
we take the top one from the stack. Stacks are used for many
applications in computer science such as syntax parsing, memory management, reversing
data, backtracking, etc..

Typical methods for Stacks are:

push(Object x)

Insert object x at the top of
the stack.

e.g., aStack.push(x)

pop()

Remove and return the
object at the top of the
stack.

e.g., x = aStack.pop()

peek()

Return (but do not remove)
the object at the top of the
stack.

e.g., x = aStack.peek()

size(), isEmpty() and clear() Does the same as lists

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 288-

Example:

Consider a math expression that contains numbers, operators
and parentheses (i.e., round brackets). How could we write a
program that takes a String representing a math expression
and then determines whether or not the brackets match
properly (i.e., each opening bracket has a matching closing
bracket in the right order) ?

"((23 + 4 * 5) - 34) + (34 - 5))" // no match

"((23 + 4 * 5) - 34) + ((34 - 5)" // no match

"((23 + 4 * 5) - 34) + (34 - 5)" // match

How would we approach solving this problem? Well, we need to understand the process. I’m
sure that you realize that we need to look at all the String’s characters. Perhaps from start to
end with a loop, but then what do we do ?

Let's assume that we are not interested in determining whether the formula makes sense but
rather that each opening bracket is matched by a closing bracket. Therefore, we are

interested in the bracket characters (and), but not the other characters. When encountering

an open bracket as we go through the characters of the string, we need to do something. We
might think right away of trying to find the matching closing bracket for each open bracket, but
that is not as easy as it sounds. There are many special cases that can be tricky.

A simpler approach would be to make sure that whenever we find a closing bracket, we just
need to make sure that we already encountered an open bracket to match with it. This can
be done by keeping a count of the number of open brackets. When encountering an opening
bracket we increment the counter and when encountering a closing bracket we decrement the
counter. If, when all done, the counter is not zero, there is no match. Otherwise the brackets
match. Consider these cases:

"()" // counter = 0, match

"()(" // counter = 1, no match

"(((" // counter = 3, no match

"((())())" // counter = 0, match

"(()))" // counter = -1, no match

"" // counter = 0, match

There is a special case that we did not consider. If the counter ever becomes negative before
we are done, then we must have encountered a closing bracket before an open bracket … and
there is no match:

")(" // counter = -1, no match

"())(" // counter = -1, no match

So, how do we write the code ? We can use a FOR loop and some IF statements to check for
brackets as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 289-

public static boolean bracketsMatch(String s) {

 int count = 0;

 char c;

 for (int i=0; i<s.length(); i++) {

 c = s.charAt(i);

 if (c == '(') count++;

 if (c == ')') count--;

 if (count < 0)

 return false;

 }

 return count == 0;

}

Here is a test program to try it out:

import java.util.*;

public class BracketMatchTestProgram {

 public static boolean bracketsMatch(String s) { /* code as above */ }

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 String aString;

 do {

 System.out.println("Please enter expression: (<cr> to quit)");

 aString = keyboard.nextLine();

 if (bracketsMatch(aString))

 System.out.println("The brackets match");

 else

 System.out.println("The brackets do not match");

 } while (aString.length() > 0);

 }

}

Here are some testing results:

Please enter expression: (<cr> to quit)

((23 + 4 * 5) - 34) + (34 - 5))

The brackets do not match

Please enter expression: (<cr> to quit)

((23 + 4 * 5) - 34) + ((34 - 5)

The brackets do not match

Please enter expression: (<cr> to quit)

((23 + 4 * 5) - 34) + (34 - 5)

The brackets match

Please enter expression: (<cr> to quit)

()

The brackets match

Please enter expression: (<cr> to quit)

()(

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 290-

The brackets do not match

Please enter expression: (<cr> to quit)

(((

The brackets do not match

Please enter expression: (<cr> to quit)

((())())

The brackets match

Please enter expression: (<cr> to quit)

(()))

The brackets do not match

Please enter expression: (<cr> to quit)

)(

The brackets do not match

Please enter expression: (<cr> to quit)

The brackets match

I think that our solution works fine. The bracket-matching example above is not very difficult,

but what if we have 3 kinds of brackets (, [, and { ? Consider this example:

"{2 +(3 *[4 - 5}])" // not supposed to match

Maybe we can keep 3 counters ? If we just keep three counters separately, we cannot tell
whether the brackets are well-formed with respect to one another (e.g., closing round bracket
for opening round bracket). We somehow need to know the ordering of each type of bracket
so that we can ensure the reverse ordering when we find the closing brackets.

The need for backtracking may seem a little clearer if we consider a different application of the
bracket matching program. Suppose that we want to match the brackets in our JAVA code…

 public class PrintWriterTestProgram {
public static void main(String[] args) {

try {
BankAccount aBankAccount;

PrintWriter out;

aBankAccount = new BankAccount("Rob Banks");

aBankAccount.deposit(100);

out = new PrintWriter(new FileWriter("myAccount2.dat"));

out.println(aBankAccount.getOwner());

out.println(aBankAccount.getAccountNumber());

out.println(aBankAccount.getBalance());

out.close();

} catch (FileNotFoundException e) {

System.out.println("Error: Cannot open file for writing");

} catch (IOException e) {

System.out.println("Error: Cannot write to file");

}

}

}

Here we see, for example, that the portion of code inside the class definition must have all of
its brackets matching, and that involves matching the code inside the main method’s body and

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 291-

then within the try block etc… The compiler does this kind of bracket-matching to make sure
that your code is well-formed.

The stack data structure is designed for this purpose. It allows us to back-track … which is
essentially what we need to do when finding a closing bracket. Here is how we can use a
stack. When we find an open bracket, we put it on the top of the stack, regardless of its type.
When we find a closing bracket, we take the top opening bracket from the stack and check to
see if it is the same type as the closing bracket. If not, the brackets are in the wrong order,
otherwise all is fine and we continue onwards. If, when encountering a closing bracket, we
find that the stack is empty, then there is no match either.

Let's look at the code. In JAVA, we make a Stack by simply calling its constructor:

Stack aStack = new Stack();

However, in our case, we are going to be placing bracket characters on the stack. Therefore
we should specify this as follows:

Stack<Character> aStack = new Stack<Character>();

Then, we need to use the appropriate Stack methods: Here is the resulting code:

public static boolean bracketsMatch2(String s) {

 Stack<Character> aStack;

 char c;

 aStack = new Stack<Character>();

 for (int i=0; i<s.length(); i++) {

 c = s.charAt(i);

 if ((c == '(') || (c == '[') || (c == '{')) // got open bracket

 aStack.push(c);

 if ((c == ')') || (c == ']') || (c == '}')) { // got closed bracket

 if (aStack.isEmpty())

 return false; // no open bracket for this closed one

 char top = aStack.pop(); // get the last opening bracket found

 if (((c == ')') && (top != '(')) ||

 ((c == ']') && (top != '[')) ||

 ((c == '}') && (top != '{')))

 return false; // wrong closing bracket for last opened one

 }

 }

 return aStack.isEmpty(); // No match if brackets are left over

}

Notice in the above code that it never has return true anywhere. In fact, it is only at the very
end, once we have checked all characters that there is a chance for the method to return true.
This will happen if the stack is empty (i.e., all open brackets have been matched with closing
ones). If desired, you can simplify the above code by replacing the IF statements with a
SWITCH statement as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 292-

switch(c) {

 case '(':

 case '[':

 case '{':

 aStack.push(c); // got open bracket

 break;

 case ')':

 if (aStack.isEmpty() || (aStack.pop() != '('))

 return false;

 break;

 case ']':

 if (aStack.isEmpty() || (aStack.pop() != '['))

 return false;

 break;

 case '}':

 if (aStack.isEmpty() || (aStack.pop() != '{'))

 return false;

 break;

}

Here are some testing results that we would obtain if we replaced our previous
bracketsMatch() method with this new method:

Please enter the expression: (just <cr> to quit)
](){}[
The brackets do not match
Please enter the expression: (just <cr> to quit)
()[]{}
The brackets match
Please enter the expression: (just <cr> to quit)
{{(([[]]))}}
The brackets match
Please enter the expression: (just <cr> to quit)
{{{{{{
The brackets do not match
Please enter the expression: (just <cr> to quit)
}}}}}}
The brackets do not match
Please enter the expression: (just <cr> to quit)
((()[]{})[()[]{])
The brackets do not match
Please enter the expression: (just <cr> to quit)
The brackets match

Challenge: Could you adjust the code above to read in a JAVA file instead of using a fixed

string and have it ensure that the brackets match ? Chapter 11 discusses file I/O.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 293-

 8.6 The Set ADT

Consider the Set ADT:

A set is an abstract data type that does not allow duplicate

elements to be added.

That is, there cannot be two elements e1 and e2 such that
e1.equals(e2). Any attempt to add duplicate elements is ignored.
Sets differ from Lists in that the elements are not kept in the same
order as when they were added. Sets are generally unordered,
which means that the particular location of an element may change according to the particular
set implementation.

Typical operations for Sets are:

• add(Object x)

• remove(Object x)

These operations work similar to that of Lists with the exception that the elements are not
necessarily maintained in the same order that they were added in. Also, items are not
guaranteed to be added to the Set because the add() operation will not allow any duplicate
items to be added.

Example:

Suppose we wanted to maintain a list of DVD titles in our personal movie collection. Likely we
do not want to have two or more of the same DVD. We can use a Set to avoid duplicates. In
JAVA, we use the HashSet class which is in the java.util package. Consider a simple Movie
class as follows:

public class Movie {

 private String title;

 public Movie(String t) { title = t; }

 public String getTitle() { return title; }

 public String toString() {

 return "Movie: \"" + title + "\"";

 }

}

Now consider the following code which simulates some inventory at a dvd-rental store. The
code makes use of the simple Movie object by adding 10 movies from among 5 unique titles
… hence many duplicates. The code makes us of Math.random() so that the inventory is
different each time we run the program.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 294-

import java.util.*;

public class SetTestProgram1 {

 public static void main(String[] args) {

 Movie[] dvds = {new Movie("Bolt"),

 new Movie("Monsters Vs. Aliens"),

 new Movie("Marley & Me"),

 new Movie("Hotel For Dogs"),

 new Movie("The Day the Earth Stood Still")};

 ArrayList<Movie> inventory = new ArrayList<Movie>();

 // Add 10 random movies from the list of dvds

 for (int i=0; i<10; i++) {

 inventory.add(dvds[(int)(Math.random()*5)]);

 }

 for (Movie m: inventory)

 System.out.println(m);

 }

}

Of course, each time that we run this code the result is different. Here is an example of what
we may see:

Movie: "Bolt"

Movie: "The Day the Earth Stood Still"

Movie: "Bolt"

Movie: "Marley & Me"

Movie: "Monsters Vs. Aliens"

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "Bolt"

Movie: "Bolt"

Movie: "Bolt"

Can we adjust the FOR loop so that it only displays unique movies ? No. We would have to
do some extra work of making a new list with the duplicates removed. So, we could replace
the FOR loop with the following:

ArrayList<Movie> uniqueList = new ArrayList<Movie>();

for (Movie m: inventory) {

 if (!uniqueList.contains(m))

 uniqueList.add(m);

}

for (Movie m: uniqueList) {

 System.out.println(m);

}

This would produce the following output (according to the earlier results):

Movie: "Bolt"

Movie: "The Day the Earth Stood Still"

Movie: "Marley & Me"

Movie: "Monsters Vs. Aliens"

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 295-

However, there is an easier way to do this. Consider what happens if we change the
inventory from an ArrayList to a HashSet as follows:

HashSet<Movie> inventory = new HashSet<Movie>();

Our code would produce the following output (which varies according to the randomness):

Movie: "Monsters Vs. Aliens"

Movie: "Bolt"

Movie: "The Day the Earth Stood Still"

Movie: "Marley & Me"

Notice that the duplicates were removed. The HashSet prevented any duplicates from being
added. Therefore, we have lost all duplicate copies from our inventory, which can be bad.
Perhaps it would be better to only use a HashSet when displaying the inventory, so that we
don’t destroy the duplicate movies. This is easily done by creating an extra HashSet variable
(displayList in this case) and using the HashSet constructor that takes a Collection
parameter:

import java.util.*;

public class SetTestProgram2 {

 public static void main(String[] args) {

 Movie[] dvds = {new Movie("Bolt"),

 new Movie("Monsters Vs. Aliens"),

 new Movie("Marley & Me"),

 new Movie("Hotel For Dogs"),

 new Movie("The Day the Earth Stood Still")};

 ArrayList<Movie> inventory = new ArrayList<Movie>();

 // Add 10 random movies from the list of dvds

 for (int i=0; i<10; i++) {

 inventory.add(dvds[(int)(Math.random()*5)]);

 }

 System.out.println("Here are the unique movies:");

 HashSet<Movie> displayList = new HashSet<Movie>(inventory);

 for (Movie m: displayList)

 System.out.println(m);

 System.out.println("\nHere is the whole inventory:");

 for (Movie m: inventory)

 System.out.println(m);

 }

}

Notice the parameter to the HashSet constructor. This constructor will ensure to add all the
elements from the inventory collection to the newly create HashSet. Then, in the FOR loop,
we use this new HashSet for display purposes, while the original inventory remains unaltered.
Here is the output:

Here are the unique movies:

Movie: "The Day the Earth Stood Still"

Movie: "Bolt"

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 296-

Movie: "Monsters Vs. Aliens"

Movie: "Hotel For Dogs"

Here is the whole inventory:

Movie: "Bolt"

Movie: "Bolt"

Movie: "Bolt"

Movie: "Monsters Vs. Aliens"

Movie: "The Day the Earth Stood Still"

Movie: "Hotel For Dogs"

Movie: "Bolt"

Movie: "Monsters Vs. Aliens"

Movie: "Monsters Vs. Aliens"

Movie: "Bolt"

So, it is easy to remove duplicates from any collection … we simply create a new HashSet
from the collection and it removes the duplicates for us.

However, there is one potential problem with our code. In the above code, the duplicate
movies all represented the same exact object in memory … that is … all duplicates were
identical to one another. However, it is more common to have two equal movies which are not
identical. So, consider this code … notice the equal (but not identical) Movie objects:

import java.util.*;

public class SetTestProgram3 {

 public static void main(String[] args) {

 Movie[] dvds = {new Movie("Bolt"),

 new Movie("Monsters Vs. Aliens"),

 new Movie("Marley & Me"),

 new Movie("Monsters Vs. Aliens"),

 new Movie("Hotel For Dogs"),

 new Movie("Hotel For Dogs"),

 new Movie("Monsters Vs. Aliens"),

 new Movie("The Day the Earth Stood Still"),

 new Movie("The Day the Earth Stood Still"),

 new Movie("The Day the Earth Stood Still"),

 new Movie("The Day the Earth Stood Still")};

 ArrayList<Movie> inventory = new ArrayList<Movie>();

 // Add 10 random movies from the list of dvds

 for (int i=0; i<10; i++) {

 inventory.add(dvds[(int)(Math.random()*11)]);

 }

 System.out.println("Here are the unique movies:");

 HashSet<Movie> displayList = new HashSet<Movie>(inventory);

 for (Movie m: displayList)

 System.out.println(m);

 System.out.println("\nHere is the whole inventory:");

 for (Movie m: inventory)

 System.out.println(m);

 }

}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 297-

Here is the result:

Here are the unique movies:

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "Bolt"

Movie: "Marley & Me"

Movie: "Monsters Vs. Aliens"

Movie: "Monsters Vs. Aliens"

Here is the whole inventory:

Movie: "Marley & Me"

Movie: "Monsters Vs. Aliens"

Movie: "The Day the Earth Stood Still"

Movie: "Monsters Vs. Aliens"

Movie: "Bolt"

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Notice that there are many duplicates still in the Set. The problem is that the Set classes
make use of a particular method in order to determine whether or not an object is the same as
another one already in the set. The method used by java to determine equality between
objects is called the equals(Object x) method. So, in general, the equals() method can be
used to compare any two objects to determine whether or not they are the same:

anObject.equals(anotherObject) // returns either true or false

All objects in JAVA have a default inherited equals() method which resides in the Object
class. Unfortunately however, this default equals() method does the following:

 public boolean equals(Object x) {

 return (this == x);

 }

Therefore, the method, by default, will only return true if the object is the same exact object as
x (i.e., the same memory location reference). Therefore, when we compare two Movie objects
that were created using their own constructors, these movies can never be equal by default
since they each reside in their own individual memory locations.

 Movie m1 = new Movie("Monsters Vs. Aliens");

 Movie m2 = new Movie("Monsters Vs. Aliens");

 Movie m3 = m2;

 m1.equals(m2); // returns false

 m2.equals(m3); // returns true

In order to avoid this problem, we need to re-define the equals() method for our example.
That is, we need to make our own equals() method for the Movie objects that overrides the
one up in the Object class. To do this, we simply write the following method in the Movie
class:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 298-

public boolean equals(Object x) {

if (!(x instanceof Movie))

 return false;

return title.equals(((Movie)x).title);

}

Notice that the method returns a boolean and takes a single parameter of type Object. This
is a general parameter that allows us to compare the Movie with any type of object. Of
course, if the parameter is not actually a Movie object, then the result should be false. This
test is done using the instanceof keyword in JAVA that determines whether an object is an
instance of a particular class.

Once we do that, we then need to decide what it means for two movies to be considered
equal. For simplicity, we will assume that two Movie objects are equal if they have the same
title. Notice that we simply ask the movies for their titles and then use the equals() method
from the String class (already written to compare characters). One added point is that we
need to typecast the parameter x to a Movie object.

Logically, the addition of this equals() method should solve the problem.
However, it does not quite. As it turns out, in JAVA, Sets make use of a
programming technique called hashing. Hashing is used as a way of quickly
comparing and sorting objects because it quickly identifies objects that
cannot be equal to one another, without needing to go deep down
inside the object to make comparisons. For example, if you had an
apple and a pineapple, they are clearly not equal. You need not compare
them closely because a simple quick glance tells you that they are not the
same.

In real life, hashing is used by post offices when sorting mail
at various levels. First, they look at the destination country
and make two piles … domestic mail vs. international mail.
That is a quick “hash” in that the postmen do not need to
examine any further details at that time … such as street
names and recipient names etc… Then they "hash" again
later by using the postal code to determine "roughly" and
“quickly” the area of a city that your mail needs to be
delivered to. This allows them to make a pile of mail for all
people living in the same area. At each level of “sorting” the
mail (i.e., country, city, postal code, street), the postmen must
make a quick decision as to which pile to place the mail item
into. This quick decision is based on something called a
hash function (or hash code).

In JAVA, for Sets to work properly, we must also write a hashCode() method for our objects.
These methods return an int which represents the “pile” that the object belongs to. Similar
objects will have similar hash codes, and therefore end up in the same “pile”. Here is a
hashCode() method for our Movie object:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 299-

public int hashCode() {

 return title.hashCode();

}

It must be public, return an int and have no parameters. The code simply returns the hash
code of the title string for the Movie. We do not wish to go into details here as to “how” to
produce a proper hash code. Instead, let us simply use this “rule of thumb”: the hash code for
our objects should return a sum of all the hash codes of its attributes. If an attribute is a
primitive, just convert it to an integer in some way and use that value in the hashCode()
method’s total value.

Now, the code in SetTestProgram3 will work as desired ... removing all duplicates.

Example:

You will notice in the previous example, that the HashSet did not sort the items. Also, the
items don’t even appear in the order that they were added. Instead, the order seems
somewhat random and arbitrary.

If you want the items in sorted order, you can use a TreeSet instead of a HashSet:

TreeSet<Movie> displayList = new TreeSet<Movie>(inventory);

Of course, as we did with PriorityQueues, we will need to make sure that our Movie class
implements the Comparable<Movie> interface and thus has a compareTo() method. Here is
the completed Movie class that will work with both HashSet and TreeSet:

public class Movie implements Comparable<Movie> {

 private String title;

 public Movie(String t) { title = t; }

 public String getTitle() { return title; }

 public String toString() { return "Movie: \"" + title + "\""; }

 public boolean equals(Object obj) {

 if (!(obj instanceof Movie)) return false;

 return title.equals(((Movie)obj).title);

 }

 public int hashCode() {

 return title.hashCode();

 }

 public int compareTo(Movie m) {

 return title.compareTo(m.title);

 }

}

Here is the output from our SetTestProgram3 when using TreeSet instead of HashSet:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 300-

Here are the unique movies:

Movie: "Bolt"

Movie: "Hotel For Dogs"

Movie: "Marley & Me"

Movie: "Monsters Vs. Aliens"

Movie: "The Day the Earth Stood Still"

Here is the whole inventory:

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "The Day the Earth Stood Still"

Movie: "Marley & Me"

Movie: "Monsters Vs. Aliens"

Movie: "Hotel For Dogs"

Movie: "Monsters Vs. Aliens"

Movie: "Marley & Me"

Movie: "Bolt"

Notice the sorted order of the movies from the TreeSet.

 8.7 The Dictionary/Map ADT

Sometimes we want to store data in an organized
manner that allows us to quickly find what we are
looking for. For example, consider a video store.
Isn't it a nice idea to have the movies arranged by
category so that you don't waste time looking over
movies that are not of an interesting nature (such
as musicals or perhaps children’s movies) ?

You may also agree that it is easy to find a
definition of a word in a dictionary because the
definition is paired up with the word that it defines.
Once we know the word that we want to look up,
then we can find its definition. The word is therefore the unique key to finding the definition.
We say that the definition of the word is the value associated with that key word. Likewise, a
person's phone number is paired up with his/her name in a phonebook so that we can find
numbers easily based the person's name as the key identifier. We say that the phone number
is the value for the particular key person.

This idea of a key-value pairing (or mapping) is the basis of the Dictionary ADT:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 301-

A dictionary is an abstract data type that stores a collection of unique keys and

their associated values. Each key is associated with a single value.

The key is always necessary in order to access a particular value in the dictionary. Like the
Collection interface, the Map interface stores objects as well. So what is different ? Well, a
Map stores things in a particular way such that the objects can be easily located later on. A
Map really means a "Mapping" of one object to another. A Map does not keep items in any
particular index order, as with lists. In a way, however, instead of having integer indices, a
Map has arbitrary objects as indices. So just as a unique index into a list or array identifies
the object at that location, the key in the Map identifies the object associated with it.

The basic methods for inserting, removing, accessing and modifying items from a Map are as
follows:

put(Object k, Object v)

Place object v in the map with key k.
If there is already a value at key k, it is
replaced by v.

e.g., aMap.put("Bob", "555-4444")

will do this →

get(Object k)

Return the value currently associated
with key k. If k is not in the map yet,
then null is returned.

e.g., v = aMap.get("Bob") will

return v →

remove(Object k)

Remove they key/value pair associated
with key k from the Map. Usually, the
value associated with the key is
returned.

e.g., v = aMap.remove("Bob") will

do this →

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 302-

size()

Return the number of keys in the list.

e.g., n = aMap.size() will return 4 →

clear()

Remove all elements from the list.

There are additional methods often available for convenience sake. Here are some:

containsKey(Object k)

Return true if there is an entry in the map
with key k, otherwise return false.

e.g., b = aMap.containsKey("Bob")

will return true →
e.g., b = aMap.containsKey("Max")

will return false →

containsValue(Object v)

Return true if there is an entry in the map
with value v, otherwise return false.

e.g., b = aMap.containsValue("555-1111")

will return true →
e.g., b = aMap.containsValue("Jill")

will return false →

keySet()

Return a Set containing all keys in the map.

e.g., s = aMap.keySet()
will return ["Joe", "Jen", "Jill", "Bob"] →

values()

Return a Collection of all values in the map.

e.g., c = aMap.values()

will return ["555-1111","555-2222",
"555-3333", "555-4444"] →

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 303-

isEmpty()

Return true if the number of elements in the
list is 0, otherwise return false.

 does the same as this:

return (aMap.size() == 0);

In JAVA, the Map ADT is called a HashMap and it is located in the java.util package, which
must be imported in order to use this data type. To create a HashMap, we can simply call a
constructor from the HashMap class. Here is an example of creating a HashMap and storing
it in a variable so that we can use it:

HashMap myMap;

myMap = new HashMap();

However, we usually indicate the type of the key and the value when we declare the map:

HashMap<String, Integer> myMap;

myMap = new HashMap<String,Integer>();

There is also a TreeMap class that represents a sorted Map. That is, it maintains the keys in
sorted order.

Example:

Consider a program that keeps track of some people and their favorite movie. We can
associate a Movie object with each Person object and store them in a HashMap as follows:

import java.util.*;

public class MapTestProgram {

 public static void main(String args[]) {

 HashMap<Person, Movie> favMovies = new HashMap<Person, Movie>();

 Person pete, jack;

 favMovies.put(pete = new Person("Pete Zaria", 12),

 new Movie("Monsters Vs. Aliens"));

 favMovies.put(new Person("Rita Book", 20),

 new Movie("Marley & Me"));

 favMovies.put(new Person("Willie Maykit",65),

 new Movie("Monsters Vs. Aliens"));

 favMovies.put(new Person("Patty O'Furniture", 41),

 new Movie("Hotel For Dogs"));

 favMovies.put(new Person("Sue Permann", 73),

 new Movie("Monsters Vs. Aliens"));

 favMovies.put(new Person("Sid Down", 19),

 new Movie("Bolt"));

 favMovies.put(jack = new Person("Jack Pot", 4),

 new Movie("Bolt"));

 System.out.println("There are: " + favMovies.size() + " favorite movies");

 System.out.println("Pete's favorite movie is: " + favMovies.get(pete));

 System.out.println("Jack's favorite movie is: " + favMovies.get(jack));

 System.out.println("The Map keys are:" + favMovies.keySet());

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 304-

 System.out.println("The Map values are:" + favMovies.values());

 System.out.println("Removing Pete from the list ...");

 favMovies.remove(pete);

 System.out.println("Pete's favorite movie is: " + favMovies.get(pete));

 System.out.println("Is Pete in the Map ? " + favMovies.containsKey(pete));

 System.out.print("Is anyone's favorite Star Trek ? ");

 System.out.println(favMovies.containsValue(new Movie("Star Trek")));

 System.out.print("Is anyone's favorite Bolt ? ");

 System.out.println(favMovies.containsValue(new Movie("Bolt")));

 }

}

Here is the output:

There are: 7 favorite movies

Pete's favorite movie is: Movie: "Monsters Vs. Aliens"

Jack's favorite movie is: Movie: "Bolt"

The Map keys are:[4 year old Jack Pot, 65 year old Willie Maykit, 20 year old

Rita Book, 19 year old Sid Down, 73 year old Sue Permann, 41 year old Patty

O'Furniture, 12 year old Pete Zaria]

The Map values are:[Movie: "Bolt", Movie: "Monsters Vs. Aliens", Movie:

"Marley & Me", Movie: "Bolt", Movie: "Monsters Vs. Aliens", Movie: "Hotel For

Dogs", Movie: "Monsters Vs. Aliens"]

Removing Pete from the list ...

Pete's favorite movie is: null

Is Pete in the Map ? false

Is anyone's favorite Star Trek ? false

Is anyone's favorite Bolt ? true

Example:

Consider an application which represents a movie store that maintains movies
to be rented out. Assume that we have a collection of movies. When renting,
we would like to be able to find movies quickly. For example, we may want to:

• ask for a movie by title and have it found right away
• search for movies in a certain category (e.g., new release, comedy, action)
• find movies containing a specific actor/actress (e.g., Jackie Chan, Peter Sellers etc...)

Obviously, we could simply store all moves in one big ArrayList. But how
much time would we waste finding our movies ? Imagine a video store in
which the movies are not sorted in any particular order ... just randomly placed
on the shelves !! We would have to go through them one by one !!!

We will use HashMaps to store our movies
efficiently so that we can quickly get access
to the movies that we want. Let's start out
with the representation of a Movie object.
Each movie will maintain a title, list of actors
and a type (category).

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 305-

Obviously, in a real system, we would need to keep much more information such as ID, rental
history, new releases vs. oldies, etc... Here is the diagram representing the Movie object:

Let us now define this Movie class.

import java.util.*;

public class Movie {

 private String title, type;

 private ArrayList<String> actors;

 public String getTitle() { return title; }

 public String getType() { return type; }

 public ArrayList<String> getActors() { return actors; }

 public Movie() {

 this("???", "???");

 }

 public Movie(String aTitle, String aType) {

 title = aTitle;

 type = aType;

 actors = new ArrayList<String>();

 }

 public String toString() { return("Movie: \"" + title + "\""); }

 public void addActor(String anActor) { actors.add(anActor); }

}

Now let's look at the addActor() method. It merely adds the given actor (just a name) to the
actors arrayList. We can make some example methods to represent some movies. Add the
following methods to the Movie class:

public static Movie example1() {

 Movie aMovie = new Movie("The Matrix","SciFic");

 aMovie.addActor("Keanu Reeves");

 aMovie.addActor("Laurence Fishburne");

 aMovie.addActor("Carrie-Anne Moss");

 return aMovie;

}

public static Movie example2() {

 Movie aMovie = new Movie("Blazing Saddles","Comedy");

 aMovie.addActor("Cleavon Little");

 aMovie.addActor("Gene Wilder");

 return aMovie;

}

public static Movie example3() {

 Movie aMovie = new Movie("The Matrix Reloaded","SciFic");

 aMovie.addActor("Keanu Reeves");

 aMovie.addActor("Laurence Fishburne");

 aMovie.addActor("Carrie-Anne Moss");

 return aMovie;

}

public static Movie example4() {

 Movie aMovie = new Movie("The Adventure of Sherlock Holmes' Smarter Brother",

 "Comedy");

 aMovie.addActor("Gene Wilder");

 aMovie.addActor("Madeline Kahn");

 aMovie.addActor("Marty Feldman");

 aMovie.addActor("Dom DeLuise");

 return aMovie;

}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 306-

public static Movie example5() {

 Movie aMovie = new Movie("The Matrix Revolutions","SciFic");

 aMovie.addActor("Keanu Reeves");

 aMovie.addActor("Laurence Fishburne");

 aMovie.addActor("Carrie-Anne Moss");

 return aMovie;

}

public static Movie example6() {

 Movie aMovie = new Movie("Meet the Fockers","Comedy");

 aMovie.addActor("Robert De Niro");

 aMovie.addActor("Ben Stiller");

 aMovie.addActor("Dustin Hoffman");

 return aMovie;

}

public static Movie example7() {

 Movie aMovie = new Movie("Runaway Jury","Drama");

 aMovie.addActor("John Cusack");

 aMovie.addActor("Gene Hackman");

 aMovie.addActor("Dustin Hoffman");

 return aMovie;

}

public static Movie example8() {

 Movie aMovie = new Movie("Meet the Parents","Comedy");

 aMovie.addActor("Robert De Niro");

 aMovie.addActor("Ben Stiller");

 aMovie.addActor("Teri Polo");

 aMovie.addActor("Blythe Danner");

 return aMovie;

}

public static Movie example9() {

 Movie aMovie = new Movie("The Aviator","Drama");

 aMovie.addActor("Leonardo DiCaprio");

 aMovie.addActor("Cate Blanchett");

 return aMovie;

}

public static Movie example10() {

 Movie aMovie = new Movie("Envy","Comedy");

 aMovie.addActor("Ben Stiller");

 aMovie.addActor("Jack Black");

 aMovie.addActor("Rachel Weisz");

 aMovie.addActor("Amy Poehler");

 return aMovie;

}

Now we need to consider the making a MovieStore object. Recall, that we want to store
movies efficiently using HashMaps.

For the MovieStore, we will maintain three HashMaps. One will be the movieList where the
keys are titles and the values are the movie objects with that title.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 307-

The second will be the actorList which will keep actor/actress names as keys and the values
will be ArrayLists of all movies that the actor/actress stars in.

The last one will be the typeList in which the keys will be the "types" (or categories) of movies
and the values will be ArrayLists of all movies belonging to that type.

Notice that one of the movies is "red" in the picture. Why ? This represents the same exact
movie. So in fact, the reference to this movie is stored in 4 different places.

Isn't this wasteful ? Keep in mind that we are not duplicating all the movie's data ... we are
only duplicating the pointer to the Movie object. So in fact, each time we duplicate a movie in
our HashMaps, we are simply duplicating its reference (or pointer) which takes 4 bytes.

So, yes, we are taking slightly more space, but at the benefit of allowing quick access to the
data. You will learn more about efficiency when you do your second-year course on data
structures. The basic MovieStore definition is as follows:

import java.util.*;

public class MovieStore {

 private HashMap<String,Movie> movieList;

 private HashMap<String,ArrayList<Movie>> actorList;

 private HashMap<String,ArrayList<Movie>> typeList;

 public MovieStore() {

 movieList = new HashMap<String,Movie>();

 actorList = new HashMap<String,ArrayList<Movie>>();

 typeList = new HashMap<String,ArrayList<Movie>>();

 }

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 308-

 public HashMap<String,Movie> getMovieList() { return movieList; }

 public HashMap<String,ArrayList<Movie>> getActorList() { return actorList; }

 public HashMap<String,ArrayList<Movie>> getTypeList() { return typeList; }

 public String toString() {

 return ("MovieStore with " + movieList.size() + " movies.");

 }

}

Why do we NOT need "set" methods for the HashMaps ? You should be able to reason on
that. Now, how do we add a movie to the store ? Well ... how do the instance variables
change ?

• movie must be added to movieList
• movie must be added to typeList. What if it is the first/last movie from this category ?
• movie must be added to actorList. What if it is the first/last movie for this actor ?

Here is the code:

//This method adds a movie to the movieStore.

public void addMovie(Movie aMovie) {

 //Add to the movieList

 movieList.put(aMovie.getTitle(), aMovie);

 //If there is no category matching this movie's type, make a new category

 if (!typeList.containsKey(aMovie.getType()))

 typeList.put(aMovie.getType(), new ArrayList<Movie>());

 //Add the movie to the proper category.

 typeList.get(aMovie.getType()).add(aMovie);

 //Now add all of the actors

 for (String anActor: aMovie.getActors()) {

 //If there is no actor yet matching this actor, make a new actor key

 if (!actorList.containsKey(anActor))

 actorList.put(anActor, new ArrayList<Movie>());

 //Add the movie for this actor

 actorList.get(anActor).add(aMovie);

 }

}

In fact, removing a movie is just as easy:

//This private method removes a movie from the movie store

private void removeMovie(Movie aMovie) {

 //Remove from the movieList

 movieList.remove(aMovie.getTitle());

 //Remove from the type list vector. If last one, remove the type.

 typeList.get(aMovie.getType()).remove(aMovie);

 if (typeList.get(aMovie.getType()).isEmpty())

 typeList.remove(aMovie.getType());

 //Now Remove from the actors list. If actor has no more, remove him.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 309-

 for(String anActor: aMovie.getActors()) {

 actorList.get(anActor).remove(aMovie);

 if (actorList.get(anActor).isEmpty())

 actorList.remove(anActor);

 }

}

However, what if we do not have a hold of the Movie object that we want to delete ? Perhaps
we just know the title of the movie that needs to be removed. We can write a method which
asks to remove a movie with a certain title. All it needs to do is grab a hold of the movie and
then call the remove method that we just wrote.

//This method removes a movie (given its title) from the movie store

public void removeMovieWithTitle(String aTitle) {

 if (movieList.get(aTitle) == null)

 System.out.println("No movie with that title");

 else

 removeMovie(movieList.get(aTitle));

}

Well, perhaps the final thing we need to do is list the movies (or print them out). How do we do
this ? What if we want them in some kind of order ? Perhaps any order, by actor/actress, or
by type. Here's how to display them in the order that they were added to the MovieStore:

//This method lists all movie titles that are in the store

public void listMovies() {

 for (String s: movieList.keySet())

 System.out.println(s);

}

What about listing movies that star a certain actor/actress ? Well it just requires an additional
search. Can you guess which HashMap is needed ?

//This method lists all movies that star the given actor

public void listMoviesWithActor(String anActor) {

 for (Movie m: actorList.get(anActor))

 System.out.println(m);

}

Lastly, let us list all of the movies that belong to a certain category (type). For example,
someone may wish to have a list of all comedy movies in the store. It is actually very similar to
the actor version.

//This method lists all movies that have the given type

public void listMoviesOfType(String aType) {

 for (Movie m: typeList.get(aType))

 System.out.println(m);

}

Ok, now we better test everything:
public class MovieStoreTester {

 public static void main(String args[]) {

 MovieStore aStore = new MovieStore();

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 310-

 aStore.addMovie(Movie.example1());

 aStore.addMovie(Movie.example2());

 aStore.addMovie(Movie.example3());

 aStore.addMovie(Movie.example4());

 aStore.addMovie(Movie.example5());

 aStore.addMovie(Movie.example6());

 aStore.addMovie(Movie.example7());

 aStore.addMovie(Movie.example8());

 aStore.addMovie(Movie.example9());

 aStore.addMovie(Movie.example10());

 System.out.println("Here are the movies in: " + aStore);

 aStore.listMovies();

 System.out.println();

 //Try some removing now

 System.out.println("Removing The Matrix");

 aStore.removeMovieWithTitle("The Matrix");

 System.out.println("Trying to remove Mark's Movie");

 aStore.removeMovieWithTitle("Mark's Movie");

 //Do some listing of movies

 System.out.println("\nHere are the Comedy movies in: " + aStore);

 aStore.listMoviesOfType("Comedy");

 System.out.println("\nHere are the Science Fiction movies in: " + aStore);

 aStore.listMoviesOfType("SciFic");

 System.out.println("\nHere are the movies with Ben Stiller:");

 aStore.listMoviesWithActor("Ben Stiller");

 System.out.println("\nHere are the movies with Keanu Reeves:");

 aStore.listMoviesWithActor("Keanu Reeves");

 }

}

Here is the output:

Here are the movies in: MovieStore with 10 movies.

The Matrix Revolutions

Runaway Jury

The Matrix

The Adventure of Sherlock Holmes' Smarter Brother

The Aviator

The Matrix Reloaded

Blazing Saddles

Meet the Parents

Envy

Meet the Fockers

Removing The Matrix

Trying to remove Mark's Movie

No movie with that title

Here are the Comedy movies in: MovieStore with 9 movies.

Movie: "Blazing Saddles"

Movie: "The Adventure of Sherlock Holmes' Smarter Brother"

Movie: "Meet the Fockers"

Movie: "Meet the Parents"

Movie: "Envy"

Here are the Science Fiction movies in: MovieStore with 9 movies.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 311-

Movie: "The Matrix Reloaded"

Movie: "The Matrix Revolutions"

Here are the movies with Ben Stiller:

Movie: "Meet the Fockers"

Movie: "Meet the Parents"

Movie: "Envy"

Here are the movies with Keanu Reeves:

Movie: "The Matrix Reloaded"

Movie: "The Matrix Revolutions"

 8.8 Collections Class Tools

JAVA provides a nice tool-kit class called Collections that contains a bunch of useful methods
that we can take advantage of. One of these is a sort() method which will sort an arbitrary
collection.

Examine the following code to see how easy it is to sort our ArrayList of Person objects using
this sort() method …

import java.util.*;

public class SortTestProgram {

 public static void main(String args[]) {

 ArrayList<Person> people = new ArrayList<Person>();

 people.add(new Person("Pete Zaria", 12));

 people.add(new Person("Rita Book", 20));

 people.add(new Person("Willie Maykit",65));

 people.add(new Person("Patty O'Furniture", 41));

 people.add(new Person("Sue Permann", 73));

 people.add(new Person("Sid Down", 19));

 people.add(new Person("Jack Pot", 4));

 Collections.sort(people); // do the sorting

 for (Person p: people)

 System.out.println(p);

 }

}

For the above code to work, we still need to have the compareTo() method written in the
Person class. The output is as expected with all people sorted by their increasing age.
Remember though, that we can set the SortStrategy to whatever we want. Hopefully you
noticed how easy this sort() method is to use.

There is also a class called Arrays which has some useful methods for manipulating arrays.
For example, if our code had arrays of Person objects instead of ArrayLists, here is what the
code would look like to sort:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 312-

import java.util.*;

public class SortTestProgram2 {

 public static void main(String args[]) {

 Person[] people = {new Person("Pete Zaria", 12),

 new Person("Rita Book", 20),

 new Person("Willie Maykit",65),

 new Person("Patty O'Furniture", 41),

 new Person("Sue Permann", 73),

 new Person("Sid Down", 19),

 new Person("Jack Pot", 4)};

 Arrays.sort(people); // do the sorting

 for (Person p: people)

 System.out.println(p);

 }

}

There are similar sort methods for the primitive data types, so you can sort simple arrays of
numbers such as this:

int[] nums = {23, 54, 76, 1, 29, 89, 45, 76};

Arrays.sort(nums); // do the sorting

Interestingly, there are other useful methods in the Collections class such as reverse(),
shuffle(), max() and min(). Can you guess what they do by looking at the output of the
following program ?

import java.util.*;

public class SortTestProgram3 {

 public static void main(String args[]) {

 ArrayList<Person> people = new ArrayList<Person>();

 people.add(new Person("Pete Zaria", 12));

 people.add(new Person("Rita Book", 20));

 people.add(new Person("Willie Maykit",65));

 people.add(new Person("Patty O'Furniture", 41));

 people.add(new Person("Sue Permann", 73));

 people.add(new Person("Sid Down", 19));

 people.add(new Person("Jack Pot", 4));

 System.out.println("The list reversed:");

 Collections.reverse(people);

 for(Person p: people)

 System.out.println(p);

 System.out.println("\nThe list shuffled:");

 Collections.shuffle(people);

 for(Person p: people)

 System.out.println(p);

 System.out.println("\nThe list shuffled again:");

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 313-

 Collections.shuffle(people);

 for(Person p: people)

 System.out.println(p);

 System.out.println("\nOldest person: " + Collections.max(people));

 System.out.println("Youngest person:" + Collections.min(people));

 }

}

Here is the output … was it as you expected? …

The list reversed:

4 year old Jack Pot

19 year old Sid Down

73 year old Sue Permann

41 year old Patty O'Furniture

65 year old Willie Maykit

20 year old Rita Book

12 year old Pete Zaria

The list shuffled:

12 year old Pete Zaria

19 year old Sid Down

20 year old Rita Book

4 year old Jack Pot

65 year old Willie Maykit

41 year old Patty O'Furniture

73 year old Sue Permann

The list shuffled again:

65 year old Willie Maykit

20 year old Rita Book

4 year old Jack Pot

12 year old Pete Zaria

41 year old Patty O'Furniture

73 year old Sue Permann

19 year old Sid Down

Oldest person: 73 year old Sue Permann

Youngest person:4 year old Jack Pot

There are additional methods in the Collections class. Have a look at the API and see if you
find anything useful.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 314-

 8.9 Implementing an ADT (Doubly-Linked Lists)

Consider allocating a large array of bytes:

byte[] myArray;

myArray = new byte[1000000];

An array is an object and the values of
the array are kept in consecutive memory
locations. Usually the array length is
also kept along with the array, so we
have shown this as an extra 4 bytes in
the object header ... making it a 12-byte
header (although the exact size depends
on the java implementation).

Assume that this array is filled with some
appropriate values. Consider what
happens when we want to remove the
item at position 500002 in the array.

Remember that we cannot simply remove
something from an array but that we have
2 choices:

1. replace the item at index 500002
with some clearly identifiable value
(e.g., -1).

2. remove the item at that position by
copying all the items from index
500003 to 999999 back 1 position
in the array and then reduce the
size of the array by 1.

Solution (1) is quick to do a remove operation, but then we will leave "gaps" in the array so that
when we process it later we will need to consider the fact that there may be a lot of invalid data
(i.e., nulls) stored in the array at any time. In fact, after a while ... the array may be filled with
mostly invalid data (i.e., nulls) !

Solution (2) would take a lot more time to remove an item because we would potentially need
to move large portions of the array back one position in memory each time we do a remove
operation. In addition, we can "logically" reduce the array size by one, but in reality, JAVA has
already allocated the memory for the 1,000,000 elements ... so that will not change. In other
words, we are essentially classifying the "end portion" of the array as garbage data as time
goes on. We are not saving any space ... the garbage/wasted data is still taking up memory.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 315-

This problem gets worse as we consider adding items to the array beyond the 1,000,000
capacity. In that case, we would need to create a whole new bigger array and copy all the
items from the "old" array into the "new" array ... then discard the old array. To do this, we
would simply move the myArray variable pointer to point to the new array:

myArray = new byte[2000000];

This would create a whole new object which takes another 2,000,000 bytes (+12 for header).
The Java VM would then realize that the data in memory from address 0008237846 to
0009237857 would no longer be needed and it would be scheduled for a future garbage
collection operation. In languages such as C or C++, there is no garbage collector, so we
would have to remember to free up that memory on our own.

One huge danger of this "new-array-reallocation-and-copy-over" strategy is that if any other
objects are pointing to the old array ... then it is not garbage collected and potentially we have
two places in our code that at one time may have been pointing to the same array but are now
pointing to different arrays !!

One solution to this problem is to store data in what is called a doubly-linked list. We would
like to be able to do two things:

1. Cut out a single piece of data and stitch the remaining data back together:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 316-

2. Cut open a spot in the data and insert a single piece of data inside:

To do this, we need to allow the data to be split and merged anywhere within the list of data.
We can do this by allowing each piece of data to be its own object. As long as each of these
objects knows the object before it in the list as well as the object after it in the list, then we can
make this happen. Consider a single item in the list represented as follows:

public class Item {

 byte data;

 Item previous;

 Item next;

 public Item(int d) {

 data = (byte)d;

 previous = null;

 next = null;

 }

}

Notice that this Item class represents a recursive data structure definition since the item before
(i.e., previous) this item is an Item object and the item after (i.e., next) it is also an Item object.
That means, the items each keep a pointer to the object before it in the list and the object after
it in the list. So we can re-draw our n-item list now as follows:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 317-

Consider a simple array created as follows:

byte[] myList = new byte[8];

myList[0] = 23; myList[1] = 65;

myList[2] = 87; myList[3] = 45;

myList[4] = 56; myList[5] = 34;

myList[6] = 95; myList[7] = 71;

Here is how we would create the linked-list version for this list of data:

Item myList = new Item(23);

Item myList1 = new Item(65);

Item myList2 = new Item(87);

Item myList3 = new Item(45);

Item myList4 = new Item(56);

Item myList5 = new Item(34);

Item myList6 = new Item(95);

Item myList7 = new Item(71);

myList.previous = null;

myList.next = myList1;

myList1.previous = myList;

myList1.next = myList2;

myList2.previous = myList1;

myList2.next = myList3;

myList3.previous = myList2;

myList3.next = myList4;

myList4.previous = myList3;

myList4.next = myList5;

myList5.previous = myList4;

myList5.next = myList6;

myList6.previous = myList5;

myList6.next = myList7;

myList7.previous = myList6;

myList7.next = null;

This code is a bit ugly because it uses many variable names. However, typically we would
create operations for adding and removing Items. Also, we usually want to keep track of the
first and last items in the linked list ... which are known as the head and the tail. So, often
we create another class to keep track of this information as follows:

public class LinkedList {

 Item head;

 Item tail;

 public LinkedList() {

 head = null;

 tail = null;

 }

}

Then we would make operations in this class.

One useful operation would be to add an item to the end (i.e., tail) of the list.

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 318-

Here is the code that will do this:

public void add(Item x) {

 if (tail == null) {

 tail = x;

 head = x;

 }

 else {

 tail.next = x;

 x.previous = tail;

 tail = x;

 x.next = null; // In case it was an Item taken from another list

 }

}

Notice that we had to handle the case where we called the method the very first time. In that
case, the head and the tail would both be null. So, when adding in that case, the item being
added becomes the sole item in the list ... making it both the head and the tail at the same
time. From then on, all additions occur at the tail end of the list.

Once we have this method available, the code to construct the list becomes simplified:

LinkedList myList = new LinkedList();

myList.add(new Item(23));

myList.add(new Item(65));

myList.add(new Item(87));

myList.add(new Item(45));

myList.add(new Item(56));

myList.add(new Item(34));

myList.add(new Item(95));

myList.add(new Item(71));

Is this better than an array ? It seems like a lot of overhead! Well ... it may indeed take up
more space ... but the size of the list is unlimited (except for running out of computer memory).
That is ... we never have to worry about going past an array bounds. Also, we never have to
worry about re-allocating a new larger array and copying elements over into it.

What about the removal of an item from the list ?

It too just involves moving a couple of pointers around.

Here is the code to remove an item ... assuming that x is in the list:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 319-

public void remove(Item x) {

 if (x == head) {

 if (x == tail) {

 head = tail = null;

 }

 else {

 head = x.next;

 head.previous = null;

 }

 }

 else {

 if (x == tail) {

 tail = x.previous;

 tail.next = null;

 }

 else {

 x.previous.next = x.next;

 x.next.previous = x.previous;

 }

 }

}

The code looks a little long because we need to handle the special cases in which the
removed item is the head of the list or the tail of the list. However, you will notice that the
code for removal simply involves the changing of two pointers. There is no need to copy
items back in the array, nor is there any concern about garbage data lying around. The code
is quite simple and elegant.

How could we write a toString() method for this list that shows the contents ? Assume that we
want the list to look like this:

[H:23]<==>[65]<==>[87]<==>[45]<==>[56]<==>[34]<==>[95]<==>[71:T]

or like this when 1 item is in it: [H:23:T]
or like this when empty: [EMPTY]

To iterate through the items, we would need to start with the head of the list and keep
traversing successive .next pointers until we reached the tail.

public String toString() {

 if (head == null)

 return "[EMPTY]";

 String s = "[H:";

 Item currentItem = head;

 while (currentItem != null) {

 s += currentItem.data;

 if (currentItem != tail)

 s += "]<==>[";

 currentItem = currentItem.next;

 }

 return s + ":T]";

}

How would we write a method to add up all of the byte data in the list? It is quite similar:

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 320-

public int totalData() {

 if (head == null)

 return 0;

 int total = 0;

 Item currentItem = head;

 while (currentItem != null) {

 total += currentItem.data;

 currentItem = currentItem.next;

 }

 return total;

}

Do you understand why a FOR loop was not used ?

Here is a test program:

public class LinkedListTestProgram {

 public static void main(String args[]) {

 Item head, tail, internal;

 LinkedList myList = new LinkedList();

 myList.add(head = new Item(23));

 myList.add(new Item(65));

 myList.add(new Item(87));

 myList.add(internal = new Item(45));

 myList.add(new Item(56));

 myList.add(new Item(34));

 myList.add(new Item(95));

 myList.add(tail = new Item(71));

 System.out.println("Here is the list: ");

 System.out.println(myList);

 System.out.println("\nThe total of the data is: ");

 System.out.println(myList.totalData());

 System.out.println("\nRemoving the head .. here is the list now: ");

 myList.remove(head);

 System.out.println(myList);

 System.out.println("\nRemoving the tail .. here is the list now: ");

 myList.remove(tail);

 System.out.println(myList);

 System.out.println("\nRemoving internal item 45, here is the list now: ");

 myList.remove(internal);

 System.out.println(myList);

 }

}

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 321-

Here is the output:

Here is the list:

[H:23]<==>[65]<==>[87]<==>[45]<==>[56]<==>[34]<==>[95]<==>[71:T]

The total of the data is:

476

Removing the head .. here is the list now:

[H:65]<==>[87]<==>[45]<==>[56]<==>[34]<==>[95]<==>[71:T]

Removing the tail .. here is the list now:

[H:65]<==>[87]<==>[45]<==>[56]<==>[34]<==>[95:T]

Removing internal item 45, here is the list now:

[H:65]<==>[87]<==>[56]<==>[34]<==>[95:T]

Can you write an insert(x, i) method that will insert item x after position i in the list ? Try it.
You will need to start at the head of the list and count past i items before you start changing
pointers. Can you do a remove(i) method that will remove the i'th item from the list ?

It is important to understand how to manipulate pointers like this because some languages
(e.g., C and C++) require a lot of memory allocation and pointer manipulation. The more
practice you get ... the better!!

You should realize that although our list contained simple data in the form of a single byte, you
can simply change the type of the data to any data type. In this way, the list can store any
kind of data that you want. Here is a general definition for a list Item that can store any object:

public class Item {

 Object data;

 Item previous;

 Item next;

 public Item(Object obj) {

 data = obj;

 previous = null;

 next = null;

 }

}

Notice what the memory allocation would look like for a simple 3-item list when simple byte
data is used (left side diagram) and when Person object data is used (right side diagram):

COMP1406 - Chapter 8 - Abstract Data Types Winter 2018

 - 322-

