

Chapter 9

Recursion With Data Structures

What is in This Chapter ?

In the last course, we discussed recursion at a simple level. This chapter explains how to do
more complex recursion using various data structures. You should understand recursion
more thoroughly after this chapter.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 324 -

 9.1 Recursive Efficiency

You should already be familiar with recursion at this point, having taken it last term in
COMP1405/1005. Although recursion is a powerful problem solving tool, it has some
drawbacks. A non-recursive (or iterative) method may be more efficient than a recursive one
for two reasons:

1. there is an overhead associated with large number of method calls
2. some algorithms are inherently inefficient.

For example, computing the nth Fibonacci number can be written as:

1 if n = 0

fib(n) = 1 if n = 1

fib(n-1) + fib(n-2) if n > 1

A straight-forward recursive solution to solving this problem would be as follows:

public static int fibonacci(int n) {
 if (n <= 1)
 return 1;
 return fibonacci(n-1) + fibonacci(n-2);
}

However, notice what is happening here:

In the above computation, some problems (e.g., fibonacci(2)) are being solved more than
once, even though we presumably know the answer after doing it the first time. This is an
example where recursion can be inefficient if we do not do it carefully.

The following iterative solution avoids the re-computation:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 325 -

public static int fibonacci2(int n) {
 int first = 1;
 int second = 1;

 int third = 1;
 for (int i=2; i<=n; i++) {

 third = first + second; // compute new value
 first = second; // shift the others to the right
 second = third;

 }
 return third;

}

Notice how the previous two results are always stored in the first and second variables. So
the computation need not be duplicated. We can do this recursively ... we just need to keep
track of previous computations.

public static int fibonacci(int n, int prev, int prevPrev) {
 if (n <= 0)

 return prev + prevPrev;

 else

 return fibonacci(n-1, prev + prevPrev, prev);

}

We essentially use the same idea of keeping track of the last two computations and passing
them along to the next recursive call. However, we would have to start this off with some
values for these parameters. For example to find the 20th Fibonacci number, we could do this:

fibonacci(18, 1, 1);

The first two numbers are 1 and then there are 18 more to find. However, this is not a nice
solution because the user of the method must know what the proper values are in order to call
this method. It would be wise to make this method private and then provide a public one that
passes in the correct initial parameters as follows:

public static int fibonacci3(int n) {
 if (n <= 1)

 return 1;

 return fibonacci(n-2, 1, 1); // calls above method

}

This method in itself is not recursive, as it does not call itself. However, indirectly, it does call
the 3-parameter fibonacci() method ... which is recursive. We call this kind of method
indirectly recursive.

An indirectly recursive method is one that does not call itself, but it does call a

recursive method.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 326 -

Indirect recursion is mainly used to supply the initial parameters to a recursive function. It
is the one that the user interacts with. It is often beneficial to use recursion to improve
efficiency as well as to create non-destructive functions.

 9.2 Examples With Self-Referencing Data Structures

Until now, the kinds of problems that you solved recursively likely did not involve the use of
data structures. We will now look at using recursion to solve problems that make use of a
couple of simple data structures.

First, recall the linked-list data structure that we created in the last chapter. It is a self-
referencing data structure since each Item object points to two other Item objects:

public class LinkedList {

 Item head;

 Item tail;

 ...

}

public class Item {

 byte data;

 Item previous;

 Item next;

 ...

}

We can write some interesting recursive methods for this data structure.

Example:

Recall the following method:

public int totalData() {

 if (head == null)

 return 0;

 int total = 0;

 Item currentItem = head;

 while (currentItem != null) {

 total += currentItem.data;

 currentItem = currentItem.next;

 }

 return total;

}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 327 -

Let us see how we can write this method recursively without using a while loop. As before,
we need to consider the base case. If the head of the list is null, then the answer is 0 as in
the above code. Otherwise, we will need to break the problem down recursively. To do this,
we can simply break off the first data item from the list and add it to the recursive result of the
remainder of the list ... this will be the solution:

However, we do not want to destroy the list, so we will simply "pretend" to break off a piece
by traversing through the next pointers of the items, starting at the head. The solution is
straightforward as long as we are allowed to pass in a parameter representing the item in
the list from which to start counting from (e.g., the head to begin). Recall, that we always
begin with a "base case" ... which is the stopping condition for the recursion. It always
represents the simplest situation for the data structure. In this case, the simplest case is a
null Item. If the item is null, there are no numbers to add, so the result is clearly 0.
Otherwise, we just need to "tear off" the first number and continue with the remainder of the
list (i.e., continue adding ... but starting with the next item in the list):

private int totalDataRecursive(Item startItem) {

 if (startItem == null)

 return 0;

 return startItem.data + totalDataRecursive(startItem.next);

}

Notice the simplicity of the recursion. It is quite straight forward and logical. As it turns
out, writing recursive methods for most self-referencing data structures is quite natural and
often produces simple/elegant code.

One downfall of the above method is that it requires a parameter which MUST be the head
item of the list if it is to work properly! So then, we will want to make a public method that
the user can call which will create the proper starting parameter (i.e., the head):

public int totalDataRecursive() {

 return totalDataRecursive(head);

}

As you can see, the code is quite short. It simply supplies the list head to the single-
parameter recursive method. This method is not itself recursive, but it does call the single-

parameter method which IS recursive. We therefore call this an indirectly recursive
method because although the method itself is not recursive, the solution that the method
provides is recursive.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 328 -

Example:

Now what about writing a recursive method that returns a new LinkedList that contains all
the odd data from the list ?

The method should return a new LinkedList:

Hence, the return type for the method should be LinkedList.

public LinkedList oddItems() {

 // ...

}

The method code should begin with a "base case". What is the simplest list that we can
have for use in the "base case" ? An empty one (i.e., headless), of course!

public LinkedList oddItems() {

 if (head == null)

 return new LinkedList();

 // ...

}

Otherwise, we will need to apply the same strategy of breaking off a piece of the problem.
We can do this using indirect recursion again by starting with the head. It will be easiest,
as well to have the new list passed in as a parameter that we can simply add to:

public LinkedList oddItems() {

 if (head == null)

 return new LinkedList();

 return oddItems(head, new LinkedList());

}

So then, the directly-recursive method will be defined as follows:

private LinkedList oddItems(Item startItem, LinkedList resultList) {

 // ...

}

Notice that it is private, because it is just a kind of helper method for the public one.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 329 -

Since the startItem will eventually become null, we will need to check for that as our
stopping condition (i.e., "base case"). In that case, we are done ... and we just need to
return the resultList:

private LinkedList oddItems(Item startItem, LinkedList resultList) {

 if (startItem == null)

 return resultList;

 // ...

}

As a side point, since we are checking for null here in this method as well, we can go back
and simplify our indirectly-recursive method by removing that check:

public LinkedList oddItems() {

 return oddItems(head, new LinkedList());

}

Now, we need to check to see if the data of the startItem is indeed odd, and if so... then
add it to the resultList:

private LinkedList oddItems(Item startItem, LinkedList resultList) {

 if (startItem == null)

 return resultList;

 if (startItem.data %2 != 0)

 resultList.add(new Item(startItem.data));

 // ...

}

Notice that we used a constructor to create a new Item object before adding to the resulting
list. What would have happened if we simply used resultList.add(startItem)? If

we did this, then the same Item object would exist in both lists. This is bad because if we
changed the next or previous pointer for this item, then it would affect both lists... and that
would be disastrous.

Lastly, we continue by checking the remainder of the list:

private LinkedList oddItems(Item startItem, LinkedList resultList) {

 if (startItem == null)

 return resultList;

 if (startItem.data %2 != 0)

 resultList.add(new Item(startItem.data));

 return oddItems(startItem.next, resultList);

}

Do you understand why the return keyword is needed on the last line ? What gets
returned ? Well ... remember that the method MUST return a LinkedList. If we leave off
the return keyword, the compiler will complain because we are not returning any specific
list. At the end of the recursive method calls, the "base case" will ensure that we return
the resultList that we have built up with the odd numbers. Alternatively we could have just
finished off the recursion and then specifically state that we want to return the resultList:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 330 -

private LinkedList oddItems(Item startItem, LinkedList resultList) {

 if (startItem == null)

 return resultList;

 if (startItem.data %2 != 0)

 resultList.add(new Item(startItem.data));

 oddItems(startItem.next, resultList);

 return resultList;

}

We can actually make this all work without that extra resultList parameter by creating the
list when we reach the end of the list, and then adding items AFTER the recursion:

public LinkedList oddItems() {

 return oddItems(head);

}

private LinkedList oddItems(Item startItem) {

 if (startItem == null)

 return new LinkedList();

 LinkedList result = oddItems(startItem.next);

 if (startItem.data %2 != 0)

 result.add(new Item(startItem.data));

 return result;

}

However, this solution will return the odd numbers in reverse order.

See if you can fix that problem. It can be done.

Example:

Now, let us find and return a list of all elements in common between 2 lists:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 331 -

Again, the result will be a new LinkedList:

To do this, we will need a similar indirectly-recursive method, but one that takes the 2nd list
as a parameter:

public LinkedList inCommon(LinkedList aList) {

 return inCommon(this.head, aList.head, new LinkedList());

}

Here, we see that the two list heads are passed in as well as a list onto which the common
elements may be added. The directly-recursive method begins the same way as before ...
quitting when we reach the end of one of the lists:

private LinkedList inCommon(Item start1, Item start2, LinkedList result) {

 if ((start1== null) || (start2 == null))

 return result;

 // ...

}

The remaining problem is a bit trickier. We need to check each item in one list with each
item in the other list ... but just once. So we will need to recursively shrink one list until it
has been checked against one particular item in the second list. Then, we need to move
to the next item in the second list and check it against the entire first list again. It will be
easier to do this if we had a helper method that simply checked whether or not a data item
is in another list.

Consider a method called contains() which takes a starting item in the list and determines
whether or not a specific data item is in the list by recursively iterating through the list. Can
you write this ? It should be straight forward now:

public boolean contains(Item startItem, byte data) {

 if (startItem == null)

 return false;

 if (startItem.data == data)

 return true;

 return contains(startItem.next, data);

}

Now, how can we make use of this contains() method to solve our original problem ?
Well, we can call it like any other function. We can simply iterate through the items of one
list (as before) and check each item against the other list using this contains() function. If
it IS contained, we add it to the solution. It is quite similar to the template for finding the
odd numbers now:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 332 -

private LinkedList inCommon(Item list1, Item list2, LinkedList result) {

 if ((list1 == null) || (list2 == null))

 return result;

 // Check if the first list contains the data

 // at the beginning item of the 2nd list.

 if (contains(list1, list2.data))

 result.add(new Item(list2.data));

 // Now check the first list with the remainder of the 2nd list

 return inCommon(list1, list2.next, result);

}

As you can see, the call to contains() here will check all items of list 1 with the first item of
list 2. Then, the recursive call will move on to the next item in list 2. Eventually, list 2 will
be exhausted and we will have the solution!

Example:

Now let us try a different data structure. In computer science, we often store information in a
binary tree:

A binary tree is a data structure that maintains data

in a hierarchical arrangement where each piece of data
(called the parent) has exactly two pieces of data
(called children) beneath it in the hierarchy.

The binary tree is similar to the notion of a
single gender (i.e., all males or all females)
family tree in which every parent has at most
2 children, which are known as the leftChild
and rightChild of their parent. It is possible
that a node in the tree (i.e., a piece of data)
may have no children, or perhaps only one
child. In this case, we say that the leftChild
and/or rightChild is null (meaning that it is
non-existent).

A node with no children is called a leaf
of the tree.

The root of the tree is the data that is at
the top of the tree which has no parent.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 333 -

Binary trees can be a very efficient data structure when searching for information. For
example as we search for a particular item down the tree from the root, each time that we
choose the left or right child to branch down to, we are potentially eliminating half of the
remaining data that we need to search through!

Typically, binary trees are represented as recursive data structures. That is, the tree itself
is actually made up of other smaller trees. We can see this from the figure on the previous
page, where each non-null child actually represents the root of a smaller tree.

In computer science, trees are often drawn with simple circles as nodes and lines as edges.

The height of a tree is the depth of the tree from root to the leaves. Here is an example of a
complete tree (i.e., one that is completely filled with nodes) of height 5. A complete binary
tree has 2h leaves (where h is the tree's height).

In our family tree picture (shown earlier), however, the tree was not complete ... there were
nodes missing. Here is how we would draw the equivalent tree for that example:

Notice that it is basically the 25 binary tree with many of the nodes removed. Notice as well,
that the leaves are not only at the bottom level of the tree but may appear at any level because
any node that has no children is considered a leaf.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 334 -

How can we represent a recursive data structure like this binary tree ? Well, remember, each
time we break a branch off of a tree, we are left with two smaller trees. So a binary tree itself
is made up of two smaller binary trees. Also, since trees are used to store data, each node of
the tree should store some kind of information. Therefore, we can create a BinaryTree data
structure as follows:

public class BinaryTree {

private String data;

private BinaryTree leftChild;

private BinaryTree rightChild;

}

Here, data represents the information being stored at that node in the tree ... it could be a
String, a number, a Point, or any data structure (i.e., Object) with a bunch of information
stored in it. Notice that the left leftChild and rightChild are actually binary trees
themselves! A tree is therefore considered to be a self-referential (i.e., refers to itself)
data structure and is thus a naturally recursive data structure.

Likely, we will also create some constructors as well as some get/set methods in the class:

public class BinaryTree {

 private String data;

 private BinaryTree leftChild;

 private BinaryTree rightChild;

 // A constructor that takes root data only and

 // makes a tree with no children (i.e., a leaf)

 public BinaryTree(String d) {

 data = d;

 leftChild = null;

 rightChild = null;

 }

 // A constructor that takes root data as well as two subtrees

 // which then become children to this new larger tree.

 public BinaryTree(String d, BinaryTree left, BinaryTree right) {

 data = d;

 leftChild = left;

 rightChild = right;

 }

 // Get methods

 public String getData() { return data; }

 public BinaryTree getLeftChild() { return leftChild; }

 public BinaryTree getRightChild() { return rightChild; }

 // Set methods

 public void setData(String d) { data = d; }

 public void setLeftChild(BinaryTree left) { leftChild = left; }

 public void setRightChild(BinaryTree right) { rightChild = right; }

}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 335 -

To create an instance of BinaryTree, we simply call the constructors. Consider a tree with
the data for each node being a simple string with a letter character as follows:

Here is a test program that creates this tree:

public class BinaryTreeTest {

 public static void main(String[] args) {

 BinaryTree root;

 root = new BinaryTree("A",

 new BinaryTree("B",

 new BinaryTree("C",

 new BinaryTree("D"),

 new BinaryTree("E",

 new BinaryTree("F",

 new BinaryTree("G"),

 new BinaryTree("I")),

 new BinaryTree("H"))),

 new BinaryTree("J",

 new BinaryTree("K",

 null,

 new BinaryTree("L",

 null,

 new BinaryTree("M"))),

 new BinaryTree("N",

 null,

 new BinaryTree("O")))),

 new BinaryTree("P",

 new BinaryTree("Q"),

 new BinaryTree("R",

 new BinaryTree("S",

 new BinaryTree("T"),

 null),

 new BinaryTree("U"))));

 }

}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 336 -

Example:

When we have such recursive data structures, it is VERY natural to develop recursive
functions and procedures that work with them. For example, consider finding the height of
this tree. It is not natural to use a FOR loop because we have no array or list to loop
through.

How can we write a recursive function that determines the height
of a binary tree ?

We need to determine the base case(s). What is the simplest
tree ? It is one where the children are null (i.e., just a root).
In this case, the height is 0.

Here is the code so far as an instance method in the BinaryTree
class:

public int height() {

 if ((leftChild == null) && (rightChild == null))

 return 0;

}

That was easy. Now, for the recursive step, we need to express the height of the tree in
terms of the smaller trees (i.e., its children). So, if we knew the height of the leftChild and
the height of the rightChild, how can we determine the height of the "whole" tree ?

Well, the height of the tree is one more than the trees beneath it. Assuming that the left
and right sub-trees are equal in height, the recursive definition would be:

height (tree) = 1 + height (tree.leftChild)

However, as you can see from our family tree example, it is possible that the left and right
children will have different heights (i.e., 4 and 3 respectively). So, to find the height of the
whole tree, we need to take the largest of these sub-trees. So here is our recursive
definition:

height(tree) = 1 + maximum(height (tree.leftChild), height (tree.rightChild))

Here is the code:

public int height() {

 if ((leftChild == null) && (rightChild == null))

 return 0;

 return 1 + Math.max(leftChild.height(),

 rightChild.height());

}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 337 -

However, there is a slight problem. If one of the children is null, but not the other, then the
code will likely try to find the leftChild or rightChild of a null tree ... and this will generate a
NullPointerException in our program. We can fix this in one of two ways:

(1) check for the case where one child is null but not the other
(2) handle null trees as a base case.

Here is the solution for (1):

public int height() {

 if (leftChild == null) {

 if (rightChild == null)

 return 0;

 else

 return 1 + rightChild.height();

 }

 else {

 if (rightChild == null)

 return 1 + leftChild.height();

 else

 return 1 + Math.max(leftChild.height(),

 rightChild.height());

 }

}

The above code either checks down one side of the tree or the other when it encounters a
tree with only one child. If there are no children, it returns 0, and otherwise it takes the
maximum of the two sub-trees as before.

In choice (2) for dealing with null children, it is simpler just to add a base-case for handling
null tree roots. However this requires the addition of extra nodes. That is, instead of
having a child set to null, we can have a special tree node that represents a dummy tree
and simply have all leaves point to that special tree node. In a sense, then, these dummy
tree nodes become the leaves of the tree:

In the above picture, the black circles are BinaryTree objects and the black boxes indicate
that the values of the left and right children are null. So, the example above adds 18
dummy nodes to the tree. The dummy nodes are known as ...

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 338 -

A Sentinel Node (or Sentinel) is a node that represents a path terminator.

It is a specifically designated node that is not a data node of the data structure.

Sentinels are used as an alternative over using null as the path terminator in order to get
one or more of the following benefits: (1) Increased speed of operations; (2) Reduced
algorithmic code size; (3) Increased data structure robustness (arguably).

How do we make a sentinel ? It is simply a regular BinaryTree but has its data value (and
children) set to null as follows:

 new BinaryTree(null, null, null)

If we decide to use sentinel tree nodes, then we need to add a constructor, perhaps a
default constructor and then make changes to the other constructors as necessary to use
sentinel nodes instead of null.

public class BinaryTree2 {

 private String data;

 private BinaryTree2 leftChild;

 private BinaryTree2 rightChild;

 // A constructor that makes a Sentinel node

 public BinaryTree2() {

 data = null;

 leftChild = null;

 rightChild = null;

 }

 // This constructor now uses sentinels for terminators instead of null

 public BinaryTree2(String d) {

 data = d;

 leftChild = new BinaryTree2();

 rightChild = new BinaryTree2();

 }

 // This constructor is unchanged

 public BinaryTree2(String d, BinaryTree2 left, BinaryTree2 right) {

 data = d;

 leftChild = left;

 rightChild = right;

 }

 // Get methods

 public String getData() { return data; }

 public BinaryTree2 getLeftChild() { return leftChild; }

 public BinaryTree2 getRightChild() { return rightChild; }

 // Set methods

 public void setData(String d) { data = d; }

 public void setLeftChild(BinaryTree2 left) { leftChild = left; }

 public void setRightChild(BinaryTree2 right) { rightChild = right; }

}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 339 -

Now, we can re-write the test case to replace null with the new Sentinel nodes:

public class BinaryTreeTest2 {

 public static void main(String[] args) {

 BinaryTree2 root;

 root = new BinaryTree2("A",

 new BinaryTree2("B",

 new BinaryTree2("C",

 new BinaryTree2("D"),

 new BinaryTree2("E",

 new BinaryTree2("F",

 new BinaryTree2("G"),

 new BinaryTree2("I")),

 new BinaryTree2("H"))),

 new BinaryTree2("J",

 new BinaryTree2("K",

 new BinaryTree2(),

 new BinaryTree2("L",

 new BinaryTree2(),

 new BinaryTree2("M"))),

 new BinaryTree2("N",

 new BinaryTree2(),

 new BinaryTree2("O")))),

 new BinaryTree2("P",

 new BinaryTree2("Q"),

 new BinaryTree2("R",

 new BinaryTree2("S",

 new BinaryTree2("T"),

 new BinaryTree2()),

 new BinaryTree2("U"))));

 }

}

Now we will see the advantage of doing all this. We can re-write the height() method so
that it does not need to check whether or not the children are null, but simply needs to stop
the recursion if a sentinel node has been reached:

public int height() {

 // Check if this is a sentinel node

 if (data == null)

 return -1;

 return 1 + Math.max(leftChild.height(),

 rightChild.height());

}

Notice that since the sentinel nodes have added an extra level to the tree, when we reach a
sentinel node, we can indicate a -1 value as the height so that the path from the leaf to the
sentinel does not get counted (i.e., it is essentially subtracted afterwards). The code is
MUCH shorter and simpler. This is the advantage of using sentinels ... we do not have to
keep checking for null values in our code.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 340 -

Example:

How could we write code that gathers the leaves of a tree and returns
them? Again, we will use recursion. In our example, we had 9 leaves.
A leaf is identified as having no children, so whenever we find such a
node we simply need to add it to a collection.

We can use an ArrayList<String> to store the node data. The base
case is simple. If the BinaryTree is a leaf, return an ArrayList with the
single piece of data in it:

public ArrayList<String> leafData() {

 ArrayList<String> result = new ArrayList<String>();

 if (leftChild == null) {

 if (rightChild == null)

 result.add(data);

 }

 return result;

}

Now what about the recursive part ? Well, we would have to check both sides of the root as
we did before, provided that they are not null. Each time, we take the resulting collection of
data and merge it with the result that we have so far. The merging can be done using the
list1.addAll(list2) method in the ArrayList class. This method adds all the elements from
list2 to list1.

Here is the code:

public ArrayList<String> leafData() {

 ArrayList<String> result = new ArrayList<String>();

 if (leftChild == null) {

 if (rightChild == null)

 result.add(data);

 else

 result.addAll(rightChild.leafData());

 }

 else {

 result.addAll(leftChild.leafData());

 if (rightChild != null)

 result.addAll(rightChild.leafData());

 }

 return result;

}

What would this code look like with the Sentinel version of our tree ? Simpler ...

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 341 -

public ArrayList<String> leafData() {

 ArrayList<String> result = new ArrayList<String>();

 if (data != null) {

 if ((leftChild.data == null) && (rightChild.data == null))

 result.add(data);

 result.addAll(leftChild.leafData());

 result.addAll(rightChild.leafData());

 }

 return result;

}

There are many other interesting methods you could write for trees. You will learn more about
this next year.

Example:

As another example, consider the following scenario. You wrap up your
friend's gift in a box ... but to be funny, you decide to wrap that box in a box
and that one in yet another box. Also, to fool him/her you throw additional
wrapped boxes inside the main box.

This boxes-within-boxes scenario is recursive. So, we have boxes that are
completely contained within other boxes and we would like to count how
many boxes are completely contained within any given box. Here is an example where the
outer (gray) box has 28 internal boxes:

Assume that each box stores an ArrayList of the boxes inside of it. We would define a
box then as follows:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 342 -

import java.util.ArrayList;

public class Box {

 private ArrayList<Box> internalBoxes;

 // A constructor that makes a box with no boxes in it

 public Box() {

 internalBoxes = new ArrayList<Box>();

 }

 // Get method

 public ArrayList<Box> getInternalBoxes() { return internalBoxes; }

 // Method to add a box to the internal boxes

 public void addBox(Box b) {

 internalBoxes.add(b);

 }

 // Method to remove a box from the internal boxes

 public void removeBox(Box b) {

 internalBoxes.remove(b);

 }

}

We could create a box with the internal boxes as shown in our picture above as follows:

public class BoxTest {

 public static void main(String[] args) {

 Box mainBox, a, b, c, d, e, f, g, h, i, j;

 mainBox = new Box();

 // Create the left blue box and its contents

 a = new Box(); // box 10

 b = new Box(); // box 11

 b.addBox(new Box()); // box 23

 c = new Box(); // box 4

 c.addBox(a);

 c.addBox(b);

 d = new Box(); // box 12

 d.addBox(new Box()); // box 24

 e = new Box(); // box 5

 e.addBox(d);

 f = new Box(); // box 13

 f.addBox(new Box()); // box 25

 g = new Box(); // box 14

 h = new Box(); // box 15

 h.addBox(new Box()); // box 26

 i = new Box(); // box 6

 i.addBox(f);

 i.addBox(g);

 i.addBox(h);

 j = new Box(); // box 1

 j.addBox(c);

 j.addBox(e);

 j.addBox(i);

 mainBox.addBox(j);

 // Create the top right blue box and its contents

 a = new Box(); // box 7

 a.addBox(new Box()); // box 16

 b = new Box(); // box 8

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 343 -

 b.addBox(new Box()); // box 17

 b.addBox(new Box()); // box 18

 b.addBox(new Box()); // box 19

 b.addBox(new Box()); // box 20

 b.addBox(new Box()); // box 21

 c = new Box(); // box 2

 c.addBox(a);

 c.addBox(b);

 mainBox.addBox(c);

 // Create the bottom right blue box and its contents

 a = new Box(); // box 22

 a.addBox(new Box()); // box 27

 a.addBox(new Box()); // box 28

 b = new Box(); // box 9

 b.addBox(a);

 c = new Box(); // box 3

 c.addBox(b);

 mainBox.addBox(c);

 }

}

Now, how could we write a function to unwrap a box (as well as all boxes inside of it until
there are no more) and return the number of boxes that were unwrapped in total (including
the outer box) ?

Do you understand that this problem can be solved recursively, since a Box is made up of
other Boxes ? The problem is solved similarly to the binary tree example since we can
view the main box as the "root" of the tree while the boxes inside of it would be considered
the children (possibly more than 2).

What is the base case(s) ? What is the simplest box ? Well, a box with no internal boxes
would be easy to unwrap and then we are done and there is a total of 1 box:

public int unwrap() {

 if (numInternalBoxes == 0)

 return 1;

}

This is simple. However, what about the recursive case ? Well, we would have to
recursively unwrap and count all inside boxes. So we could use a loop to go through the
internal boxes, recursively unwrapping them one-by-one and totaling the result of each
recursive unwrap call as follows:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 344 -

public int unwrap() {

 if (internalBoxes.size() == 0)

 return 1;

 // Count this box

 int count = 1;

 // Count each of the inner boxes

 for (Box b: internalBoxes)

 count = count + b.unwrap();

 return count;

}

Notice how we adjusted the base case. The FOR loop will attempt to unwrap all internal
boxes recursively. If there are no internal boxes, then the method returns a value of 1 ...
indicating this single box.

Each recursively-unwrapped box has a corresponding count representing the number of
boxes that were inside of it (including itself). These are all added together to obtain the
result.

The above code does not modify
the internalBoxes list for any of
the boxes. That is, after the
function has completed, the box
data structure remains intact
and unmodified. This is known
as a non-destructive solution
because it does not destroy (or
alter) the data structure. In real
life however, the boxes are
actually physically opened and
the contents of each box is
altered so that when completed,
no box is contained in any other
boxes (i.e., the list is
modified/destroyed).

Alternatively, we can obtain the
same solution without a FOR
loop by allowing the ArrayLists
to be destroyed along the way.
This would be called a
destructive solution.
Destructive solutions are often
simpler to code and understand,
but they have the disadvantage
of a modified data structure,
which can be undesirable in
some situations. Here is the
process depicting a portion of such a destructive solution: →

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 345 -

How does this simplify our code ? If we are not worried about keeping the innerBoxes lists
intact, we can simply "bite-off" a piece of our problem by removing one box from the main
box (i.e., taking it out of the list of internal boxes) and then we have two smaller problems:

(1) the original box with one less internal box in it, and

(2) the box that we took out that still needs to be unwrapped.

We can simply unwrap each of these recursively and add their totals together:

public int unwrap2() {

 if (internalBoxes.size() == 0)

 return 1;

 // Remove one internal box, if there is one

 Box insideBox = internalBoxes.remove(0);

 // Unwrap the rest of this box as well as the one just removed

 return this.unwrap2() + insideBox.unwrap2();

}

This is much smaller code now. It is also intuitive when you make the connection to the
real-life strategy for unwrapping the boxes.

Of course, once the method completes ... the main box is empty ... since the boxes were
removed from the array list along the way. If we wanted to ensure that the main box
remained the same, we could put back the boxes after we counted them. This would have
to be done AFTER the recursive calls ... but before the return statement:

public int unwrap3() {

 if (internalBoxes.size() == 0)

 return 1;

 // Remove one internal box, if there is one

 Box insideBox = internalBoxes.remove(0);

 // Unwrap the rest of this box as well as the one just removed

 int result = this.unwrap3() + insideBox.unwrap3();

 // Put the box back in at position 0 (i.e., same order)

 internalBoxes.add(0,insideBox);

 return result;

}

This method is now considered non-destructive because the boxes are restored before
the method completes.

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 346 -

 9.3 A Maze Searching Example

Consider a program in which a rat follows the walls
of a maze. The rat is able to travel repeatedly
around the maze using the “right-hand rule”.
Some mazes may have areas that are
unreachable (e.g., interior rooms of a building with
closed doors). We would like to write a program
that determines whether or not a rat can reach a
piece of cheese that is somewhere else in the
maze.

This problem cannot be solved by simply checking
each maze location one time. It is necessary to
trace out the steps of the rat to determine whether
or not there exists a path from the rat to the cheese.
To do this, we need to allow the rat to try all possible paths by propagating (i.e., spreading)
outwards from its location in a manner similar to that of a fire spreading outwards from a single
starting location.

Unlike a fire spreading scenario, we do not have to process the locations in order of their
distance from the rat’s start location. Instead, we can simply allow the rat to keep walking in
some direction until it has to turn, and then choose which way to turn. When there are no
more places to turn to (e.g., a dead end), then we can return to a previous “crossroad” in the
maze and try a different path.

We will need to define a Maze class that the Rat can move in. Here is a basic class that
allows methods for creating and displaying a maze as well as adding, removing and querying
walls:

public class Maze {

 public static byte EMPTY = 0;

 public static byte WALL = 1;

 public static byte CHEESE = 2;

 private int rows, columns;

 private byte[][] grid;

 // A constructor that makes a maze of the given size

 public Maze(int r, int c) {

 rows = r;

 columns = c;

 grid = new byte[r][c];

 }

 // A constructor that makes a maze with the given byte array

 public Maze(byte[][] g) {

 rows = g.length;

 columns = g[0].length;

 grid = g;

 }

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 347 -

 // Return true if a wall is at the given location, otherwise false

 public boolean wallAt(int r, int c) { return grid[r][c] == WALL; }

 // Return true if a cheese is at the given location, otherwise false

 public boolean cheeseAt(int r, int c) { return grid[r][c] == CHEESE; }

 // Put a wall at the given location

 public void placeWallAt(int r, int c) { grid[r][c] = WALL; }

 // Remove a wall from the given location

 public void removeWallAt(int r, int c) { grid[r][c] = EMPTY; }

 // Put cheese at the given location

 public void placeCheeseAt(int r, int c) { grid[r][c] = CHEESE; }

 // Remove a cheese from the given location

 public void removeCheeseAt(int r, int c) { grid[r][c] = EMPTY; }

 // Display the maze in a format like this ------------>

 public void display() {

 for(int r=0; r<rows; r++) {

 for (int c = 0; c<columns; c++) {

 if (grid[r][c] == WALL)

 System.out.print("W");

 else if (grid[r][c] == CHEESE)

 System.out.print("c");

 else

 System.out.print(" ");

 }

 System.out.println();

 }

 }

 // Return a sample maze corresponding to the one in the notes

 public static Maze sampleMaze() {

 byte[][] grid = { {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},

 {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},

 {1,0,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,1},

 {1,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1},

 {1,0,1,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1},

 {1,0,1,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1},

 {1,0,1,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,1},

 {1,0,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1},

 {1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1},

 {1,0,1,1,1,1,1,1,0,0,0,1,1,1,0,1,1,0,1},

 {1,0,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,0,1},

 {1,1,1,0,1,0,1,0,0,1,0,1,0,0,0,1,0,0,1},

 {1,0,1,0,1,1,1,1,1,1,0,1,1,0,1,1,0,0,1},

 {1,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,1},

 {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}};

 Maze m = new Maze(grid);

 m.placeCheeseAt(3,12);

 return m;

 }

}

What does the Rat class look like ? It is very simple, for now:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 348 -

public class Rat {

 private int row, col;

 // Move the Rat to the given position

 public void moveTo(int r, int c) {

 row = r; col = c;

 }

}

Let us see whether or not we can write a recursive function in the Rat class to solve this
problem. The function should take as parameters the maze (i.e., a 2D array). It should return
true or false indicating whether or not the cheese is reachable from the rat’s location.
Consider the method written in a Rat class as follows:

public boolean canFindCheeseIn(Maze m) {

 ...

}

What are the base cases for this problem ? What is the simplest scenario ? To make the
code simpler, we will assume that the entire maze is enclosed with walls … that is … the first
row, last row, first column and last column of the maze are completely filled with walls.

There are two simple cases:

1. If the cheese location is the same as the rat location, we are done … the answer is true.

2. If the rat is on a wall, then it cannot move, so the cheese is not reachable. This is a
kind of error-check, but as you will see later, it will simplify the code.

Here is the code so far:

public boolean canFindCheeseIn(Maze m) {

 // Return true if there is cheese at the rat's (row,col) in the maze

 if (m.cheeseAt(row, col))

 return true;

 // Return false if there is a wall at the rat's (row,col) in the maze

 if (m.wallAt(row, col))

 return false;

}

Notice that the row and col variables are the attributes of the Rat itself.

Now what about the recursion ? How do we “break off” a piece of the problem so that the
problem becomes smaller and remains the same type of problem ? Well, how would you
solve the problem if YOU were the Rat looking for the cheese?

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 349 -

Likely, you would start walking in some direction looking for the
cheese. If there was only one single path in the maze you
would simply follow it. But what do you do when you come to a
crossroads (i.e., a location where you have to make a decision
as to which way to go) ?

Probably, you will choose one of these unexplored hallways,
and then if you find the cheese … great. If you don’t find the
cheese down that hallway, you will likely come back to that spot and try a different hallway. If
you find the cheese down any one of the hallways, your answer is true, otherwise…if all
hallways “came up empty” with no cheese, then you have exhausted all possible routes and
you must return false as an answer for this portion of the maze:

So the idea of “breaking off” a smaller piece of the problem is the same idea as “ruling out” one
of the hallways as being a possible candidate for containing the cheese. That is, each time
we check down a hallway for the cheese and come back, we have reduced the remaining
maze locations that need to be searched.

This notion can be simplified even further through the realization that each time we take a step
to the next location in the maze, we are actually reducing the problem since we will have
already checked that location for the cheese and do not need to re-check it. That is, we can
view each location around the rat as a kind of hallway that needs to be checked. So, the
general idea for the recursive case is as follows:

if (the cheese is found on the path to the left) then return true
otherwise if (the cheese is found on the path straight ahead) then return true
otherwise if (the cheese is found on the path to the right) then return true
otherwise return false

There are only three possible cases, since we do not need to check behind the rat since we
just came from that location. However, the actual code is a little more complicated. We
need, for example, to determine the locations on the “left”, “ahead” and “right” of the rat, but
this depends on which way the rat is facing. There would be the three cases for each of the 4
possible rat-facing directions. A simpler strategy would simply be to check all 4 locations
around the rat’s current location, even though the rat just came from one of those locations.
That way, we can simply check the 4 maze locations in the array around the rat’s current
location.

Here is the idea behind the recursive portion of the code:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 350 -

move the rat up
if (canFindCheese(maze)) then return true otherwise move the rat back down

move the rat down
if (canFindCheese(maze)) then return true otherwise move the rat back up

move the rat left
if (canFindCheese(maze)) then return true otherwise move the rat back right

move the rat right
if (canFindCheese(maze)) then return true otherwise move the rat back left

return false

The code above has 4 recursive calls. It is possible that all 4 recursive calls are made and
that none of them results in the cheese being found.

However, there is a problem in the above code. With the above code, the rat will walk back
and forth over the same locations many times … in fact … the code will run forever … it will not
stop. The problem is that each time we call the function recursively, we are not reducing the
problem. In fact, each time, we are simply starting a brand new search from a different
location.
The rat needs a way of “remembering” where it has been
before so that it does not “walk in circles” and continue
checking the same maze locations over and over again.
To do this, we need to leave a kind of “breadcrumb trail” so
that we can identify locations that have already been
visited.
We can leave a “breadcrumb” at a maze location by
changing the value in the array at that row and column with
a non-zero & non-wall value such as -1. Then, we can
treat all -1 values as if they are walls by not going over
those locations again.

We can add code to the Maze class to do this:

public static byte BREAD_CRUMB = -1;

// Mark the given location as having been visited

public void markVisited(int r, int c) {

 grid[r][c] = BREAD_CRUMB;

}

// Mark the given location as not having been visited

public void markUnVisited(int r, int c) {

 grid[r][c] = EMPTY;

}

// Return true if the location has been visited

public boolean hasBeenVisited(int r, int c) {

 return grid[r][c] == BREAD_CRUMB;

}

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 351 -

Now we can adjust our code to avoid going to any "visited locations" and to ensure that each
location is visited. We can also put in the code to do the recursive checks now as follows:

public boolean canFindCheeseIn(Maze m) {

 // Return true if there is cheese at the rat's (row,col) in the maze

 if (m.cheeseAt(row, col))

 return true;

 // Return false if there is a wall at the rat's (row,col) in the maze

 if (m.wallAt(row, col) || m.hasBeenVisited(row, col))

 return false;

 // Mark this location as having been visited

 m.markVisited(row, col);

 // Move up in the maze and recursively check

 moveTo(row-1, col);

 if (canFindCheeseIn(m))

 return true;

 // Move back down and then below in the maze and recursively check

 moveTo(row+2, col);

 if (canFindCheeseIn(m)) return true;

 // Move back up and then left in the maze and recursively check

 moveTo(row-1, col-1);

 if (canFindCheeseIn(m)) return true;

 // Move back and then go right again in the maze and recursively check

 moveTo(row, col+2);

 if (canFindCheeseIn(m)) return true;

 // We tried all directions and did not find the cheese, so quit

 return false;

}

Notice that we are now returning with false if the location that the rat is at is a wall or if it is a
location that has already been travelled on. Also, we are setting the rat’s current maze
location to BREAD_CRUMB so that we do not end up coming back there again.

After running this algorithm, the maze will contain many BREAD_CRUMB values. If we wanted
to use the same maze and check for a different cheese location, we will need to go through the
maze and replace all the BREAD_CRUMB values with EMPTY so that we can re-run the code.
This recursive function is therefore considered to be destructive. Destructive functions are not
always desirable since they affect the outcome of successive function calls.

However, there is a way to fix this right in the code itself. Notice that we are setting the maze
location to BREAD_CRUMB (i.e., markVisited()) just before the recursive calls. This is crucial

for the algorithm to work. However, once the recursive calls have completed, we can simply
restore the value to EMPTY again by placing the following just before each of the return calls:

m.markUnVisited(row, col);

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 352 -

For example:

// Move up in the maze and recursively check

moveTo(row-1, col);

if (canFindCheeseIn(m)) {

moveTo(row+1, col); // Move back down before marking

 m.markUnVisited(row, col); // Unmark the visited location

 return true;

}

The code above should now do what we want it to do.

We need to test the code. To help debug the code it would be good to be able to display
where the rat is and where the breadcrumbs are.

We can modify the display() method in the Maze class to take in the rat's location and do
this as follows:

public void display(int ratRow, int ratCol) {

 for(int r=0; r<rows; r++) {

 for (int c=0; c<columns; c++) {

 if ((r == ratRow) && (c == ratCol))

 System.out.print("r");

 else if (grid[r][c] == WALL)

 System.out.print("W");

 else if (grid[r][c] == CHEESE)

 System.out.print("c");

 else if (grid[r][c] == BREAD_CRUMB)

 System.out.print(".");

 else

 System.out.print(" ");

 }

 System.out.println();

 }

}

We can then use the following test program:

public class MazeTest {

 public static void main(String[] args) {

 Maze m = Maze.sampleMaze();

 Rat r = new Rat();

 r.moveTo(1,1);

 m.display(1,1);

 System.out.println("Can find cheese ... " +

 r.canFindCheeseIn(m));

 }

}

Also, by inserting m.display(row,col); at the top of your recursive method, you can watch
as the rat moves through the maze:

COMP1406 - Chapter 9 - Recursion With Data Structures Winter 2018

 - 353 -

In the above case, the cheese was not found after an exhaustive search.

