
COMP4807 (Fall 2012) LAB1 – Behavior-Based Programming 1

COMP4807 - LAB #1
Behavior-Based Programming

(Due Sun. Sept. 30, 2012 @ 11:59pm)

In this assignment you will become familiar with the process for writing, compiling and running code
on the robot. You will gain experience in using the servos, IR sensors, block sensor, beeper and
camera. You will also get a chance to implement some simple behaviors (i.e., collision avoidance,
wandering and block pushing) and monitor the robot using the RobotTracker software (which will be
used for all LABS in the course).

Lab Machine Setup:

Since this is your first lab, information about how to get things working will be described in this
section. You will need to remember this for all further lab assignments. When you arrive at the
lab, take your designated lab seating. It actually doesn't matter which position you take, as long
as you stay at that position all term. At your workstation, there should be a robot and a USB
cable with an adapter on the end. Please leave the USB cable plugged into the USB port at all
times. There is also a webcam (suspended over the work area) plugged into your computer at
the back. Please leave this plugged in. On rare occasion, the camera may stop working...if this
occurs, unplug the camera at the back USB port, wait 5 seconds and then plug it back in again.
Also, there is a little blue Bluetooth device plugged into the back of the computer... leave this
plugged in at all times, or you will not be able to communicate with the robot. The lab environment
contains a 5'x7' working area with some simple obstacles. Please configure the robot roaming
area according to how you are instructed for the particular lab you are doing. Do NOT attempt to
move the fixed (i.e., screwed together) wooden boundaries at any time.

There in a single account on the machines in the labs (COMP4807 Student), so everyone has
access to everything. Please DO NOT install any software on these machines and DO NOT
modify the screen saver, desktop background or anything at all. Since many others will use the
same machine as you, make sure that you remove your code once you are done. DO NOT
modify the Robot Tracker folder in any way. Backup all your code on a flash drive or zip it and
email it to yourself at the end of each lab session. There is no time to repeat experiments if you
lose your code and test results. The desktop contains the RobotTracker application. The course
notes and sample code are available on the course webpage when you need to get them.

COMP4807 (Fall 2012) LAB1 – Behavior-Based Programming

2

Environment Setup:
For this lab, you should set up the roaming environment
roughly as shown here (to the right). You will need the
movable right-angled wall portion and the plant pot
placed upside down. Remove and place aside anything
else in the area. Make sure that you see the setup
shown here when you look at the RobotTracker tracking
images to get the correct orientation.

Plant pot
(upside down)

Movable right
angled wall

Robot Setup and Calibration:

1. Make sure the robot is turned off and turn on (i.e., down position) dip switch 1 (F_IR) from the
8-position switch on the top of the robot and turn off (i.e., up) all other switches (i.e., 2, 3, 4, 5,
6, 7 and 8). At the back of the robot, make sure that the 2-position dipswitch is set so that
both switches are off (i.e., up).

2. !!! GENTLY !!! plug the USB cable into the robot. Note that the USB connector is simply
soldered at the end and may come off over time if everyone is not gentle with it … which
means the robot becomes unusable and you cannot complete your lab.

3. Download and open the ServoCalibration.spin

program from the course website to start the
Parallax Tool IDE. Select Identify Hardware…
from the Run menu. If the robot is off, you should
see a similar message to that shown here (but the
COM port number will be different).

4. Turn on the robot and servos (i.e., set robot’s on

switch to position 1) and then press F11 in the
Parallax Tool IDE to compile and download the
code onto the robot. The program should
download and start. You will hear a startup beeping sound to tell you that the program
started.

5. Refer to slides 100 and 101 in chapter 3 of the notes to calibrate the servos. See slides 75

and 76 for where to use these values in your program. The leftServoStoppedValue and
rightServoStoppedValue will be used in your program. The values vary from robot to robot,
so you may want to test your servo speeds once in a while throughout the term to determine
the stop values just in case they have drifted over time or if you change robots. In addition to
the wheel servos, you will want to calibrate the servos for the grippers. Store the values in
your program as the following constants (although values will vary between robots):

 LEFT_GRIPPER_CLOSED = 215
 LEFT_GRIPPER_STRAIGHT = 173
 LEFT_GRIPPER_WIDEST = 147
 RIGHT_GRIPPER_CLOSED = 104
 RIGHT_GRIPPER_STRAIGHT = 147

COMP4807 (Fall 2012) LAB1 – Behavior-Based Programming

3

 RIGHT_GRIPPER_WIDEST = 163
 PITCH_DOWNMOST = 95
 PITCH_HORIZONTAL = 143
 PITCH_UPMOST = 175
 YAW_LEFTMOST = 60
 YAW_STRAIGHT = 148
 YAW_RIGHTMOST = 215

Be careful when determining the DOWNMOST and UPMOST positions so that the robot's
head is not too close to the top board of the robot. The head will wobble a bit as the robot
moves around, so make sure to leave enough of a gap between the head and the robot's top
board. Note also that due to the gearing ratio and mounting of the servos, it may not be
possible to determine left and right values that are 180° apart. So, assuming that 0° is facing
straight ahead, you may be able to choose left and right values that allow the robot to face -85°
and +95° but will likely not be able to get the robot to face -90° and +90°.

The Fun Stuff:

6. Write a new spin program, called ForwardHalt.spin that makes the robot move forward upon
startup and then when one of its 3 front IR sensors detects an obstacle, it should emit a beep
from the beeper and stop. Use different beeping frequencies for each IR sensor. When the
IR sensor no longer detects an obstacle the robot should move forward again. Try using your
hand or foot to halt the robot. You will need the IR8SensorArray.spin, and Beeper.spin and
ServoControl.spin object files. Save your code … you will submit it.

start

7. Write a spin program called AvoidCollisions.spin that implements a collision avoidance
behavior so that the robot moves straight until it detects an obstacle. If the front left IR sensor
detects an obstacle, the robot should turn right until
the sensor no longer detects an obstacle on its left.
Similarly the robot should turn left when the front
right IR sensor detects an obstacle. If all three front
sensors detect an obstacle, then select a random
choice of moving either left or right.

Make sure that your robot does not get "stuck" in a
corner at any time. Even if it is able to get out after
a few tries ... this is not good enough. If you cannot
solve this problem, leave it and continue to the next
question so that you don't waste time.

Use ramping to allow the robot to accelerate and decelerate as it moves. Start the
RobotTracker and make sure that your robot is being tracked properly (see chapter 3 notes).
By default, the tracker is set to track at around 10 frames per second. For final testing,
capture a video clip of the robot moving by using the movie button.

For the movie, make a new trace and run a 3-minute test of the robot in which it shows how
the robot is able begin at the start position (shown above) and produce a path similar to what is
shown. Once done, stop the trace and the tracker. Take a screen snapshot of the

COMP4807 (Fall 2012) LAB1 – Behavior-Based Programming

4

RobotTracker window with the trace showing (i.e., select Show Actual Path from the View
menu) ... save it as a .png file called AvoidCollisions.png. Make sure that the image is
shown in the snapshot so that the environmental setup is clearly discernable. Make sure to set
a path color that is clearly visible with high contrast when compared to the background. Hand
in this file as well as the .avi (called AvoidCollisions.avi) of the robot moving.

8. Write a program called Wander.spin in which you add a wandering behavior to your previous
working collision avoidance code (with ramping) so that the robot occasionally turns randomly
when it is moving unobstructed in the environment. Adjust your code so that the robot never
travels straight but instead always moves in arcs of various radii. Make sure that the collision
avoidance has higher priority. The choice of which direction to turn (right or left) as well as the
amount to turn (e.g., 5° to 90°) should also be determined randomly. Do not worry about
computing the actual number of degrees that the robot turns, simply allow for various
amounts. Also, the robot should not randomly turn too often, but it should be noticeable when
the robot is placed down in the environment for a while. Perhaps it should turn at least once
every 5 seconds, but make this a random decision. Obtain another video clip (saved as
Wander.avi) and snapshot file (called Wander.png) of the robot’s movements over a 3 minute
period of wandering in the environment while avoiding collisions as before. Again, make sure
that the image is shown in the snapshot so that the environmental setup is clearly discernable.
Make sure to set a path color that is clearly visible with high contrast when compared to the
background.

9. Remove the right angled wall piece as well as the flower pot from the environment and set
them aside. At the back of the robot, turn on dipswitch 1 (Block). On the top of the robot,
turn on dipswitch 5 (CAM).

block

back of
robot

10. Create a program called BlockDeliver.spin in which you add a block pushing behavior to your
previous working wander code so that it grabs any cylindrical block that it finds and brings it to
a wall and then backs up, leaving it there. You will
need to use the BlockSensor.spin object file to
detect when you have found a block. Also, make
sure that you grab the block with the grippers, using
your calibrated values determined earlier. Put the
robot in front of the block to test your behavior.
Once your code works, modify it so that it uses the
camera (i.e., make use of the CMUCam.spin
object) to search for the blocks instead of wandering
randomly. Your code should look for a specific
color of block. From the course website, download
and make use of the program called
CameraColorSampler.spin to get the color values for the particular color of block that you are
looking for. As you will notice, the color values will fluctuate quite a bit. The program should
find exactly 3 blocks, drop them off, and then continue wandering. It will be tricky finding a way
to ignore the blocks that you already pushed to the walls … but do your best. Note that the
robot should wander around seemingly aimlessly when it does not see any blocks in its current
camera view. You may want to have the robot tip its head forward while searching for blocks
and lift it when travelling with the block. As before, run a 3 minute trace in which you place the
blocks as shown in the picture here. Note that the robot should start facing a corner of the
environment and that it does not matter which order the blocks are found in. Make sure to
take a snapshot of the environment before you start the trace. Make sure that the image is

COMP4807 (Fall 2012) LAB1 – Behavior-Based Programming

5

shown in the snapshot so that the environmental setup is clearly discernable. Make sure to set
a path color that is clearly visible with high contrast when compared to the background. Make a
video clip of your robot working. Save your video (BlockDeliver.avi) and snapshot file
(BlockDeliver.png).

Submission:

Create a webpage for this course that contains a simple report on your lab (i.e., a description of what
you did and what each part of the assignment was trying to do). Include downloadable links for all of
your code as well as any snapshots, trace files and videos. There is no need to make the webpage
beautiful … but that’s up to you. Login to Carleton’s WebCT system and submit a link to your
website. Make sure that the website is up and running at least until your code is marked. If you
have never created an HTML page before, you can use Mozilla’s Sea Monkey browser which has a
built in editor that allows you to make simple pages. Always keep a backup of all your work (perhaps
on a USB key or burn a CD). Here is a summary of what to hand in:

SPIN CODE:
• ForwardHalt.spin
• AvoidCollisions.spin
• Wander.spin
• BlockDeliver.spin

SCREEN SNAPSHOTS:

• AvoidCollisions.png
• Wander.png
• BlockDeliver.png

VIDEO CLIPS:
• AvoidCollisions.avi
• Wander.avi
• BlockDeliver.avi

