
COMP4807 (Fall 2012) LAB2 - Position Estimation 1

COMP4807 - LAB #2
Position Estimation

(Due Sun. Oct. 14, 2012 @ 11:59pm)

In this assignment you will become familiar with the issues involved with estimating the position of the
robot through use of the robot's digital encoders to perform dead-reckoning. Also, you will learn how
to send data from the robot to the PC through the RobotTracker software and Bluetooth devices.

Robot Setup:

Make sure the robot is turned off and then turn on (i.e., down position) dip switch 1 (F_IR) and 3
(BLU) from the 8-position switch on the top of the robot and turn off (i.e., up) all other switches (i.e.,
2, 4, 5, 6, 7 and 8). At the back of the robot, make sure that the 2-position dipswitch is set so that
switch 1 (Block) is up and switch 2 (Encode) is down.

The Fun Stuff:

1. Copy your Wander.spin code from LAB1 to a new file called temp.spin. Adjust the temp.spin
code so that the robot only moves forward and spins
left and right (i.e., no turning arcs). Ensure that your
motors are aligned properly by using the stopped
motor values from part 1. Also, adjust your ramping
code to make sure that the robot does not attempt to
spin left or right until its current servo speed values
have reached zero. This will allow the robot to make
a complete stop after each forward movement and
after each spin movement. Now insert code that
allows the robot to estimate its own pose based solely
on the wheel encoders. You can calculate the pose
as often as you would like, but make sure that you re-
compute the pose after each time the robot has
changed servo speeds (i.e., during each of the “stopped” intervals). You will not be able to
properly verify your code until you complete the next part.

2. Carefully, read over the RobotTracker examples at the
end of Chapter 3, and then create a new file called
EstimatePosition.spin. Now you will be using the
bluetooth device to send the estimated positions to the
PC for debugging/storage. Modify the code so that
the robot receives the initial (x, y) position and angle
of the robot upon startup and then repeatedly sends
back the estimated (x, y) position and estimated
angle. You will need to create your own Planner class
(call it EstimatePositionPlanner.java) ... see chapter

COMP4807 (Fall 2012) LAB2 - Position Estimation

2

3 notes to get more information on how to use the planner. Upon startup, the planner will
automatically create a trace file called which contains the header line x, y, angle. Each time the
robot sends back its estimated position, you should store the estimated (x, y, angle) in the trace
file. Note that each time you start a new trace, a new trace file will be created. You will also
need to send the estimated position to from your planner code to the RobotTracker. You will
need to make use of the Planner method called: sendEstimatedPositionToTracker(int x, int y, int
angle) which will allow you to display the estimated position on the screen. Make sure that the
Show Estimated Path option is enabled in the RobotTracker's View menu so that you can see
your estimated position. Using the RobotTracker, record a 3 minute .avi video (called
EstimatePosition.avi) of the robot wandering around in the environment. Rename the trace file
to EstimatePosition.trc. Take 3 screen snapshots ... showing each trace separately and one
showing both overlayed together (name these files ActualPosition.png, EstimatePosition.png
and OverlayedPosition.png). Make sure to set path colors that are clearly visible with high
contrast when compared to the background.

3. Copy the EstimatePosition.spin code to a file called InverseKinematics.spin and modify that
code to accept an initial pose (x0, y0,
angle) from the RobotTracker as well
as 3 additional user-defined points
(x1,y1), (x2,y2) and (x3,y3). Upon
receiving these points, the robot should
attempt to automatically navigate from
point (x0,y0) to (x1,y1) to (x2,y2) to (x3,y3)
and then back to (x0,y0) and stop. It
must do this only using the encoders
(i.e., without any pose feedback from
the Planner).

Your code should make use of the
wheel encoders and attempt to travel in
a straight line between points, while
turning at each point to an appropriate
angle. Your code need not send any
particular data to the PC. You will need to write a new InverseKinematicsPlanner.java planner
to send the initial pose and user-defined points. Using the RobotTracker, record an .avi video
(called InverseKinematics.avi) of the robot moving along a desired path in the environment.
Allow the user to select the desired path from the RobotTracker (using the Plot feature to create
4 points) which is then sent to the robot (i.e., by calling the planner's sendDataToRobot(int[]
data) method exactly once ... sending all 4 locations (and initial starting angle). Make sure to
also save a snapshot (called InverseKinematics.png) showing the user-defined path (as you
entered it) as well as the actual path that the robot took. Again, make sure to set path colors that
are clearly visible with high contrast when compared to the background.

COMP4807 (Fall 2012) LAB2 - Position Estimation

3

Submission:

Create a webpage for this course that contains a simple report on your lab (i.e., a description of what
you did and what each part of the assignment was trying to do). Include downloadable links for all of
your code as well as any snapshots, trace files and videos. There is no need to make the webpage
beautiful … but that’s up to you. Login to Carleton’s WebCT system and submit a link to your
website. Make sure that the website is up and running at least until your code is marked. If you
have never created an HTML page before, you can use Mozilla’s Sea Monkey browser which has a
built in editor that allows you to make simple pages. Always keep a backup of all your work (perhaps
on a USB key or burn a CD). Here is a summary of what to hand in:

JAVA CODE:

• EstimatePositionPlanner.java
• InverseKinematicsPlanner.java

SPIN CODE:

• EstimatePosition.spin
• InverseKinematics.spin

SCREEN SNAPSHOTS:

• ActualPosition.png
• EstimatePosition.png
• OverlayedPosition.png
• InverseKinematics.png

VIDEO CLIPS:
• EstimatePosition.avi
• InverseKinematics.avi

TRACE FILES:

• EstimatePosition.trc

