
COMP4807 (Fall 2012) LAB3 - Navigation 1

COMP4807 - LAB #3
Navigation

(Due Sun. Oct. 28, 2012 @ 11:59pm)

In this assignment you will make the robot perform wall-following and point to point travel using a
Planner. As with the previous 2 assignments, it is a good idea to have some code already written
BEFORE getting to the lab so that you can maximize the use of your lab time.

Robot Setup:

Make sure the robot is turned off and then turn on (i.e., down position) dip switches 1 (F_IR), 2
(S_IR) and 3 (BLU) from the 8-position switch on the top of the robot and turn off (i.e., up) all other
switches (i.e., 4, 5, 6, 7 and 8). At the back of the robot, make sure that the 2-position dipswitches
are both off (i.e., up).

PART 1 – Wall Following:

Set up the environment as shown in the picture here.
Write a program called WallFollow.spin that will
allow the robot to follow along a wall using the front
and side IR sensors As the robot follows the wall, it
will need to constantly adjust the alignment of the
robot accordingly. For your final test run ensure that
your robot begins roughly at the bottom right of the
environment facing upwards (red dot shown in
picture). You may have to adjust your motor
constants and speed so as to allow enough time to
detect the obstacles properly … but try to get your
robot to move reasonably quick, allowing it to slow
down and perform any necessary maneuvers in the
corners as necessary.

To save yourself some agony, you should make use of the beeper for debugging (e.g., beeping
different ways when the alignment is lost or when it is trying to turn in a corner etc.). Using the
RobotTracker, record a short .avi video (called WallFollow.avi) of the robot doing one complete
wall following cycle. Make sure to also save a screen snapshot showing the actual path that the
robot took (called WallFollow.png). Make sure that the image is shown in the snapshot so that
the environmental setup is clearly discernable.

COMP4807 (Fall 2012) LAB3 - Navigation

2

PART 2 – Point-to-Point Navigation:

Set up the environment as shown in the picture. Write
a planner called NavigationPlanner.java that
attempts to help the robot navigate as accurately as
possible between points in the environment using the
RobotTracker (i.e., not using the encoders). Your
code should define 6 points roughly as shown in the
picture here. These should be chosen using the
user-defined path so that they may be displayed
afterwards. Your robot should then be placed at one
of these points (your choice) and then should follow
the sequence of points as shown in the picture here.
The robot should travel in "roughly" straight lines and
spin at the points shown to face the next point in the
sequence. Note: You will often overshoot your position and your spinning due to the delay in the
tracking. Your planner code should always monitor the robot’s position and orientation. You
may either send the robot its current position and desired location, or you may simply continue
monitoring the robot and send it commands such as go forward, spin left and spin right … this
decision is up to you. You will need to write a new robot program called Navigate.spin to
accomplish this. Using the RobotTracker, run a test corresponding to the sample points shown
in the picture here. Make sure to take a screen snapshot (Navigate.png) of the entire run
showing the actual path taken as well as the user-defined path overlayed so that a visual
comparison can be made. Make sure that the image is shown in the snapshot so that the
environmental setup is clearly discernable. Record an .avi movie (Navigate.avi) showing the
resulting navigation.

Submission:

Create a webpage for this course that contains a simple report on your lab (i.e., a description of what
you did and what each part of the assignment was trying to do). Include downloadable links for all of
your code as well as any snapshots, trace files and videos. There is no need to make the webpage
beautiful … but that’s up to you. Login to Carleton’s WebCT system and submit a link to your
website. Make sure that the website is up and running at least until your code is marked. If you
have never created an HTML page before, you can use Mozilla’s Sea Monkey browser which has a
built in editor that allows you to make simple pages. Always keep a backup of all your work (perhaps
on a USB key or burn a CD). Here is a summary of what to hand in:

VIDEO CLIPS: JAVA CODE:
• vigationPlanner.java Na

• WallFollow.avi
• Navigate.avi

SPIN CODE:
SCREEN SNAPSHOTS: • WallFollow.spin

• WallFollow.png • Navigate.spin
 • Navigate.png

