
COMP4807 (Fall 2012) LAB4 - Mapping 1

COMP4807 - LAB #4
Mapping

(Due Sun. Nov. 11, 2012 @ 11:59pm)

In this assignment you will understand more about how to construct maps from various sensors. You
will produce map data from performing edge following and navigation using your code from LAB3.
The assignment looks long, but there is not too much coding to do here, provided that you did LAB3.
The final part of the assignment can be done outside the lab. Concentrate in the labs on obtaining
some useful and accurate maps of the environment.

Environment Setup:

For this lab, you should set up the roaming environment as shown
in the picture here. Start up the RobotTracker and take a
snapshot of this environment once you have it set up. Save the
picture as LAB4_Environment.png.

Robot Setup:

Make sure the robot is turned off and then turn on (i.e., down position) dip switches 1(F_IR), 2(S_IR),
3(BLU), 6(SNR) and 7(DIRS) from the 8-position switch on the top of the robot and turn off (i.e., up)
all other switches (i.e., 4, 5 and 8). At the back of the robot, make sure that the 2-position
dipswitches are both off (i.e., up).

The Fun Stuff:

1. Copy your WallFollow.spin code from LAB3 into a file called BorderMap.spin. Adjust the code
to take various sensor range readings (you choose the sensors) and send them back to the PC for
storage in a trace file. All sensor range readings should be in units of centimeters (the mapping
application will convert them to pixels automatically). Using the MapDialog, load the trace file and
view the map. Your objective is to create as accurate a map as possible. You will want to try to
eliminate "garbage" sensor readings, which are sensor readings that go beyond the sensors range
or invalid (i.e., -1 readings). Use a Planner called BorderMapPlanner.java.

Once you are convinced that your code produces decent data sets, use the RobotTracker to
record a short .avi video (called BorderMap.avi) of the robot doing one complete wall following
cycle. Make sure to also save the trace trace file from the RobotTracker (renamed to
BorderMap.trc) and a screen snapshot (called BorderMap.png) showing the actual path that the
robot took (no map info shown...just the path using a visible high-contrast color as well as showing
the background image so the environmental setup is clearly discernable). Your BorderMap.trc

COMP4807 (Fall 2012) LAB4 - Mapping

2

should contain ALL of the poses that the robot was in along with the data measurements obtained.
Make sure that your robot moves slow enough to get adequate data. Don't worry if your robot
does not perform perfect wall following ... just do your best.

The RobotTracker allows you to view sensor data sets separately or multiple ones at the same
time. You can also examine the raw data, the data with the error range applied, the data with the
Gaussian angle error applied, the data with the Gaussian distance error applied and finally the full
Gaussian data. You can also set the resolution of the
Gaussian error from the menu. Lastly, you can view the
data as colored or gray scale and also vary the distance
error and angular error of the sensor data. All of the
“ugliness” involved with producing the map has been
implemented for you, including the sensor fusion. The
gray colors have also been automatically adjusted for
better viewing (i.e., highest white to black contrast). For
this part of the assignment, hand in snapshots (.png
format) of this map window as described below. All
snapshots should have the background Tracker Image
displayed in the background, although it is likely that most of the image will be hidden when your
map is displayed. The resolution should be set to 1x 6-sigma. Note that all images are to be color
images.

Submit snapshots showing each data set (i.e., each sensor) individually. For each dataset,
include a snapshot (names shown below) showing (note: xxx is the name of the sensor):

a) RawData in color along without the background image (WallRawXXX.png)
b) GaussianDistanceOnly in grayscale along with the background image(WallGDXXX.png)
c) FullGaussian data in color along with the background image(WallFGCXXX.png)
d) FullGaussian data in grayscale without the background image(WallFGGXXX.png)

Include 4 more snapshots showing the combined results of all datasets:

a) RawData in color along without the background image (WallRawALL.png)
b) GaussianDistanceOnly in grayscale along with the background image(WallGDALL.png)
c) FullGaussian data in color along with the background image(WallFGCALL.png)
d) FullGaussian data in grayscale without the background image(WallFGGALL.png)

2. Copy your Navigate.spin code from LAB3 into a file
called NavigateMap.spin. Adjust your code so that it
accepts 9 points (shown as red dots here) and does a
360° spin at each of the points. Your robot should
traverse any path between these points. Adjust the
code so that robot only takes sensor readings at the 9
points. That is, between points, the robot should not
supply readings. At each point (including the 1st), the
robot should slowly spin, while repeatedly sending the
sensor readings to your planner which you should call
NavigateMapPlanner.java. You should base this
planner code on your NavigatePlanner.java code

COMP4807 (Fall 2012) LAB4 - Mapping

3

from LAB3. Once you are convinced that your code produces decent data sets, use the
RobotTracker to record a short .avi video (called NavigateMap.avi) of the robot doing one
complete wall following cycle. Make sure to also save the trace from the RobotTracker (renamed
to NavigateMap.trc) and a screen snapshot (called NavigateMap.png) showing the robot's actual
path and the 9 user-defined points such that they are clearly visible along with the background
obstacles (no map). Make sure that your robot moves slow enough to get adequate data, as you
will use this in the next steps.

Submit snapshots showing each data set (i.e., each sensor) individually. For each dataset,
include a snapshot (names shown below) showing (note: xxx is the name of the sensor):

a) RawData in color along without the background image (NavRawXXX.png)
b) GaussianDistanceOnly in grayscale along with the background image(NavGDXXX.png)
c) FullGaussian data in color along with the background image(NavFGCXXX.png)
d) FullGaussian data in grayscale without the background image(NavFGGXXX.png)

Include 4 more snapshots showing the combined results of all datasets:

a) RawData in color along without the background image (NavRawALL.png)
b) GaussianDistanceOnly in grayscale along with the background image(NavGDALL.png)
c) FullGaussian data in color along with the background image(NavFGCALL.png)
d) FullGaussian data in grayscale without the background image(NavFGGALL.png)

3. You can do this at home after your lab tests have been completed. Write a stand-alone JAVA

program called TraceFixer.java that reads in Trace files and produces a new trace file which can
then be loaded into the MapApplication program and displayed. The objective is to get the most
accurate map possible given your two sets of trace data, manipulating the data and then
producing a new trace file that is readable with the mapper. The program should load in both the
BorderMap.trc and NavigateMap.trc files, combining them into one final trace file called
BestMap.trc. In addition to simply merging the files, you should look at ways of adjusting the
data. One idea is to consider the fact that multiple readings are obtained between poses and
perhaps distribute range data between two adjacent poses by creating additional pose estimates.
For example, the three lines of poses below could be altered to spread the data along the line
between poses (257,323) and (274,300).

257,323,46,4,13,4,12
-1,-1,-1,4,12,3,12,5,11
274,300,49,5,10

That is, you can replace the data above to something like this:

257,323,46,4,13
260,318,46,4,12
263,313,47,4,12
266,308,47,3,12
269,303,48,5,11
274,300,49,5,10

COMP4807 (Fall 2012) LAB4 - Mapping

4

Basically, you can examine 2 consecutive valid poses and spread all data readings between them.
Do what you can. You will be marked for improved map quality.

For this part, simply hand in your TraceFixer.java file and also a TraceFixer.txt file describing in
simple text roughly the idea behind your strategy for improving the map. You should then submit
two more images using your newly created BestMap.trc file:

a) BestFull.png - FullGaussian, grayscale with or without Incorprate Robot's Shape selected.
b) BestFullColor.png - FullGaussian, color with or without Incorprate Robot's Shape selected.

Submission:

Create a webpage for this course that contains a simple report on your lab (i.e., a description of what
you did and what each part of the assignment was trying to do). Include downloadable links for all of
your code as well as any snapshots, trace files and videos. There is no need to make the webpage
beautiful … but that’s up to you. Login to Carleton’s WebCT system and submit a link to your
website. Make sure that the website is up and running at least until your code is marked. If you
have never created an HTML page before, you can use Mozilla’s Sea Monkey browser which has a
built in editor that allows you to make simple pages. Always keep a backup of all your work (perhaps
on a USB key or burn a CD). Here is a summary of what to hand in:

JAVA CODE: SCREEN SNAPSHOTS:

• LAB4_Environment.png • BorderMapPlanner.java
• BorderMap.png • NavigateMapPlanner.java
• NavigateMap.png • TraceFixer.java
• WallRawXX1.png ... WallRawXXN.png • TraceFiled.txt (explanation file)

 • WallGDXX1.png ... WallGDXXN.png
SPIN CODE: • WallFGCXX1.png ... WallFGCXXN.png

• BorderMap.spin • WallFGGXX1.png ... WallFGGXXN.png
• NavigateMap.spin • WallRawALL.png

 • WallGDALL.png VIDEO CLIPS:
• WallFGCALL.png • BorderMap.avi
• WallFGGALL.png

• NavigateMap.avi
• NavRawXX1.png ... NavRawXXN.png
• NavGDXX1.png ... NavGDXXN.png TRACE FILES:
• NavFGCXX1.png ... NavFGCXXN.png • BorderMap.trc
• NavFGGXX1.png ... NavFGGXXN.png • NavigateMap.trc
• NavRawALL.png • BestMap.trc

 • NavGDALL.png
 • NavFGCALL.png
 • NavFGGALL.png
 • BestFull.png

• BestFullColor.png

