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Objectives
Investigate techniques for navigating a robot towards 
a goal location

Examine algorithms that work in environments with 
– known obstacle locations
– unknown obstacle locations

Understand various ways of representing mapsy p g p
– Investigate 1 way to navigate using feature-based maps
– Investigate 1 way to navigate using potential fields

Understand how robot can make a “best” choice 
decision based on only local sensor information.
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What’s in Here ?
Goal Directed Navigation
– Navigation and Path Planning
– Goal-Directed Navigation 

Navigation in Unknown Environments
– Bug Algorithms (Bug1, Bug2, Tangent Bug)

Vector Field Histograms– Vector Field Histograms

Navigation in Known Environments
– Map Representation and Storage
– Map Accuracy and Map Hierarchy
– Feature-Based Maps
– Feature Map Navigation 

- Creating Feature Maps
- Navigating Feature Maps

– Potential Field Navigation 
- Potential Fields

6-3
Winter 2012

- Corridor Fields

Chapter 6 – Goal-Directed Navigation



Goal-Directed NavigationGoal Directed Navigation



Navigation
In robotics, navigation is the act of moving 
a robot from one place to another in a 
collision-free path.

When navigating, robots either:When navigating, robots either
– head towards goal location(s), or
– follow a fixed path (known in advance)p

When heading toward goal, robot usually relies on 
local sensor information and updates its p
location/direction according to the “best” choice that 
will lead to the goal.
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Path Planning
When a fixed path is provided on which to navigate, 
the path is usually computed (i.e., planned) 
beforehand.beforehand.

Path planning is the act of examining known 
i f ti  b t th  i t d ti  information about the environment and computing 
a path that satisfies one or more conditions:
– avoids obstacles  shortest  least turns  safest etc– avoids obstacles, shortest, least turns, safest etc…

Key to path planning is efficiency
– in real robots, optimal solution is not always practical

– approximate solutions are often sufficient and desired.
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Path Planning
To accomplish complicated tasks, a mobile robot 
usually MUST pre-plan it’s paths.

Many interesting problems are solved that 
make use of planned motion of the robot:
– Efficient collision-free travel (e.g., shortest paths)
– Environment coverage (e.g., painting, cleaning)
– Guarding and routing (e.g., security monitoring)
– Completion of various tasks etc…

We will look first at goal-directed navigation in 
which the robot is trying to reach a goal location.
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Goal-Directed Navigation
Approaches to goal-directed navigation vary 
depending on two important questions:

– Are robot & goal locations (i.e., coordinates) known ?
- if available, goal position would be given as a coordinate, otherwise 

the problem becomes one of searching.the proble beco es one of searching
- robot would either maintain its own location as it moves (e.g., 

dead reckoning which is inaccurate) or have this information 
provided externally (e.g., GPS system). p y ( g y )

– Are obstacles (i.e., locations and shape) known ?
- if available, coordinates of all polygonal obstacle vertices would be p yg

given and known to the robot.
- if unavailable, robot must be able to sense obstacles (sensing is 

prone to error and inaccuracies). 
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Goal-Directed Navigation
Here is a summary of algorithms for navigating 
towards a goal location under various conditions: 

Goal Position Unknown– Goal Position Unknown
- Obstacles Unknown

1.  Behaviors (wandering, light seeking, wall following etc…) 

Obstacles Known

Already discussed

- Obstacles Known
1.  Search algorithms
2. Coverage algorithms

Discussed later

– Goal Position Known
- Obstacles Unknown (i.e., local sensing information only)

1.  Reactive Navigation

- Obstacles Known (i.e., global information available)
1.  Feature-Based Navigation
2.  Potential Field Navigation

Discussed here

Discussed later
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Four Strategies
We will consider 4 strategies for navigating to a goal 
location when obstacle locations are unknown.

Robot must be able to se se obstacles withi  its vici ity– Robot must be able to sense obstacles within its vicinity

– Robot’s use a kind of reactive navigation, in that they simply 
keep moving toward the goal and update their path as they keep moving toward the goal and update their path as they 
move.

The strategies are:The strategies are:
– Bug 1 algorithm
– Bug 2 algorithmg g
– Tangent Bug algorithm
– Vector Field Histograms (VFH) 

6-11
Winter 2012Chapter 6 – Goal-Directed Navigation



Bug AlgorithmsBug Algorithms



Bug Algorithms
First consider the following situation:
– the goal location is known but obstacles are unknown

G i il bl i hi h id h b i h– a GPS is available at any time which provides the robot with 
its location within the environment, or the robot has efficient 
on-board dead-reckoning abilities.

– the robot has sensors to detect and follow obstacle boundaries

There are three simple algorithms for this scenario:p g
– Bug1
– Bug2
– Tangent Bug
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The Bug1 Algorithm
Bug1 Strategy:  
– Move toward goal unless obstacle encountered, then go 

around obstacle and find its closest point to the goalaround obstacle and find its closest point to the goal.

– Travel back to that closest point and move towards goal.

Assumes robot knows goal location but is unable to 
see or detect it. 

Goal
(gx, gy)

Robot traces

Robot finds boundary 
point closest to goal

Start
(rx, ry) Robot heads 

towards goal

Robot traces 
entire obstacle
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The Bug1 Algorithm
Here is the pseudo code for the algorithm:
WHILE (TRUE)

REPEAT gg

Move from r towards g

r = robot’s current location

UNTIL ((r == g) OR (obstacleIsEncountered))

IF (r == g) THEN quit // goal reached

mm22

mm33
pp33

g q g

LET p = r // contact location

LET m = r // location closest to g so far

REPEAT

Follow obstacle boundary

rr
mm11

pp11
pp22

Follow obstacle boundary

r = robot’s current location

IF ((distance(r,g) < distance(m,g)) THEN m = r

UNTIL ((r == g) OR (r == p))

IF (r g) THEN it // l h d

gg

pp mm
IF (r == g) THEN quit // goal reached

Move to m along obstacle boundary

IF (obstacleIsEncountered at m in direction of g)

THEN quit   // goal not reachable

rr
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The Bug1 Algorithm
This algorithm: 
– always finds goal location (if it is reachable).

f h i h f h b ” i l– performs an exhaustive search for the “best” point to leave 
the obstacle and head towards the goal.

If we de ote the perimeter of a  obstacle Obj as If we denote the perimeter of an obstacle Obji as 
perimeter(Obji), then the robot may travel a distance 
of:

|sg| + 1.5 (perimeter(Obj1) + perimeter(Obj2) + … + perimeter(Objn))

Once around the obstacle to determine best 
position to leave from and up to ½ times around to 
get back to that position (since we can take the 
shorter of the two choices).

s = start location
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The Bug2 Algorithm
A variation to this algorithm will allow the robot to 
avoid traveling ALL the way around the obstacles.

Bug2 Strategy:  
– Move toward goal unless obstacle encountered, then go 

d bst cle    Re e be  the li e f  whe e the b t around obstacle.   Remember the line from where the robot 
encountered the obstacle to the goal and stop following when 
that line is encountered again.

Goal
(gx, gy)

Robot traces only a 
portion of obstacle

Start
(rx, ry)

Robot finds boundary point 
intersecting line to goal and leaves 
here, heading towards goal
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The Bug2 Algorithm
Here is the pseudo code for the algorithm:

WHILE (TRUE)

LET L = line from r to g

REPEAT

Move from r towards g

r = robot’s current location mm22

mm33
pp33

gg

UNTIL ((r == g) OR (obstacleIsEncountered))

IF (r == g) THEN quit // goal reached

LET p = r // contact location

REPEAT

mm11
pp11

pp22

rr
Follow obstacle boundary

r = robot’s current location

LET m = intersection of r and L

UNTIL (((m is not null) AND (dist(m,g) < dist(p,g)) OR (r == g) OR (r == p)) 

rr

((( ) ( ( ,g) (p,g)) ( g) ( p))

IF (r == g) THEN quit // goal reached

IF (r == p) THEN quit // goal not reachable

ENDWHILE
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The Bug2 Algorithm
This algorithm: 
– also always finds goal location (if it is reachable).

f d ” h f h b ” i l h– performs a “greedy” search for the “best” point to leave the 
obstacle and head towards the goal.

The robot may travel a dista ce ofThe robot may travel a distance of:

|sg| + Ο(perimeter(obj1) + perimeter(obj2) + … + perimeter(objn))

In worst case, we choose the “wrong way to go 
around the obstacle, leading to almost a full 
perimeter traversal:

Amount of perimeter travel will depend on 
choice of left/right edge following:

What
happenshappens
if robot
follows
on its 
left side
instead of
right ?
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The Bug2 Algorithm
Bug2 algorithm is quicker than Bug1.

These two algorithms assumed that the robot could g
only detect the presence of an obstacle upon contact 
(or close proximity).

We can improve the algorithm when the robot is 
equipped with a 360° range sensor that determines 
dist ces t  bst cles d it  distances to obstacles around it. 

We will look now at the Tangent Bug algorithm
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Tangent Bug Algorithm
Assumes robot has sensors to detect 
distances to obstacles around it:

In practice:In practice:
– number of detectable angles is fixed (e.g., every 5°)
– operating range of sensors is limitedp g g

Even though obstacle is in 
range, no sensor may 
detect at some angles.

Some obstacles will be 
beyond the range of the 
sensors.
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Tangent Bug Algorithm
For purposes of explanation, assume infinite angular 
resolution and a finite binary detection range defined 
as a circle around the robot.as a circle around the robot.

Define a discontinuity point as a point in which 
sensor readings are lost (during a radial sweep) due sensor readings are lost (during a radial sweep) due 
to: 
– obstacle being out of rangeg g
– obstacle being obscured

An interval of continuity is An interval of continuity is 
defined by two discontinuity points.

An interval of continuity.
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Tangent Bug Algorithm
Algorithm is similar to the Bug2 algorithm:

– robot moves towards goal until it senses an g
object directly between it and the goal.
- in this case, the line from 

h b h l ithe robot to the goal intersects 
an interval of continuity.

– Robot then moves to the discontinuity point (e1 or e2) of the 
interval that maximally decreases some heuristic estimate to 
the goal. gg

- e.g., MIN( |re1|+|e1g| , |re2|+|e2g| ) 

g

e2

e1
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Tangent Bug Algorithm
The robot continues heading towards the point of 
discontinuity until it can no longer decrease 
th  h i ti  ti t  t  th  lthe heuristic estimate to the goal.
– i.e., it reaches a local minimum

The robot then follows the boundary, by heading
towards the discontinuity point in the towards the discontinuity point in the 
same direction.

It then leaves the boundary by 
heading towards the goal again.
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Tangent Bug Algorithm
i h d d f h l i hHere is the pseudo code for the algorithm:

WHILE (TRUE)
LET w = g
REPEAT

gg

REPEAT
r’ = r // robot’s previous location
update r by moving towards w
IF (no obstacle detected in direction w) THEN w = g
ELSE

LET eL and eR be discontinuity points

pp22

IF ((dist(r, eL)+dist(eL,g)) < (dist(r, eR)+dist(eR,g)))
THEN w = eL ELSE w = eR

UNTIL ((r == g) OR (dist(r’,g) < dist(r,g)))
IF (r == g) THEN quit // goal reached

// l i

pp11

LET p = m = r // contact location
LET dir = direction of continuity point (L or R)
REPEAT
LET w = the discontinuty point in direction dir
IF (dist(r,g) < dist(m,g)) THEN m = r
update r by moving towards wupdate r by moving towards w

UNTIL ((dist(r,g) < dist(m,g)) OR (r == g) OR (r == p)) 

IF (r == g) THEN quit // goal reached
IF (r == p) THEN quit // goal not reachable

ENDWHILE
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Bug Algorithms
Bug path planning algorithms have advantages:
+ Simple and intuitive

i l i+ Easy implementation
+ Guaranteed (theoretically) to reach goal (when possible)

The algorithms do have practical problems:
– Assumes perfect positioning (not really possible)

f i ibl )– Assumes error-free sensing (not ever possible)
– Real robots have limited angular resolution
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Unknown Goal Navigation
Consider now the situation in which the location of 
the robot and the goal is also unknown:

– robot must be able to detect (sense) goal location (e.g., 
light/energy source, sound, image, etc…)

– this “goal” sensor MUST have way of determining direction to 
the source.

goal
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Unknown Goal Navigation
– without knowledge (or estimate) of location, obstacles can 

easily prevent robot from reaching its goal.

goal

– ability to sense “closeness” to goal (e.g., intensity) can help. 

goal
When obstacle 

t d b t

Closer now, so head 
toward goal.

goalencountered, robot 
can follow wall, until it 
is closer to goal than 
when it started the 
following. 
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Unknown Goal Navigation
With the ability to detect closeness to the goal, a 
similar strategy to the Bug2 algorithm can be 
applied to work around obstacles.applied to work around obstacles.

Problems occur of course with multiple ambiguous 
goals (e g  multiple light sources)goals (e.g., multiple light sources).

Also, cannot detect cases where goal is unreachable:

goal
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Vector Field HistogramsVector Field Histograms



Vector Field Histograms
Vector Field Histograms are used to quickly navigate 
around obstacles.

This technique steers in the “best” 
direction that leads to the goal. 

i d fi d i f lik l id b l– Best is defined in terms of “most likely” to avoid obstacles

Each location in the grid map presents a vector, 
b d h dibased on the current sensor readings.

Vectors are combined to produce an overall direction p
vector which is used to steer the robot.
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Vector Field Histograms
Also incorporates uncertainty in obstacle locations by 
making decisions based on an uncertainty map (we 
will discuss maps later).will discuss maps later).

This 2D grid is then reduced
hi f hi h

Obstacle readings: 
Higher number 
indicates more 
certainty that 

b t l i th

Grid map 
(more on 
this later)

3 2 4 1
4 1 1 3 2 1

1
1 2

to a histogram from which 
the steering angle and 

obstacle is there.

1 2
4 3 1
3 4 1
2 2 2 3 1

3 1 1 4 2 1

velocity controls for the 
robot are computed.

Current location 
and direction

3 1 1 4 2 1
3 3 4 5 5 1 1
4 5 3

Goal
location
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Vector Field Histograms
In order to simplify calculations, in practice only a 
portion (i.e., window) of the whole grid is used, called 
the active grid.the active grid.

– may be function of sensor range as well.
changes over time as robot moves

Active grid

3 2 4 1
4 1 1 3 2 1

1
1 2

– changes over time as robot moves.

The histogram will be computed
1 2
4 3 1
3 4 1
2 2 2 3 1

3 1 1 4 2 1

for the cells in this window only.

– Robot only examines local info.,
3 3 4 5 5 1 1
4 5 3

y
not global as with potential fields
(discussed later).
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Vector Field Histograms
For each cell, a vector is computed 
– directed from the cell towards robots current location

i d d h i f b l (i h– magnitude corresponds to the certainty of obstacle (i.e., the 
cell’s current value)

These vectors represe t a These vectors represent a 
desire to “push” away from 
th  b t lthe obstacle.

Need to incorporate a steering p
towards the goal as well.
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Calculating Vectors
Let (cij

x, cij
y) be the location of cell at position (i, j) in 

the grid with certainty value cij
val.

Let (rx, ry) be the robot’s current location

Compute vector vij for cell cij as follows:Compute vector v j for cell c j as follows:
Distance from cell’s 
center to robot’s centerConstant used for 

normalizing. (e.g., 12)
Constant used for 
normalizing. (e.g., 1.5)

vij
mag =  (cij

val)2(Ф – σ dist((cij
x, cij

y), (rx, ry)))

o a g (e g , 5)

vij
dir = atan((cij

y - ry) / (cij
x - rx)) Need to also add 180°

when cij
x - rx >= 0
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Calculating Sectors
Given an angular resolution α, the vectors are 
grouped into a specified number of angular regions 
(i.e., sectors).(i.e., sectors).
– e.g., if α = 24, then each sector represents angles within a 

15° wedge.  If α = 16 then wedges are 22.5° etc…

Sector sij of cell cij computed as:S p

sij = (int) vij
dir / (360° / α)

Multiple vectors are grouped 
within this 22.5° sector.
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Calculating the Histogram
Compute a histogram with α bins (i.e., one bin for 
each sector).

Compute the value hk of a sector (0 ≤ k < α), called 
the polar obstacle density, as the sum of the 
magnitudes of all vectors with the same sijmagnitudes of all vectors with the same sij.

hk = ∑ (vij
mag | sij = k)

i, j

All cell vectors vij are thus distributed 
i t  th  i t  t

j

into the appropriate sector.
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Calculating the Histogram
A histogram can then be generated:
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Calculating the Histogram
Good idea to average the histogram by setting a 
histogram value to be the average of the nearby 
values before and after it.values before and after it.
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Using the Histogram
Once histogram is created, need to 
determine sector that contains vector 
from robot location to goal location:

sg = (int) (atan((gy - ry) / (gx - rx)) / (360° / α))gy y gx x

Then find the valley 
si  si+1   sk that is 50

60

70

si, si 1, …, sk that is 
closest to sector sg.
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Using the Histogram
Note that all consecutive sectors si, si+1, …, si+k of a 
valley must have magnitude < threshold value ε.

Let sc be either sector si or si+k, 
whichever is closest to sector sg. Si+4

Can classify valleys as:
– wide: if k > some threshold max

SiSi+1
Si+2

Si+3

sc

sc+max

max = 2 here

wide: if k > some threshold max
Let sf = sector sc ± max (whichever lies in valley)

– narrow: if k ≤ maxnarrow: if k ≤ max
Let sf = either si or si+k whichever is not sc
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Using the Histogram
The robot then moves in the direction θ = (sf + sc)/2

Note that robot does not simply p y
head towards the goal if there is 
an opening. Sc

Sf

an opening.

Instead, algorithm causes robot to stick close to the 
obstacles so as to have a better chance of navigating obstacles so as to have a better chance of navigating 
around them.

S ccessf l a i ati  is acc plished b  tweaki  Successful navigation is accomplished by tweaking 
threshold values.
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Issues
If ε threshold is set too high
– robot may get too close to obstacles

i kl b bl lli i– may move too quickly to be able to prevent a collision

If ε threshold is set too low
– robot may miss out on some valid candidate valleys

Generally, the threshold is only vital when the robot G y, y
is moving quickly through tightly packed obstacles.
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Map Representation
and Storageand Storage



Maps
An robot’s environment may change over time. 

A map is a stored representation of an p p
environment at some particular time.

All  b t tAllows robot to:
– plan navigation strategies

avoid obstacle collisions during travel– avoid obstacle collisions during travel
– identify changes in the environment
– identify accessible/inaccessible areasy
– verify its own position in the environment

We will only consider 2-D maps in this course
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Maps
Realistically, maps are only estimates 
– often imprecise

Robot must also rely on its sensors 
to avoid collisions since maps may p y
be inaccurate or simply wrong.

For ow  we will co sider our maps to be accurate  For now, we will consider our maps to be accurate, 
readily available and fixed (i.e., static).

ill l k l hWe will look more later on how to create 
maps in unknown environments.
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Map Representation
Maps can be represented as various types:
– Topological maps

l i b b l ( f ) i hi- Keeps relations between obstacles (or free space) within env.
– Obstacle maps

- Keeps locations of obstacles and inaccessible locations in env.Keeps locations of obstacles and inaccessible locations in env
– Free-space maps

- Keeps locations that robot is able to safely move to within env.
– Path maps

- Keeps set of paths that robot can travel along safely in env.
- Usually used in industrial applications to move robots alongUsually used in industrial applications to move robots along

known safe paths.
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Map Representation
Maps are stored in one of two main ways:

– Vector
- stored as collection of line segments and polygons
- usually represents obstacle boundaries

– Raster
- storage in terms of fixed 2D grid of cells

h ll t  b bilit  f  (i  b t l )- each cell stores probability of occupancy (i.e., obstacle)

Main differences lie in: 
– storage space requirements
– algorithm complexity and runtime
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Map Storage Space
Large environments with few and simple obstacles 
take less space to store as vector:

Both “occupied” 
and “empty”and empty   
regions take up 
storage space.

Only need to store 
a few vertex 
coordinates and 
edge connections. 

Smaller, obstacle-dense environments may be better y
stored as raster/grid:

Storing manyStoring many 
vertices and edges 
may require more 
space than storing a 
small course grid. 
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Map Storage Space
Vector maps require the following storage space:
– m obstacles with n vertices each requires storage of (x,y) 

vertex coordinates as well as edges (e g  stored as linked list vertex coordinates as well as edges (e.g., stored as linked list 
pointers)

– Storage = (m * n)*2 + 2*(m * n) = O(mn)
Optionally, edges don’t 
have to be stored 
explicitly, but same time 
complexity.

Raster maps require storage space that varies 
according to grid size (i.e., according to desired 

l ti )

p y

resolution):
– a grid of size M x N takes O(MN)

If m,n << M,N then vector maps are more efficient

6-50
Winter 2012Chapter 6 – Goal-Directed Navigation



Map Storage Space
Of course, much varies according to the resolution of 
the raster maps (i.e., depends on M & N).

Resolution depends on desired accuracy.   Notice the 
difference that it can make on the map:

As resolution decreases:

7 x 614 x 1228 x 24actual

– storage requirements are reduced 
– representation of “true” environment is compromised.
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Map Accuracy
This decrease in accuracy can affect solutions to 
problems: Different solution No solution !!

With vector maps, solution does 
not depend on storage resolution, 
but instead on numerical precision:

Close polygons may compute as intersecting, 
depending on numerical precision
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Map Accuracy
Other issues in raster map creation is in regards to 
robot safety.

Occupancy of grid cells can depend on some 
threshold indicating “certainty” that obstacle is at 
this location:this location:

50% or more to 
be considered 
occupied.

1% or more to be 
considered 
occupied (safer).

Value varies 
according to % 
of cell occupied.
This is no longer 

bi ida binary grid.
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Map Accuracy
In practice, many robots use such raster maps 
because they allow for “fuzziness” in terms of 
obstacle position.obstacle position.
– They are commonly called occupancy grids (or certainty grids

or evidence grids ).

Still useful since most maps are constructed based on 
sensor data (which is already uncertain).

The cell’s occupancy value 
indicates the probability that indicates the probability that 
an obstacle is at that location.

6-54
Winter 2012Chapter 6 – Goal-Directed Navigation



Map Hierarchy
Maps may also be hierarchical
– store relationship between groups of obstacles or cells.

f ll d l i l i i di i i b– often called topological since indicates connectivity between 
nodes or areas

Vector maps ca  have holes withi  obstaclesVector maps can have holes within obstacles.

These are called holes.
R b t ll d t

These are called 
obstacles with holes.

These are called 
obstacles without 

Robot allowed to move 
in here (if it can get in).

holes.

Called outer obstacle
or outer boundary.
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Map Hierarchy
Raster maps can store holes as well, this simply 
appears as free space cells.

To reduce storage requirements, rasters are 
sometimes stored using a quadtree data structure:

– environment is recursively divided into
half along horizontal and vertical
directions to produce 4 sub-areas

– divide only if obstacle exists in area

– resolution varies in certain areas
according to density of obstacles
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Map Hierarchy
Result is a tree-like representation 
where siblings are ordered left to 
right in this order:

1 2
34
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Map Hierarchy
Quadtrees: 
– can dramatically reduce storage space requirements in sparse 

(not obstacle-dense) environments(not obstacle-dense) environments.

– require trickier coding in algorithms due to the different cell 
sizes and shared boundaries of regions.z f g

Not overly popular storage choice in practice when 
using certainty grids:using certainty grids:
– as robot sensor data arrives, certain regions need to expand 

or collapse according to new obstacle certainties.

– sensor noise and small fluctuations cause most levels to 
become expanded.
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Feature (Landmark) Maps
One type of topological map is that of a feature map 
… which stores features of an environment

Features may be free space  la dmarks or bou daries– Features may be free space, landmarks or boundaries

Consider a map obtained from a tracing out of an 
obstacle bo dary  recordi g edge a d cor er obstacle boundary, recording edge and corner 
features:

Coordinates do 
not need to be 
maintained, simply 
edge lengths and 
turning angles.

6-59
Winter 2012Chapter 6 – Goal-Directed Navigation



Feature (Landmark) Maps
The map produced depends on the accuracy of the 
robot as well as some parameters such as the 
minimum turn angle that is considered to be a minimum turn angle that is considered to be a 
vertex:

15° turn threshold 45° turn threshold 60° turn threshold

Hence, the map can be made coarse or fine.
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Feature (Landmark) Maps
Different traces around the exact same obstacle, can 
produce different maps.  Here are two different 
environments showing CW and CCW traces:environments showing CW and CCW traces:
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Feature (Landmark) Maps
When navigating to a specific edge, symmetrical 
environments will cause ambiguities.  Which of these 
are ambiguous in finding the goal edge ?are ambiguous in finding the goal edge ?
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Feature (Landmark) Maps
Once mapped, a robot cannot determine global 
orientation of edges. Unless an external reference or global 

coordinate system is available.

– For example, three of the following environments all appear 
the same to the robot in terms of consecutive edge lengths.  
Which one appears different ?pp
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Feature (Landmark) Maps
In addition, by simple tracing (i.e., without 
coordinate info), neither global orientation, relative 
orientation nor relative position can be determined.orientation nor relative position can be determined.

– For example, can you see why the following maps are 
indistinguishable ?g
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Feature (Landmark) Maps
Of course, by providing additional global information 
(e.g., compass or external light source), many of these 
problems will disappear:problems will disappear:
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Feature (Landmark) Maps
Bridges/shortcuts can be determined between various 
obstacles in order to provide topological ordering as 
well as distance estimations.well as distance estimations.
– One way of implementing this is to have the robot “shoot 

out” from an edge perpendicularly and form a link in the 
map from that edge to the one it encountered  remembering map from that edge to the one it encountered, remembering 
the edge length. Shortcuts

Bridges
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Map Choosing
For now, we will consider all environments to be 
static (unchanging) and to be available to the robot 
from some external source (perhaps computed from some external source (perhaps computed 
manually).

How can we move the robot efficiently in How can we move the robot efficiently in 
such an environment ?

M  l ith s d p ble s e s l ed i  the e  Many algorithms and problems are solved in the area 
of computational geometry while assuming known 
static environments and point-sized robots.p

Consider first vector-based maps …
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Navigation in
Known EnvironmentsKnown Environments



Known Environments
Consider now the situation in which the obstacles are 
known:

robot may be give  a “perfect” map from – robot may be given a “perfect” map from 
external source (e.g., satellite photos or 
predefined fixed environment)predefined fixed environment)

– robot can find map on its own

Assume that robot’s position & goal are both knownAssume that robot s position & goal are both known
– i.e., use dead reckoning or GPS to get position

l i h d d diff fAlgorithms depend on different types of map 
representation.

6-69
Winter 2012Chapter 6 – Goal-Directed Navigation



Three Strategies
We will consider 3 strategies for navigating to a goal 
location when obstacle locations are known.

Robot has global k owledge of all obstacles a d ca  pre– Robot has global knowledge of all obstacles and can pre-
compute some information which the robot then uses to 
navigate to the goal.

fi d h i d– A fixed path is NOT computed.

The strategies are:
– Feature-Based Navigation
– Potential Field Navigation

– Vector Field Histograms (already discussed)
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lPath Planning in
Known EnvironmentsKnown Environments

Feature-Based Navigation



Obtaining Feature Maps
Use edge following to get trace of an obstacle.

Problem: How do we know once an obstacle has 
been completely traced ?

– If edges are unique in size, can look for If edges are unique in size, can look for
previously encountered edge. (impractical)

– Can use a marker such as a disk  
Uh Oh!

Can use a marker such as a disk. 
(can lead to hardware issues)

Consider maximum perimeter and stop – Consider maximum perimeter and stop 
tracing after that (may result in over 
mapping of an obstacle).
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Obtaining Feature Maps
What do we do about differences during trace ?

Must have a way of matching edges and corners
d hi h f d l h d– Need a measure as to which sequences of edge lengths and 

corners are to be considered “close enough” or the same.

Resulting map should
Matching
algorithm

Resulting map should 
remember various path 
possibilities. 
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Feature Map Storage
How do we store feature maps ?

– Can store integers representing an 

-6-6

-8-5
-5

42

3530

248

g p g
obstacle’s edges and corners as
encountered during a trace. -6-6

-6 +6

-6
35

32

30
2618

10 5

– Can store as a graph (starting as a 
circular linked list) or as a network of neurons.

– Each object stored separately. CornerEdge

42 35 32 5 10 30-6 -6 -6 6 -6 -6

24 26 18 8-8 -6 -5 -5
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Matching Features
How do we match edges ?  Consider two traces of 
the same environment:

-6-6
42

30

-5-6
43

29

-6-6

-6 +6

35

32

30

10 5
-6

-7

-5
+1

33

29

29

8 4
+6

3Usually, a 
diff t t

42 35 32 5 10 30-6 -6 -6 +6 -6 -6

Although not 
shown here, 
the traces may 
be in reverse

different trace 
begins with a 
different edge.

43 3329 4 3 8 -5 -6-7 +6 +1 -5 29 -6

be in reverse 
order (e.g., 
one CW, the 
other CCW).
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Matching Features
Begin by searching for the first edge of the new trace 
within the current map.  Find one that is within a 
threshold length:threshold length:

42 35 32 5 10 30-6 -6 -6 +6 -6 -6

First close match 
(within threshold 
of ± 3 units)

Check consecutive angles and edges for matches until 

43 3329 4 3 8 -5 -6-7 +6 +1 -5 29 -6

Check consecutive angles and edges for matches until 
entire match found or a discrepancy arises:

43 3329 4 3 8 -5 -6-7 +6 +1 -5 29 -6

Does not match 10

42 35 32 5 10 30-6 -6 -6 +6 -6 -6

6-76
Winter 2012Chapter 6 – Goal-Directed Navigation

Does not match 10.



Matching Features
When this occurs, one of two situations arise:
– Either the new trace is providing new edges/corners or

h did i h h i h– The new trace did not recognize the turns that were in  the 
original map.

I  the 1st case  we m st fi d a match for the 10 by In the 1st case, we must find a match for the 10 by 
ignoring the 3, but remembering the skipped edges 
& corners up until a recursively successful match for p y
10 is found.

42 35 32 5 10 30-6 -6 -6 +6 -6 -6

43 3329 4 3 8 -5 -6-7 +6 +1 -5 29 -6

Found match, that works out recursively.
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Matching Features
Now insert the new edges into the map:

3 +1
New nodes in map.

43 3329 4 3 8 5 67 6 1 5 29 6

42 35 32 5 10 30-6 -6 -6 +6 -6 -6

3 +1

In the 2nd case, we must try to find a match for 
th   d if  i  f d  d t i  if th  t 

43 3329 4 3 8 -5 -6-7 +6 +1 -5 29 -6

the 3 and if one is found, determine if the rest 
works out recursively:

No match for 3.  
Stop searching

43 3329 4 3 8 -5 -6-7 +6 +1 -5 29 -6

42 35 32 5 10 30-6 -6 -6 +6 -6 -6
Stop searching.
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Adding Bridges
What about bridge/shortcut edges ?

They can also be stored in the 42y
graph as edges joining obstacles: 30

35

24

26

8

18

10
5

32

-6 -6 -6 6 -6 -642 35 32 5 10 30

30 12 4 28 30 121416 8

17

5 -4

14 22

Newly added edges and 
corners for two bridges.  
Previously, the graph was 
disconnected.

9 22

28 4-8 -6 -5 -5

66

24 26 18 8

917816
disconnected.
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Navigating Feature Maps
Once a feature map has been created, the robot can 
navigate the map by searching the graph.

– One way of navigating from the current location to the goal 
is to search the graph, examining edge lengths, for the 
shortest path, then head in that direction by following 

Goal
location.p y g

either CW or CCW around the obstacle.

-6 -6 -6 +6 -6 -642 35 32 5 10 30
Current
location.

30 12 4 285 -4

14 22
C t

Goal
location.

-8 -6 -5 -5

66

24 26 18 8

917816

Current
location.
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Navigating Feature Maps
Start with zero at the goal location and travel 
outwards, maintaining the cost from each vertex to 
the goal by adding the edge lengths.the goal by adding the edge lengths.

Goal
l ti

42 77 45 40 30 0

30 7330 12 4 28

42 35 32 5 10 30
location.

Current
location.

Current
location.

Goal
location.

6944 917816

14 22

52 78 68 6024 26 18 8
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Navigating Feature Maps
When standing at a vertex, how do we know which 
way to go ?  (i.e., follow edge on left or right)

store for each edge sig  i dicati g whether the edge was o  – store for each edge sign indicating whether the edge was on 
the left (-) or right (+) of the robot when created.

– Make sure to use absolute value when computing costs

42 77 45 40 30 0

734 28

-42 -35 -32 -5 -10 -30

Green:(-) indicates that 
30 73

6944

-30 -12 -4 -28

917816

14 22

right edge 
following

Red: 
left edge 
f ll i

( )
when this edge was 
created, the robot 
was doing left-side 
edge following.

52 78 68 60

6944

24 26 18 8

917816 following

(+) indicates that when this edge was created, the robot was 
doing right-side edge following.
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Navigating Feature Maps
Works with multiple goal scenarios (e.g., multiple 
recharge stations).

Just eed to set cost of each goal to zero a d propagate – Just need to set cost of each goal to zero and propagate 
outwards again as before.

Goal location.
Goal location.

12 28

42 10

Current
l ti

35 0 32 37 30 0

30 430 4

35 32 5 30

12 28

8

location.

Current
location.

Goal
location.

30 4

2644

30 4

91716

14 22

24 8

Goal location.

43 35 53 6026 18
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lPath Planning in
Known EnvironmentsKnown Environments

Potential Field Navigation



Potential Fields
Potential field navigation is based on the idea that 
environmental objects and locations present forces
(like magnetic fields) that tend to attract or repel (like magnetic fields) that tend to attract or repel 
the robot as it moves around in the environment.

To navigate:To navigate:
– the robot computes a vector which is a 

function of its desired goal location as function of its desired goal location as 
well as the obstacles in the environment.

– The robot heads in the direction of that vector until the goal The robot heads in the direction of that vector until the goal 
location is reached, each time computing a new vector.
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Potential Fields
While there are many “ways” in which potential 
fields can affect a robot’s trajectory, we will 
examine three basic ones:examine three basic ones:
– Attracting towards a goal point (i.e., a sense of where to go)

– Repelling from a source point (i e  don’t stand still)– Repelling from a source point (i.e., don t stand still)

– Repelling from an obstacle (i.e., steering around obstacles)

Attract to goal Repel from source Repel from obstacle
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Potential Fields
Each individual vector indicates the direction that 
the robot should go if it were standing at this 
particular location.particular location.

e.g., If the robot was 
standing at this point, it 
would move up and to the 
right (i.e., 50°) in order to 
get away from the source 
point.

– Note that many vectors are displayed to show how the 
potential fields affect all areas of the environment.

– In reality though, only one vector is computed based on the 
robot’s location
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Magnitude
The magnitude of a potential field vector indicates 
the “importance” of heading in that direction.

– For example, if the robot is 
close to an obstacle, it 
h ld h   t  d i  should have a strong desire 

to move away from it. 

– Likewise if it is far from an 
obstacle, then this obstacle’s 
potential field does not affect potential field does not affect 
the robot’s navigation much at all. 
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Combining Fields
The potential field vectors are all combined to 
achieve an overall field that allows the robot to 
navigate around obstacles towards a goal.navigate around obstacles towards a goal.
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Combining Fields
The robot simply calculates and then heads in the 
direction of a new direction vector at each location, 
based on the potential fields that affect its location based on the potential fields that affect its location 
at that time.
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Computing Potential Fields
How do we calculate the potential field vector for a 
particular (x, y) location ?

– Start with vector for goal location (gx, gy):

- magnitude = fixed αgoal or
αgoal * 1 / distance from (x,y) to (gx,gy)

- direction = angle from (x,y) to (gx,gy)

– Add to it, a vector for each edge (sx,sy)→(dx,dy) of each 
obstacle:

d = distance from (x,y) 
t li ( ) (d d )

Factor affecting growth of magnitude vectors 
as distance from edge increases. 

- magnitude = αobst / (d / (ε· αobst) + 1)

- direction = perpendicular (i.e., 90°) from edge

to line (sx,sy)→(dx,dy) 

d(sx,sy)
(dx,dy)

(x,y)
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Computing Potential Fields
Each edge separates the plane into two.

Should ensure that (x,y) only affected if it lies on the ( ,y) y
half of the plane that does not contain the obstacle
– Assume obstacle created clockwise, then perform a turn test, 

l  ddi  p te ti l field ect s f  ed es t  the left f e ch only adding potential field vectors for edges to the left of each 
individual edge.

– IF (s s )→(d d )→(x y) is a left turn ( )IF (sx,sy )→(dx,dy)→(x,y) is a left turn 
THEN the obstacle should produce 
a potential field vector for this edge. (sx,sy)

(dx,dy)
(x,y)

p g
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Computing Potential Fields
Compute the turn type as the sign of the following 
determinant:

sx sy 1
dx dy 1y

x y 1

– sign < 0 implies a left turnsign < 0 implies a left turn
– sign > 0 implies a right turn
– sign = 0 implies collinearg p

Calculate determinant as follows:
– s d + s x + d y - d x - s d - s y
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Computing Potential Fields
Can vary values of 
α and ε to achieve 
different field
strengths:

α =10 , ε =10 α =10 , ε =6 α =10 , ε =3

– α indicates 
maximum
magnitude

– ε indicates

α =5 , ε =10 α =5 , ε =6 α =5 , ε =3

magnitude 
dropoff rate α =20 , ε =10 α =20 , ε =3 α =20 , ε =1
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Computing Potential Fields
Each edge produces a vector.   Edge vectors must be 
combined. 

Vector  field from 2 
edges combined

Completed 
vector field
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Computing Potential Fields
How do we add two vectors ?
– Can break into x/y components and add those:

cx = v1
mag · cos(v1

dir) + v2
mag · cos(v2

dir)
cy = v1

mag · sin(v1
dir) + v2

mag · sin(v2
dir)

v′mag =  √ cx
2 + cy

2

v′dir = atan(cy / cx)
v1

dir
v′dir

v2
dir

Need to also add 
180° when cx < 0
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Computing Potential Fields
This left turn test also applies to non-convex 
obstacles:
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Navigation Problems
It is not always this straight forward:
– Sometimes the fields pushing away from obstacles can prevent 

a solutiona solution
– Depends on strengths of potential fields

If too strong, it 
may allow or 
cause collisionscause collisions.

weak goal attraction medium goal attraction strong goal attraction
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Local Minima
In some cases, there may be a local minimum 
problem where the robot gets stuck due to counter-
acting forces:acting forces:

Counter-acting forces 
here cause the robot to 
be uncertain as to which 
direction to head.
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Local Minima
Can reduce such local minima problems by:
– adding field from source (i.e., to “push” away from it)

i d i i h i– introduce noise into the environment

Source produces 
vectors to “push” robot 

Usually fixed magnitude, 
and random offset 
direction (e g ±45°)p

outwards. 
direction (e.g., ±45 ).

source field added noise (i.e., random vectors)
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Local Minima
The addition of the outwards source field will likely 
still lead to a local minimum, but added noise often 
overcomes minimum problem (but no guarantee):overcomes minimum problem (but no guarantee):

without noise, no path with noise, path found
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Local Minima
During multiple attempts, the path will vary, 
depending on the random values of the noise vectors.
T  h i  ill t kToo much noise will not work.

multiple iterations too much noise, no path found
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Counteracting Fields
Certainly, we also want to include vectors from the 
outer environmental boundary as well: May introduce multiple 

local minima points.

– Can keep left turn 
test, provided that 

t  b d  i  outer boundary is 
formed in the
counter-clockwisecounter clockwise
direction, otherwise
make it a right turng
test.
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Counteracting Fields
We combine outer boundary and inner obstacle fields 
together:

May introduceMay introduce 
additional counter-
acting problems.
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Counteracting Fields
Still may be no solution, since proper path is NOT a 
direct path to the goal, but may interleave between 
obstacles.obstacles.

We need a way to “pull” the
b b b l irobot between obstacles in 

the correct direction from the
source and towards the goal.

Problem: We don’t know which way to pulll W y p ll
– implies that we have some global 

shortest path knowledge.
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Corridor Fields
One way of pulling the robot between obstacles is to 
take pairs of obstacles and for all points in between 
(i.e., within the convex hull) compute a set of (i.e., within the convex hull) compute a set of 
potential fields 
passing through.p g g

This presents a 
flow towards the flow towards the 
goal. 
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Corridor Fields
Can compute convex hull of two polygons in many 
ways.   Simplest is to start with an extreme point 
(e.g., max y value) and finding the next clockwise hull (e.g., max y value) and finding the next clockwise hull 
point by choosing any other point (from both 
polygons) such that the line from the max point and 
next point to any other point is a right turn:next point to any other point is a right turn:

Extreme point.
Only point such that turn from 
extreme point through here to all 
other points is a right turn.

After this is found, start with thisAfter this is found, start with this 
one as the extreme point and 
find the next point satisfying the 
same right turn condition.
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Corridor Fields
Compute the field direction as follows:
– Let p1 and p2 be the two polygons forming the convex hull.

– Determine the vertex v of p1 that is closest to p2, then 
determine the point z on an edge of p2 that is closest to v.

– Compute the angle of the perpendicular to segment vz.
- There are two choices for the perpendicular direction, depending 

on which way the robot needs to pass through in order to reach y p g
the goal.

Potential field direction.

z

v

z
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Corridor Fields
Here are some such fields produced by this means:

1st set of vectors 2nd set of vectors

Combined set of vectors Completed set of vectors
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Corridor Fields
Does this improve the success ?
Consider using just two of
these “corridor” fields:

ith t id  fi ld ith id  fi ld
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Problems
Problems:
– We don’t know which direction to pass through the corridor.   

This depends on some global knowledgeThis depends on some global knowledge.

– The magnitudes of the vectors used greatly affect the solution.   
It is difficult to choose appropriate magnitudes for each of the ff l pp p g f f
kinds of vector fields:
• obstacles
• goal attraction and source repelling• goal attraction and source repelling
• noise
• corridors

– So, lots of experimentation is needed to find appropriate 
weights, which highly depends on the obstacle shapes.
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Problems
Potential Fields cannot handle multiple goals:
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Comparing with VFH
How does this compare with Vector Field Histograms ?
– VHF can be used in unknown environments, whereas the 

potential field method requires all obstacle positionspotential field method requires all obstacle positions.

– easier for VFH to go down narrow passages.

– VFH cannot get trapped in a local minimum due to 
counteracting obstacle and goal forces 
• it always heads towards the best it always heads towards the best 

opening, regardless of whether or 
not it heads towards the goal location.

– VFH can still get stuck in cycles 
(like a local minima)
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Summary
You should now understand
– How to navigate a robot from its current location towards a 

particular goalparticular goal.

– Various navigation techniques which vary according to the 
knowledge about obstacles and the ability to sense obstacles.g y

– How to use a feature map to direct a robot towards a 
particular location in the map.

– How to move a robot successfully, but need to consider how to 
do so more efficiently when more knowledge is available.
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