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Objectives
Understand the definition of a Road Map

Investigate techniques for roadmap-based goal-g q p g
directed path planning in 2D environments

– geometry-based algorithms that decompose the environment geometry based algorithms that decompose the environment
into regions between which robot can travel

– sampling-based algorithms that choose fixed or random 
l dlocations in the environment and then interconnect them to 
form potential paths.

T  d t d  i  i  l i th  To understand some issues in applying these 
algorithms to real robots
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What’s in Here ?
Road Maps
Geometry-Based Road Maps
– Visibility Graph Pathsy p

- Shortest Paths in 2D Among Obstacles
- Real Robot Shortest Paths
- Shortest Paths in a Grid

Triangulation Dual Graph Paths– Triangulation Dual Graph Paths
– Generalized Voronoi Diagram Paths
– Cell Decomposition Paths

- Trapezoidal Decompositionp p
- Boustrophedon Decomposition
- Canny’s Silhouette Algorithm

Sampling-Based Road Mapsp g p
– Grid Based Sampling
– Probabilistic Road Maps
– Rapidly Exploring Random Tree Maps
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Road Maps
A Road Map is: 
– a kind of topological map

f h ( d ) b– represents a set of paths (or roads) between 
two points in the environment that the robot 
can travel on without collisioncan travel on without collision

Road Maps assume that global knowledge of the 
environment is availableenvironment is available.

They are commonly used to compute pre-planned 
pathspaths.
– i.e., the first step towards goal-directed path planning
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Road Maps
Usually, the set of paths are stored as:
– a graph of nodes and edges

id ( h i i li d b ll )– a raster grid (graph is implied by cell arrangement)

Usually, the graph is pre-computed ahead of time 
i h  k l d  f / l l iwithout knowledge of start/goal locations.

– start/goal locations are given later as a query.
a few ed es a e s metimes added t  aph t  a swe  q e– a few edges are sometimes added to graph to answer query

In all cases, the graph is searched to find an efficient 
(e  sh test) path t  the al(e.g., shortest) path to the goal.
– usually Dijkstra’s algorithm, A* or something similar
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Road Map Algorithms
They are categorized into two main categories:
– Geometry-based algorithms

li b d l i h– Sampling-based algorithms

Geometry-based algorithms use computational 
 h d    d  d h geometry methods to compute nodes and graph 

edges based on various constraints.

Sampling-based algorithms select random robot 
configurations (e.g., points) as nodes and then 
interconnect them based on some constraints.interconnect them based on some constraints.
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dGeometry-Based
Road MapsRoad Maps



Geometry-Based Road Maps
There are a few that we will look at based on:
– Visibility graphs

i l i d l h– Triangulations dual graphs
– Generalized Voronoi diagrams
– Cell decompositions– Cell decompositions

• Trapezoidal decompositions
• Boustrophedon decompositions
• Canny’s Silhouette algorithm
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Visibility Graph PathsVisibility Graph Paths



Shortest Path Problem
How do we get a robot to move efficiently without 
collisions from one location to another ?

start
end
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Shortest Path Problem
Moving without collisions is simple with adequate 
sensors, but how do we direct it towards a goal ?

What if the environment is complex ?

end
start
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Shortest Path Problem
Need to examine the map and plan a path
– Consider simpler problem where robot is a point & obstacles 

are convex  are convex. 

start
end
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Shortest Path Properties
start

Shortest path will travel around 
obstacles, touching boundaries.

start

Consider the robot standing at point s.

D t i  t li  f l  

end

Determine support lines of polygon p:

– A support line is a line intersecting p such that p lies 
l t l    id  f th t licompletely on one side of that line.

– exactly two calledleft support and 
right support lines.

s

ppLL

right support lines.
– defined by 2 vertices of p called left

& right support vertices (pL & pR)

p

ppRR

7-13
Winter 2012Chapter 7 – Roadmap-Based Path Planning

ppRR



Shortest Path Properties
Can find pL and pR by checking each vertex using 
left/right turn test:

For co vex polygo s  p  p (resp  p ) 
ppiippii--11

– For convex polygons, pi = pL (resp. pR) 
if both spipi-1 and spipi+1 are right 
(resp. left) turns. s

ppi+1i+1

spipi-1 is left turn, proving 
that pi is not left support(resp left) turns

– Just compute:
t1 = (pix-sx)(pi+1y-sy)-(piy-sy)(pi+1x-sx)

that pi is not left support.

ppi+1i+1ppii
Now both 

t2 = (pix-sx)(pi-1y-sy)-(piy-sy)(pi-1x-sx)

IF ((t1 < 0) AND (t2 < 0)) THEN pL = pi

IF ((t1 > 0) AND (t2 > 0)) THEN pR = pi

s
ppii--11

spipi-1 both 
spipi+1 is right 
turn, proving 
that pi is the 
left supportleft support.
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Shortest Path Properties
This support-finding algorithm can take O(n) time 
but it is practical for small polygons.

A more efficient algorithm can use a binary search 
for the left/right support vertices in O(log n) time.  
Can YOU do this ?Can YOU do this ?

There are some numerical issues with collinearity:

Slight bend may result in near collinearity.  Even 3 collinear points may give a 
cross product result of 0 000000023 which can register as a right turn!!!

May have to allow for computational margins.

cross product result of 0.000000023 which can register as a right turn!!!
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Shortest Path Algorithm
We can now apply this by finding all support vertices 
of our obstacles:

We will include our destination 
as a special case in our set of 
support lines.

start
end
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Shortest Path Algorithm
Now determine which support lines represent valid 
paths for the robot to travel (i.e., the visible support vertices):

start
end
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Shortest Path Algorithm
Do this by eliminating any support line segments 
that intersect another polygon. Can compare every polygon 

edge with a support line 
segment for intersection and 
remove all that intersect other 
than at the support endpoints.

start
end
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Shortest Path Algorithm
Since obstacles are convex, it is enough to compare 
support lines against line segments joining polygon 
support vertices:support vertices:

2n+1 = O(n) 
support lines

O(n) polygons

start
end

support lines

Simple iterative 
intersection test for 
all pairs takes O(n2)
time.
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Line Intersection test
How do we check for line-segment intersection ?

(x2,y2)(x3,y3)

C   ll k  ti  f  li
(x1,y1)

(x4,y4)
(x,y)

Can use well-known equation of a line:
y = max + ba

y = m x + by = mbx + bb

where
ma = (y2 – y1) / (x2 – x1)

Must handle special case 
where lines are vertical. 
(i.e., x1 = x2 or x3 = x4)a (y2 y1) ( 2 1)

mb = (y4 – y3) / (x4 – x3)
ba = y1 – x1ma

b  
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Line Intersection test
Intersection occurs when these are equal:

max + ba = mbx + bb

(b b ) / ( )→ x = (bb – ba) / (ma – mb)

If (ma = mb) the lines are parallel and there is no 
i iintersection
Otherwise solve for x, plug back in to get y.
Final test is to ensure that intersection (x, y) lies on 
line segment … just make sure that each of these is 
true: (x y ) (x y)true:
– max(x1, x2) ≥ x ≥ min(x1, x2)
– max(x3, x4) ≥ x ≥ min(x3, x4) (x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(x,y)
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More Efficient Approach – Radial Sweep

More efficient approach can compute and remove all 
intersections in O(n log n) time by using a radial 
sweep.sweep.

d

1st:  Sort support 
lines radially with 
respect to s.

s
end

2nd:  Choose a right 
support line that you 
know is visible.  In a 
rare case, none are 
visible, then we must 
split polygons.
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More Efficient Approach – Radial Sweep

3rd: Do a radial sweep, keeping track of the closest 
(visible) polygon.

d

When reaching a 
right support 
vertex, check if it 
is in front or

s

endis in front or 
behind the 
current polygon.

Not visible since it is  
behind (i.e., intersects) 
current visible polygon.

Not visible since it is  
behind (i.e., intersects) 
current visible polygon.

Current visible polygon
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More Efficient Approach – Radial Sweep

When left support vertex encountered:
If it belongs to 
current visible

d

current visible 
polygon, mark it 
as visible and 
then set current 
polygon to null

s
endpolygon to null.

When left support 
t h d tvertex reached, set 

current visible 
polygon to null.
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More Efficient Approach – Radial Sweep

When left support vertex encountered:

If it does not belong 

visible polygon.

Discard these since they are left 
vertices that do not belong to current 
visible polygon.

Discard these since they are left 
vertices that do not belong to current 
visible polygon.

to current visible 
polygon, the vertex 
is not visible, so 
discard it.

s
end
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Shortest Path Algorithm (Continued)

Repeat this process iteratively by letting each visible 
support vertex become point s
(i e  assume e.g., compute the visibility as if (i.e., assume

robot 
moved
th ) end

e g , co pute t e s b ty as
the robot was now here.

there): end

More visible nodes.  We will 
compute visibility from these 
as well.
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Shortest Path Algorithm (Continued)

By appending all these visible segments together, a 
visibility graph is obtained:

start
end
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Shortest Path Algorithm (Continued)

We can then search this visibility graph for the 
shortest path from the start to the goal:

start
end

7-28
Winter 2012Chapter 7 – Roadmap-Based Path Planning



Shortest Path in Graph
We can use Dijkstra’s shortest path algorithm to 
compute the shortest path in this graph.

Takes O(V log V + E) time for a V vertex / E edge graph– Takes O(V log V + E) time for a V-vertex / E-edge graph

1 function Dijkstra(G, s, t)
2 for (each vertex v in V[G]) do

Initialize all distances to vertices (i.e., d[v]) to ∞, except 
start which has distance 0

3 d[v] = infinity
4 previous[v] = undefined
5 d[s] = 0
6 Q = queue of all vertices Priority queue sorted by distances from s.

gRemembers how we got to this node.

q
7 while (Q is not empty) do
8 u = Extract-Min(Q)
9 if (u == t) then return;
10 for each edge (u,v) outgoing from u do

Get the next closet unprocessed vertex.  If it 
is the destination, we are done.

10 for each edge (u,v) outgoing from u do
11 if (d[v] > d[u] + dist(u,v)) then
12 d[v] = d[u] + dist(u,v)
13 previous[v] = u
14 Q = Update(Q)

Relax all edges from u to v, by updating 
(reducing) the cost d[v] at each v if can be 
reached quicker from u.

Re sort the queue since priorities may have changed
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Shortest Path in Graph
Alternatively, we can use the A* algorithm.
– employs "heuristic estimate" that ranks each node by an 

estimate of the best route that goes through that nodeestimate of the best route that goes through that node.

Dijkstra employs breadth-first-search, while A* does 
a best-first-searcha best-first-search. A* has more 

focused 
propagation 
pattern.

Dijkstra has no 
particular focus, 
all nodes treated t tall nodes treated 
equal. s s t

Can be just as bad as Dijkstra in worst case but often 
much quicker in practice.
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Shortest Path in Graph
A* algorithm is the same as Dijkstra’s except that:

– In Dijkstra’s alg., nodes vi in queue are sorted by d[vi]j g q y [

– In A*, they are sorted by d[vi] + E[vi,t] where E[vi,t] is an 
underestimate of the distance from vi to t.   

– Only the Extract-Min(Q) function of line 8 is affected.

E is often simply the straight line distance from v ’s E is often simply the straight line distance from vi s 
coordinate to t’s coordinate.

This is l s  d sti t  si  th  l st f  t  – This is always an underestimate since the real cost from vi to 
t can never be greater than the straight line cost.
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Shortest Path Traversal
From this produced path, we have a set of points 
and angles.

We can then apply inverse kinematics for our robot 
to move it along this path.

But wait a minute!   Our robot is not a point, it’s a 
rectangle.   We cannot simply hug along the obstacle 
b d ies!boundaries!
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Real Robot Shortest Path
Our real-robot will collide with obstacles if it 
travels along a path computed as we described:

start
end
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Real Robot Shortest Path
We need a kind of “safety buffer” around each 
obstacle according to the robot’s size & shape:

Buffer keeps robot safelyAs long as robot’s center stays Buffer keeps robot safely 
away from obstacle edges.

As long as robot s center stays 
outside safety buffer, robot’s body 
won’t hit the actual obstacle.

W d t
In some cases, 
there may be no 
safe way between 
the obstacles 
(usually when two

We need to 
compute these 
safety buffers by 
“growing” the 
obstacles by an 
amount that(usually when two 

buffers intersect).
amount that 
reflects the 
robot’s shape 
and size.

7-34
Winter 2012Chapter 7 – Roadmap-Based Path Planning



Real Robot Shortest Path
If robot is symmetrical in all directions, we can still 
work with our same algorithm.

– Only circles are symmetrical in all directions.

– For simplicity, assume a square. We will use this point (arbitrarily 
chosen) as our reference point.p chosen) as our reference point.

A circle that 
models our 
robot in any 
orientation

Robot’s area 
as it spins.

Our robot We will assume a square 
model such that robot is 
contained in this square in 
any orientation.
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Real Robot Shortest Path
Can apply a “growing” procedure to each obstacle:
– Determine edge vectors along 

d l i CC d
m3

m4

model in CCW order:

– Determine edge vectors along 

m1 m2

p1– Determine edge vectors along 
polygon in CW order:

p2

p4

– Sort combined edge vectors 

p3p3
p4

m2

m3

m4

by angle p1

p2 m1
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Real Robot Shortest Path
Traverse the vectors radialy clockwise 
starting at m1. 

p3
p4

m2

m3

m4

– When sweeping between model vector 
mi and polygon vector pi, translate the 

p1

p2 m1

model such that mi = pi Connect reference 
points of all model 
translations to form 
the grown obstaclem3m4

m1 m2p1 p2

p4

m3m4

m1 m2

the grown obstacle
which will have at 
most n+4 vertices.

p3

1 2

m3m4

m1 m2

m3m4

m1 m2
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Real Robot Shortest Path
It is easy to see that as long the reference point of 
our model lies on our outside the grown obstacle, 
then the robot will not collide with the real obstacle.then the robot will not collide with the real obstacle.

Reference point lies 
t idon or outside grown 

obstacle.
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Real Robot Shortest Path
Grown obstacles may overlap …

Apply this 
to all 

Grown obstacles may overlap … 
indicating that robot cannot travel 
safely in between.

obstacles 
to obtain

t
the
grown

s

t

obstacle

space.space.
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Real Robot Shortest Path
Now apply previous point-robot algorithm.

t

s

t

New starting and 
destination points are 
found by centering robot 
model shape about 
original start and 
destination, then using 
the reference points
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Real Robot Shortest Path
Robot now moves safely along path:

Robot avoids 
b d i fboundaries of 
real obstacles.

s

t
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Real Robot Shortest Path
But our robot should be able to fit in between those 
obstacle.  Why doesn’t our solution allow this ?

Robot will fit at 
certain angles.
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Real Robot Shortest Path
Robot will fit throughUse a more

accurate

Robot will fit through 
here now.

model 
to produce
a more 
accurate 
path.

R b illRobot still cannot 
fit through some 
places.
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Real Robot Shortest Path
We could use a more complicated approach that 
allows the robot to pass through certain

 l  i  ifi  di ti    areas only in specific directions.   

– can shrink the model .

– must allow model to rotate.

– Too complicated for us in this course  but can be doneToo complicated for us in this course, but can be done.

– Realistically, robot sensors are not reliable enough 
nor accurate enough to ensure safe travel within areas that nor accurate enough to ensure safe travel within areas that 
require a  small margin of error.
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Non–Convex Obstacles
What about non-convex obstacles ?
– Can divide them into convex polygons and then apply the 

same algorithms (although better solutions exist)same algorithms (although better solutions exist).

end
start
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Non-Convex Obstacles
What about non-convex obstacles ?
– Can divide them into convex polygons and then apply the 

same algorithms (although better solutions exist)same algorithms (although better solutions exist).

end
start
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Shortest Paths in Grids
How do we find the shortest path in a binary grid ?

– Can apply Dijkstra’s algorithm by creating an “implicit” pp y j g y g p
graph from the grid. 

– Assign weights to nodes
according to realistic distance

∞
1

1
√2√2

1

∞1

√2 ∞
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Shortest Paths in Grids
As cells are processed in order of distance from 
source, a wavefront propagates through the grid:

Colors simply indicate a change inColors simply indicate a change in 
distance.   Each “ring” of color indicates 
the same distance from the source. 

Eventually, 
destination is 
reached Justreached.   Just 
remember which 
grid cell neighbor 
reached here first 
and trace 
backwards.

In this example, only 4 directions 
or travel were allowed: →↓↑←
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Shortest Paths in Grids
For an M x N grid, the graph has O(MN) vertices and 
O(MN) edges.

Algorithm thus takes O(MV log MN) runtime.

More accurate paths can be produced if we increase More accurate paths can be produced if we increase 
the number of edges:

∞
1

1
√2√2
√5√5

√5 ∞
May set to 2 assuming 
rectilinear travel 
around obstacle:Additional edges 

ff t ti b
1√2 ∞

√5

√5 ∞

∞
2

affect runtime by a 
factor of around 2.
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Shortest Paths in Grids
It takes no effort to handle complicated obstacles 
since algorithm merely concentrates on moving from 
one grid unit to another.one grid unit to another.

What about non-point robots ?

Since robot shape is known
ahead of time, we can adjustj
the weights of adjacent nodes
in the grid accordingly.g gly
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Shortest Paths in Grids
For each grid location, center robot model (i.e., a 
collection of grid cells) around that point. Cell disabled since 

obstacle lies within 

If any obstacle locations 
intersect it, disable this

this square.

grid location either by:

– removing the node from theremoving the node from the
graph entirely

setting the weights of edges– setting the weights of edges
going in and out of it to ∞.
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Shortest Paths in Grids
Another solution to the grid shortest path problem  
is to convert the grid into vector obstacles, then 
apply the vector-based algorithm:apply the vector based algorithm:

s

tt
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Shortest Paths in Grids
Of course we can even do the reverse if we prefer to 
work with grids (i.e., convert vector to grid):

s

t
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Shortest Paths in Grids
A problem does arise however in the more realistic 
maps (i.e., certainty grids) since sensor data is noisy 
and we no longer have binary values.and we no longer have binary values.

Not clear whether an 
obstacle lies here or 

Realistically, robots 
cannot operate in 
such a cluttered 

not.

environment since 
its sensors would 
produce too much 
noise and false 
readings So

We can always choose 
some threshold to 

readings.  So 
choosing threshold 
is reasonable.

produce binary grid 
(e.g., >40% certainty 
indicates obstacle)
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lTriangulation
Dual Graph PathsDual Graph Paths



Triangulation
A geometric strategy is based on computing a 
triangulation of the environment:

Decompose i to tria gular free space regio s– Decompose into triangular free-space regions
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Triangulation
There are MANY such triangulations and also many 
algorithms for obtaining them.

One approach is to start by decomposing the free-
space region into y-monotone polygons.  

– A simple polygon is called y-monotone if any horizontal line is 
connected.

Connected
Broken, thus not 
y-monotone
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Triangulation
W  d t  d t d diff t t  f tiWe need to understand different types of vertices:
– A regular vertex is a vertex that is adjacent (connected to) at 

least one vertex with a larger y-coordinate and one with a l v x l g y
smaller y-coordinate.

– A irregular up vertex is a vertex that is not connected to any 
vertices with a larger y-coordinatevertices with a larger y coordinate.

– A irregular down vertex is a vertex that is not connected to 
any vertices with a smaller y-coordinate.

Regular

Irregular Up

Irregular Down

7-58
Winter 2012Chapter 7 – Roadmap-Based Path Planning



Triangulation
We need to regularize the polygon with holes:
– Break it into a subgraph such that all vertices 

l h i iare regular except the most extreme vertices in 
the y direction.

Result is a decomposition into monotone pieces.

Basic idea:B
– Vertical sweep from top to bottom regularizing vertices that 

are irregular down
i l f b l i i i h– Vertical sweep from bottom to top, regularizing vertices that 

are irregular up.
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Triangulation
Can do this by first sorting vertices in vertical order:
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Triangulation
Perform vertical sweep downwards connecting 
irregular down vertices to the next nearby vertex:

Some edges willSome edges willSome edges will 
be invalid, hence 
ignored.

Some edges will 
be invalid, hence 
ignored.
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Triangulation
Perform vertical sweep upwards connecting irregular 
up vertices to the next nearby vertex:
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Triangulation
Some details have been left out, but result is a set of 
monotone polygons:
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Triangulation
Monotone pieces each triangulated separately:
– Do vertical sweep downward, connect vertices from left 

monotone chain to rightmonotone chain to right

Right chain

Left chain

Connections added.  
There are some 

i l th tspecial cases that 
must be considered.

7-64
Winter 2012Chapter 7 – Roadmap-Based Path Planning



Triangulation
Monotone pieces each triangulated separately, then 
results are joined together:

Unfortunately, this can produce 
long/thin triangles

Can all be done in 
O(n log n) time.
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Triangulation
Better algorithm is a Constrained Delaunay 
Triangulation

– Produces “fatter” triangles
– Nicer looking decomposition

M  li t d  b t till ti l– More complicated, but still practical
– Beyond the scope of this course 

vsvs.

7-66
Winter 2012Chapter 7 – Roadmap-Based Path Planning



The Dual Graph
Compute the dual graph which gives a rough idea as 
to the paths that the robot may travel.

To get dual 
graph, place 
vertex at center 
of each triangle.  
Connect vertices

Will contain 
loops around 
obstacles.

Connect vertices 
only if they share 
a triangle edge.

May contain dead ends.May contain dead ends.
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Computing a Path
Robot can compute path in dual graph from start 
triangle to goal triangle:

C ijk ’ l i h
Path not necessarily efficient.

– Can use Dijkstra’s algorithm
y
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Computing a Path
The efficiency of the path solutions are highly 
dependant on the triangulation:

Triangulations with long thin triangles tend to 
cause zig-zag effects on the path.
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Refining the Path
Can also simplify (i.e., refine) any path in the dual 
graph by computing the shortest path in the sleeve
formed by connected triangles:formed by connected triangles:
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Refining the Path
As a result, the computed path will be more 
efficient in terms of length

h ill ll l l b d i– But path will generally travel close to boundaries.

Possible 
collision due 
to inaccurate 
sensors.
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Refining the Path
The zig-zag effect essentially disappears when path is 
refined.

Caution: long thin triangles can also lead to 
numerical problems during computations.
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Problems
If traveling between centers of 
triangles, this could be 
dangerous, for thin triangles:

Computing refined path will 
always correct this:
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Problems
Alternatively, we can connect 
vertices at midpoints of 
triangulation edges:
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l dGeneralized Voronoi
Diagram PathsDiagram Paths



Voronoi Road Maps
A Voronoi road map is a set of paths
in an environment that represent 
maximum clearance between obstacles.

They are sometimes preferred in robotics since they They are sometimes preferred in robotics since they 
reduce the chance of collisions because sensors are 
often inaccurate and prone to error.

Other names for this roadmap are generalized 
Voronoi diagram and retraction method. 

It is considered as a generalization of the Voronoi
diagram for points.
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Voronoi Diagram
Let S be a set of n points. For each point p of S, the 
Voronoi cell of p is the set of points that are closer to 
p than to any other points of S. p than to any other points of S. 

The Voronoi diagram is the 
i i i d d bspace partition induced by 

Voronoi cells. 

If the points were obstacles, a robot would 
travel along the edges of a Voronoiv l l g g f
diagram if it wanted to keep maximum 
distance away from the obstacles.
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Voronoi Diagram
Multiple ways of computing a Voronoi Diagram.
– We consider the simplest, and leave the more advanced 

algorithms for a computational geometry coursealgorithms for a computational geometry course.

Basically,  we compute each Voronoi cell as the 
intersection of a set of half-planes: O(n2 log n) timeintersection of a set of half-planes: O(n2 log n) time.

Completed cell in 
O(n log n) time.O(n log n) time.

Some cells will 
remain “open”.
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Generalized Voronoi Diagram
What if the obstacles are polygons ?

Now we compute the Generalized Voronoi Diagram in p G g
which the edges forming it maintain maximal 
distance between edges of the environment, as 
opposed to just pointsopposed to just points.
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Generalized Voronoi Diagram
Edges formed based on three types of interaction:

Edge-Edge Edge-Vertex Vertex-Vertexg g g

There are different ways of computing this diagram:

Certain portions 
will be curved.

y p g g
– Exact computation 
– Approximation – Discretize Obstacles 
– Approximation – Discretize Space 

7-80
Winter 2012Chapter 7 – Roadmap-Based Path Planning



Computing the GVD
Exact computation

– Based on computing analytic boundariesp g y

– Boundaries may be composed of high-degree curves and 
surfaces and their intersections.

– Complex and difficult to implement

– Robustness and accuracy problems– Robustness and accuracy problems
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GVD Approximation – Method 1
Approximation – Discretize Obstacles

– Convert each obstacle into a set of points by selecting samples p y g p
along boundaries.

– Compute regular Voronoi diagram on resulting point sets.

– Will produce some diagram edges that are not traversable.  
Must prevent travel along these portions.

– Can be slow to compute, depending on samples.

Yellow portions are 

This is no longer 
a curve.

not traversable since 
they are inside the 
obstacle.
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GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Consider computing the GVD for the following example:p g g p
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GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Compute sample points along obstacle border.  
The points were computed 
manually from this website:  
http://www.cs.cornell.edu/I
nfo/People/chew/Delaunay
.html
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GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Here is the Voronoi Diagram for the point set:
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GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Can discard (ignore) all edges of GVD that are defined by two 
consecutive points from the same obstacle:consecutive points from the same obstacle:

C l di d llCan also discard all 
edges that lie 
completely interior 
to any obstacle 
(i.e., green ones 
here)here).
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GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Resulting GVD edges can be searched for a path from start to 
goal (e g  store GVD as graph  run Dijkstra’s shortest path goal (e.g., store GVD as graph, run Dijkstra s shortest path 
algorithm)

First/Last 
edges 
connect 
start/goal tostart/goal to 
closest 
vertex of 
GVD.
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GVD Approximation – Method 2
Approximation – Discretize Space

– Convert the environment into a grid.g

– Compute the Voronoi diagram on resulting grid by 
propagating shortest paths from each obstacle point.

– Remember which obstacle point the shortest path came from 
for each non-obstacle grid cell.

– Can be slow to compute, depending on samples.

A finer grid 
produces a more 
accurate answer 
but takes longer
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GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Create a grid from the environment
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GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Compute the Voronoi diagram by running a grid shortest 
path  setting each obstacle cell as a sourcepath, setting each obstacle cell as a source

All cells in 
each obstacle 

Roadmap paths 
found when point 
is equally 

i given unique 
IDi.

reachable by two 
different sources:
That is, 

IDi == IDj
where i ≠ j.

Environment 
border 
included as 
obstacle.
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GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Use secondary-ID’s to get path portions in between areas of 
non-convex obstaclesnon-convex obstacles.

Now also keep 
path-portions in 
which cell has 

Each cell k in 
obstacle i
given a been reached 

by two same 
primary sources 
with non-
consecutive 
secondary IDs

given a 
unique IDik 
such that 
consecutive 
cells along 
border given 

1

secondary IDs.  
That is, 

IDik = IDim
where 

ABS(k-m) > 
1.

etc…

g
consecutive 
IDs as IDi, 
IDi+1, ID1+2, 
etc…
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GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Compute a path in the Voronoi diagram
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GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Resulting path is pretty good too:
Green path is discretized
space path (i.e., grid).

Red path is discretized
obstacles path (i.e., previous).

H i b it th tHere is a website that you 
can try:
http://www.cs.columbia.ed
u/~pblaer/projects/path_pl
anner/applet.shtml
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Cell Decomposition PathsCell Decomposition Paths



Cell Decomposition
There are various ways to decompose 
(i.e., split up) the environment into cells.

We have already looked at grid based methods  which are – We have already looked at grid-based methods, which are 
based on the same idea

Now we will look at how to geometrically break up Now we will look at how to geometrically break up 
the environment into small-sized polygonal regions 
called cells.

We will then see how to determine a path through 
these cells.
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Trapezoidal Decomposition
Perhaps a simpler way to compute paths is to 
decompose the environment into simpler vertical cells 
in the form of trapezoids or triangles:in the form of trapezoids or triangles:
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Trapezoidal Decomposition
How do we make the trapezoids ?
– extend rays vertically directed up and 

d f h f h b l

x x

down from each vertex of each obstacle 
and (including outer boundary).

x
x

– when rays intersect obstacles (or 
boundary), the ray stops, becoming 
a trapezoid edge

Two separate 
trapezoids are
created here.

a trapezoid edge

– need to compute intersections of each
 ith ll th  b t lray with all other obstacles.

- can be done efficiently using a plane sweep technique, assuming 
vertices of all obstacles are sorted in x direction.
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Trapezoidal Decomposition
While doing this, maintain which trapezoids are 
adjacent (i.e., beside) one another.

– Adjacent trapezoids will share an 
edge with the exact same endpoints.

– Determine midpoint of each trapezoid
edge (except polygon/boundary edges).

– Form a graph where 
• the nodes are the midpoints of the trapezoidal 

edges and two nodes are connected if they 
represent midpoints of edges belonging to 
the same trapezoid
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Computing a Path
Easy to compute path now in the resulting graph:
– Just determine which trapezoid contains start/goal and 

connect the start/goal to each node of that trapezoidconnect the start/goal to each node of that trapezoid.

Goal

Computed path can be inefficient.

Start
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Improving the Path
Can we make the computed path more efficient ?

– Add more points (not just midpoint):p j p
• fixed number per edge, or
• fixed distance between points

As a result, the path:

– may take different path around obstaclesmay take different path around obstacles

– will be more efficient

– may travel closer to boundaries
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Boustrophedon Cell Decomposition
Boustrophedon cell decomposition considers only 
critical points.

i i l i b l i f hi h b– critical points are obstacle vertices from which a ray can be

extended both upwards and downwards through free space.

– Connect midpoints of formed line 

segments as with the trapezoidal 
x

xxx

decomposition technique.
xx

x

x
x

Cells, in general, are no longer trapezoids or 
triangles
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Boustrophedon Cell Decomposition
Now less cells than trapezoidal, but cells are more 
complex Critical points
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Boustrophedon Cell Decomposition
Can interconnect cells, but connections are 
topological, not actual valid paths:
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Boustrophedon Cell Decomposition
To find a path now, we can use various strategies:
– Bug algorithm, cell boundary following etc… 

Bug2 algorithm

Cell boundary 
following
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Canny’s Silhouette Algorithm
Another approach is to decompose the environment 
into silhouette curves which represent borders of the 
obstacles:obstacles:

Regions are no 
longer trapezoids 
or triangles 
(in general).
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Canny’s Silhouette Algorithm
To do this, consider a vertical line sweeping 
horizontally from the leftmost environment vertex to 
the rightmost S li i lit i t t ti l litthe rightmost

As the line 
sweeps, the 

d

Sweep line is split into two vertical split 
lines when an obstacle is encountered.

Two split lines 
will merge 
when their 
endpoints 
meet again 
upon leavingtopmost and 

bottommost 
extreme points 
form the 
silhouette 
boundary

upon leaving 
the obstacle.

boundary.

The points at The points at 
which splits & which splits & 
merges occur merges occur 
are called are called 
critical pointscritical points
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Canny’s Silhouette Algorithm
Compute a path by determining extreme points of 
vertical line passing through start/goal and then 
following silhouette path:following silhouette path:

Here are two 
solutions … one 
going upwards, 
the other 
downwards.
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l dSampling-Based
Road MapsRoad Maps



Sampling-Based Road Maps
There are a few that we will look at based on:
– Fixed Grid sampling

– Probabilistic sampling

– Random Tree expansion

Such algorithms work by choosing fixed or random 
valid robot positions and then interconnecting them p g
based on close proximity to form a graph of valid 
paths.
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Grid-Based SamplingGrid Based Sampling



Grid-Based Sampling
Grid-based sampling is perhaps the simplest 
technique based on overlaying a grid of vertices and 
connecting adjacent ones.connecting adjacent ones.
– Accuracy and feasibility of resulting path 

depends on granularity of grid.p g y g

We already looked at this strategy 
in terms of grid mapsin terms of grid maps.

Only interconnect vertices that do not intersect 
b t l  b d iobstacle boundaries

Multiple ways of interconnecting…
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Grid-Based Sampling
Here is a straight forward 4-connectivity grid.

– Compute path from start to goal using graph search:p p g g g p
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Grid-Based Sampling
With additional “neighbor” connections, the graph 
allows more efficient paths…at a cost of increased 
space and slower computation time.space and slower computation time.

Can use a variety 
of neighbor 
interconnection 
strategies per 
node:
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Grid-Based Sampling
Here is the result with a reduced-size sample set (i.e., 
more coarse grid)

Uh Oh! Graph willUh Oh!  Graph will 
become disconnected 
eventually, as grid 
becomes more 
coarse.

As a result, there may 
be no valid path from 
start to goal nodes.
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Setting the Grid Size
We can ensure that a path exists:We can ensure that a path exists:
– choose grid size (i.e., width between connected nodes) to be 

smaller than minimum distance between any two obstacle 
d  h  d   h   edges that do not share a vertex:

Minimal edge distance here.  
Choose grid size 
accordingly:g y
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Setting the Grid Size
How do we determine the shortest distance between 
two line segments L1 and L2 ?

b
Consider first the distance from a 
point p to a line L:

L
ε

a

b

p

q

– p will intersect line L at a right angle, say at point q
– let u be the distance of q along L from a to bq g

(xp – xa)(xb – xa) + (yp – ya)(yb – ya)

(xb – xa)2 + (yb – ya)2
u =

– the coordinates of q are:
xq = xa + u(xb – xa)    and   yq = ya + u(yb – ya) 

(xb xa)  (yb ya)
ε is then just the 
distance between p
and q.
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Setting the Grid Size
We then need to determine whether or not q=(xq,yq) 
lies on the segment L = ab.

If 0 ≤ u ≤ 1 then q lies on the segment and 
therefore ε = |pq| else ε = min(|pa|, |pb|)| | | | | |

L
b

L
qq b

L
b

L
L2

ε

a
p

L
ε

a
p

L

ε

a

p

q

p
0 ≤ u ≤ 1 u > 1 u < 0
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Setting the Grid Size
Let ε = δ(p, L) be the shortest distance function from 
a point p to a segment L.

We can use this to find the minimum distance 
between two segments L1 and L2 as:

ε = Min(δ(a, L2), δ(b, L2), δ(c, L1), δ(d, L1))

L1

L2
ε

c

b

d
2a

c
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Grid-Based Sampling
The main problem here is it causes too many grid 
points in open areas.

Wasteful to have 
many grid points y g p
here.
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Grid-Based Sampling
Can always do a quad-tree-like decomposition, 
determining the smallest gaps within certain areas, 
recursively.recursively.

Details have 
been left out 
as to how to 
connect at 
borders.
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Probabilistic Road MapsProbabilistic Road Maps



Probabilistic Road Maps
Probabilistic Road Maps (PRM) 
are sampling-based mapping 
strategies.

– They are created by selecting random points (i.e., samples) y y g p ( , p )
from the environment and interconnecting points that 
represent valid short path lengths.

f f l ll b b f– They perform fairly well, but are best for situations in which 
robot configurations are more complex than a single point 
robot.

– Solution depends on how many nodes are used and how much 
interconnectivity there is between nodes.
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Probabilistic Road Maps
Algorithm produces a graph G=(V,E) as follows:
LET V and E be empty.
REPEATREPEAT

Let v be a random robot configuration (i.e., random point)
IF (v is a valid configuration) THEN // i.e., does not intersect obstacles

add v to Vadd v to V
UNTIL V has n vertices
FOR (each vertex v of V) DO

C b h k l i hb f // i h k l iLet C be the k closest neighbors of v // i.e., the k closest vertices to v
FOR (each neighbor ci in C) DO

IF (E does not have edge from v to ci) AND (path from v to ci is valid) 
THENTHEN

Add an edge from v to ci in E
ENDFOR

ENDFOR
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Probabilistic Road Maps
Here is an example of randomly added nodes and 
their interconnections (roughly, n = 52 and k = 4):

Graph may be 
disconnected 
if n and/or k
are too smallare too small.
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Probabilistic Road Maps
How do we find the k-nearest neighbors ?

Multiple strategies:p g
– “Brute Force” (check everything O(n2 log n))
– KD-Trees Most popular

– R-Trees
– VP-Trees

p p

The KD tree is the most popular since it is relatively 
straight forward to implement.

Basically, divides recursively the sets of points in 
half…alternating with vertical/horizontal cuts.
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K-D Trees
Here is how to a KD-Tree is constructed:

2

5
4

1
3

7
6

5

8 10 Each node in theEach node in the
Each leaf 
in the tree8

9

10

11

12

Each node in the 
tree defines a 
rectangular region.

Each node in the 
tree defines a 
rectangular region.

in the tree 
represents 
one of the 
points.

13
14
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K-D Trees
Once constructed, we find the k-nearest 
neighbors of a leaf.

– Start by recursively searching down the tree to 
find the rectangle that contains the vertex v (for 
which we are trying to find its neighbors) e.g., Look for this 

guy’s neighbors.
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K-D Trees
Compute closest neighbor on way back from 
recursion:

We can find the k neareast 
neighbors as follows:

1.  Let closest neighbor vc be the 
point in the first window on way 
back from recursion.

2 Compute a circle with radius vv

vcv′c
2.  Compute a circle with radius vvc. 

3.  Check vertices in all rectangles 
that intersect the circle for a 
better neighbor.

vc
v v

4.  If a better neighbor v′c is found, 
shrink the circle to a smaller 
radius defined by vv′c.

5.  Continue in this way until the root 
is reached

vc vc
is reached.

Repeat the above procedure k
times…making sure to flag the 
closest neighbor each time so that it 
is not found again.

v v
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Probabilistic Road Maps
Here are some maps for various n and k values:

n=100, k=5 n=100, k=10 n=100, k=20

n=500, k=5 n=500, k=10 n=1000, k=5
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Probabilistic Road Maps
PRMs perform well in practice, but are susceptible to 
missing vertices in narrow passages

Could lead to disco ected graphs a d o solutio– Could lead to disconnected graphs and no solution:
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Probabilistic Road Maps
PRMs perform well when the robot configurations 
are more complex

whe  robots are ot just poi ts  but differe t shapes i  – when robots are not just points, but different shapes in 
different positions.

– performs very well for robot arm kinematics
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dl l dRapidly-Exploring Random 
Tree MapsTree Maps



Rapidly Exploring Random Trees
Rapidly Exploring Random Trees (RRTs):

– each node represents random robot configuration (i.e., point p g p
representing valid robot location in environment).

– single query planner which covers the space 
between the start/goal locations quickly

– root starts at the current robot position.

– grows outwards from the start either completely randomly or 
somehow biased towards the goal location.

– input parameters are the number of nodes to be used in the 
tree and the length (i.e., step size) of edges to add.
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RRT Algorithm
The algorithm produces a tree G=(V E) as follows:The algorithm produces a tree G=(V,E) as follows:
LET V contain the start vertex and E be empty.
REPEAT

LET q be a random valid robot configuration (i.e., random point)
LET v be the node of V that is closest to q.
LET b  th  i t l  th   f  t th t i  t di t  LET p be the point along the ray from v to q that is at distance s
from v.
IF (vp is a valid edge) THEN // i.e., does not intersect 
obstaclesobstacles

add new node p to V with parent v // i.e., add edge from v
to p in E

UN IL V h i
qqss

UNTIL V has n vertices
ppvv
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RRT Maps
Here are some maps for various n and s values:

n=100, s=10 n=100, s=25 n=100, s=50

n=1000, s=10 n=1000, s=25 n=1000, s=50
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RRT Problems
RRTs have problems expanding through narrow 
passages and getting around obstacles:

Difficult to expand into this 
area since any random points 
generated in this area tend to 
result in an intersection with 
the “L”- shaped obstaclethe L shaped obstacle.
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RRT Guiding
Can we bias the results to head towards the goal ?
– Use goal point for expand direction instead of random 

Use goal 95% Use goal 75% Use goal 50%Stuck in 
“local 
minima”.

Use goal 25% Use goal 5% Use goal 0%
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Greedy RRTs
A greedy approach to the RRT growth is to allow the 
tree to expand beyond the step size s:

n=200 s=25n=100 s=10

ss

n 200, s 25n=100, s=10
Without greedy

qqpp44

LET V contain the start vertex and E be empty.
REPEAT
LET V contain the start vertex and E be empty.
REPEAT

pp11vv pp22
pp33

pp44

REPEAT
LET q be a random valid robot configuration
REPEAT

LET v be the node of V that is closest to q.
LET p be point along vq at distance s from v.
IF (vp is a valid edge) THEN

add new node p to V with parent v

REPEAT
LET q be a random valid robot configuration
REPEAT

LET v be the node of V that is closest to q.
LET p be point along vq at distance s from v.
IF (vp is a valid edge) THEN

add new node p to V with parent vadd new node p to V with parent v
UNTIL (p is invalid) OR (p is within distance s from q)

UNTIL V has n vertices

add new node p to V with parent v
UNTIL (p is invalid) OR (p is within distance s from q)

UNTIL V has n vertices

With greedyJust need to add this 
REPEAT loop.
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Reaching the Goal
We have yet to see how to stop the growth when the 
goal is reached.
M k  th  f ll i  h  t  th  l ithMake the following changes to the algorithm:
LET V contain the start vertex and E be empty.
REPEAT

LET q be a random valid robot configuration (i.e., random point)
LET v be the node of V that is closest to q.
IF (distance from v to goal < s) THEN 

 lp = goal
ELSE 

LET p be the point along the ray from v to q that is at distance s from v.
IF (vp is a valid edge) THEN // i e  does not intersect obstaclesIF (vp is a valid edge) THEN // i.e., does not intersect obstacles

add new node p to V with parent v // i.e., add edge from v to p in E
UNTIL V has n vertices
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Dual Trees
It is more beneficial (faster) to maintain two trees 
G1=(V1,E1) and G2=(V2,E2)

LET V1 contain the start vertex, V2 contain the goal vertex, LET E1 and E2 be empty.
REPEAT

LET q be a random valid robot configuration (i.e., random point)
LET v be the node of V1 that is closest to q.LET v be the node of V1 that is closest to q
LET p be the point along the ray from v to q that is at distance s from v.
IF (p is a valid configuration) THEN

add new node p to V1 with parent v
LET q′ be pLET q be p
LET v′ be the node of V2 that is closest to q′.
LET p′ be the point along the ray from v′ to q′

that is at distance s from v′.
IF ( ′ i   lid fi ti ) THEN

ss v′v′
p′p′

G2

IF (p′ is a valid configuration) THEN
add new node p′ to V2 with parent v′

Swap G1 and G2

ENDIF

ss qq
ppvv ==q′q′G1
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Merging Trees
As a result, the trees grow towards each other and 
eventually (hopefully) merge:

Trees remain separate graphs, but merge when a 
de f  e t ee is withi  dista ce s f  the 

n=100, s=10 n=200, s=10 n=300, s=10

node from one tree is within distance s from the 
other tree.
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Merging Trees
A variety of environments work using this strategy:

Each of these 
results have 
n = 100
s = 20
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Merging Trees
Sometimes, it takes a while to get them to merge:

n=100, s=20 n=500, s=20

Th tThere are not 
10,000 points 
here…the path 
was found 
before that.

n=10000, s=20n=1000, s=20
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Summary
You should now understand:

– How to efficiently plan the motion of a robot from one y p
location to another in a 2D environment.

– Various techniques for computing planned paths.

– How to “grow” obstacles to accommodate real robot solutions.

– How to combine what we’ve learned here with what we – How to combine what we ve learned here with what we 
learned in robot position estimation and navigation to fully 
control a robot’s position at all times. 
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