
d dRoadmap-Based
Path PlanningPath Planning

Chapter 7

Objectives
Understand the definition of a Road Map

Investigate techniques for roadmap-based goal-g q p g
directed path planning in 2D environments

– geometry-based algorithms that decompose the environment geometry based algorithms that decompose the environment
into regions between which robot can travel

– sampling-based algorithms that choose fixed or random
l dlocations in the environment and then interconnect them to
form potential paths.

T d t d i i l i th To understand some issues in applying these
algorithms to real robots

7-2
Winter 2012Chapter 7 – Roadmap-Based Path Planning

What’s in Here ?
Road Maps
Geometry-Based Road Maps
– Visibility Graph Pathsy p

- Shortest Paths in 2D Among Obstacles
- Real Robot Shortest Paths
- Shortest Paths in a Grid

Triangulation Dual Graph Paths– Triangulation Dual Graph Paths
– Generalized Voronoi Diagram Paths
– Cell Decomposition Paths

- Trapezoidal Decompositionp p
- Boustrophedon Decomposition
- Canny’s Silhouette Algorithm

Sampling-Based Road Mapsp g p
– Grid Based Sampling
– Probabilistic Road Maps
– Rapidly Exploring Random Tree Maps

7-3
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Road Maps
A Road Map is:
– a kind of topological map

f h (d) b– represents a set of paths (or roads) between
two points in the environment that the robot
can travel on without collisioncan travel on without collision

Road Maps assume that global knowledge of the
environment is availableenvironment is available.

They are commonly used to compute pre-planned
pathspaths.
– i.e., the first step towards goal-directed path planning

7-4
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Road Maps
Usually, the set of paths are stored as:
– a graph of nodes and edges

id (h i i li d b ll)– a raster grid (graph is implied by cell arrangement)

Usually, the graph is pre-computed ahead of time
i h k l d f / l l iwithout knowledge of start/goal locations.

– start/goal locations are given later as a query.
a few ed es a e s metimes added t aph t a swe q e– a few edges are sometimes added to graph to answer query

In all cases, the graph is searched to find an efficient
(e sh test) path t the al(e.g., shortest) path to the goal.
– usually Dijkstra’s algorithm, A* or something similar

7-5
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Road Map Algorithms
They are categorized into two main categories:
– Geometry-based algorithms

li b d l i h– Sampling-based algorithms

Geometry-based algorithms use computational
 h d d d h geometry methods to compute nodes and graph

edges based on various constraints.

Sampling-based algorithms select random robot
configurations (e.g., points) as nodes and then
interconnect them based on some constraints.interconnect them based on some constraints.

7-6
Winter 2012Chapter 7 – Roadmap-Based Path Planning

dGeometry-Based
Road MapsRoad Maps

Geometry-Based Road Maps
There are a few that we will look at based on:
– Visibility graphs

i l i d l h– Triangulations dual graphs
– Generalized Voronoi diagrams
– Cell decompositions– Cell decompositions

• Trapezoidal decompositions
• Boustrophedon decompositions
• Canny’s Silhouette algorithm

7-8
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Visibility Graph PathsVisibility Graph Paths

Shortest Path Problem
How do we get a robot to move efficiently without
collisions from one location to another ?

start
end

7-10
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Problem
Moving without collisions is simple with adequate
sensors, but how do we direct it towards a goal ?

What if the environment is complex ?

end
start

7-11
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Problem
Need to examine the map and plan a path
– Consider simpler problem where robot is a point & obstacles

are convex are convex.

start
end

7-12
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Properties
start

Shortest path will travel around
obstacles, touching boundaries.

start

Consider the robot standing at point s.

D t i t li f l

end

Determine support lines of polygon p:

– A support line is a line intersecting p such that p lies
l t l id f th t licompletely on one side of that line.

– exactly two calledleft support and
right support lines.

s

ppLL

right support lines.
– defined by 2 vertices of p called left

& right support vertices (pL & pR)

p

ppRR

7-13
Winter 2012Chapter 7 – Roadmap-Based Path Planning

ppRR

Shortest Path Properties
Can find pL and pR by checking each vertex using
left/right turn test:

For co vex polygo s p p (resp p)
ppiippii--11

– For convex polygons, pi = pL (resp. pR)
if both spipi-1 and spipi+1 are right
(resp. left) turns. s

ppi+1i+1

spipi-1 is left turn, proving
that pi is not left support(resp left) turns

– Just compute:
t1 = (pix-sx)(pi+1y-sy)-(piy-sy)(pi+1x-sx)

that pi is not left support.

ppi+1i+1ppii
Now both

t2 = (pix-sx)(pi-1y-sy)-(piy-sy)(pi-1x-sx)

IF ((t1 < 0) AND (t2 < 0)) THEN pL = pi

IF ((t1 > 0) AND (t2 > 0)) THEN pR = pi

s
ppii--11

spipi-1 both
spipi+1 is right
turn, proving
that pi is the
left supportleft support.

7-14
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Properties
This support-finding algorithm can take O(n) time
but it is practical for small polygons.

A more efficient algorithm can use a binary search
for the left/right support vertices in O(log n) time.
Can YOU do this ?Can YOU do this ?

There are some numerical issues with collinearity:

Slight bend may result in near collinearity. Even 3 collinear points may give a
cross product result of 0 000000023 which can register as a right turn!!!

May have to allow for computational margins.

cross product result of 0.000000023 which can register as a right turn!!!

7-15
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Algorithm
We can now apply this by finding all support vertices
of our obstacles:

We will include our destination
as a special case in our set of
support lines.

start
end

7-16
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Algorithm
Now determine which support lines represent valid
paths for the robot to travel (i.e., the visible support vertices):

start
end

7-17
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Algorithm
Do this by eliminating any support line segments
that intersect another polygon. Can compare every polygon

edge with a support line
segment for intersection and
remove all that intersect other
than at the support endpoints.

start
end

7-18
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Algorithm
Since obstacles are convex, it is enough to compare
support lines against line segments joining polygon
support vertices:support vertices:

2n+1 = O(n)
support lines

O(n) polygons

start
end

support lines

Simple iterative
intersection test for
all pairs takes O(n2)
time.

7-19
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Line Intersection test
How do we check for line-segment intersection ?

(x2,y2)(x3,y3)

C ll k ti f li
(x1,y1)

(x4,y4)
(x,y)

Can use well-known equation of a line:
y = max + ba

y = m x + by = mbx + bb

where
ma = (y2 – y1) / (x2 – x1)

Must handle special case
where lines are vertical.
(i.e., x1 = x2 or x3 = x4)a (y2 y1) (2 1)

mb = (y4 – y3) / (x4 – x3)
ba = y1 – x1ma

b

7-20
Winter 2012

bb = y3 – x3mb

Chapter 7 – Roadmap-Based Path Planning

Line Intersection test
Intersection occurs when these are equal:

max + ba = mbx + bb

(b b) / ()→ x = (bb – ba) / (ma – mb)

If (ma = mb) the lines are parallel and there is no
i iintersection
Otherwise solve for x, plug back in to get y.
Final test is to ensure that intersection (x, y) lies on
line segment … just make sure that each of these is
true: (x y) (x y)true:
– max(x1, x2) ≥ x ≥ min(x1, x2)
– max(x3, x4) ≥ x ≥ min(x3, x4) (x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(x,y)

7-21
Winter 2012Chapter 7 – Roadmap-Based Path Planning

More Efficient Approach – Radial Sweep

More efficient approach can compute and remove all
intersections in O(n log n) time by using a radial
sweep.sweep.

d

1st: Sort support
lines radially with
respect to s.

s
end

2nd: Choose a right
support line that you
know is visible. In a
rare case, none are
visible, then we must
split polygons.

7-22
Winter 2012Chapter 7 – Roadmap-Based Path Planning

More Efficient Approach – Radial Sweep

3rd: Do a radial sweep, keeping track of the closest
(visible) polygon.

d

When reaching a
right support
vertex, check if it
is in front or

s

endis in front or
behind the
current polygon.

Not visible since it is
behind (i.e., intersects)
current visible polygon.

Not visible since it is
behind (i.e., intersects)
current visible polygon.

Current visible polygon

7-23
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Current visible polygon

More Efficient Approach – Radial Sweep

When left support vertex encountered:
If it belongs to
current visible

d

current visible
polygon, mark it
as visible and
then set current
polygon to null

s
endpolygon to null.

When left support
t h d tvertex reached, set

current visible
polygon to null.

7-24
Winter 2012Chapter 7 – Roadmap-Based Path Planning

More Efficient Approach – Radial Sweep

When left support vertex encountered:

If it does not belong

visible polygon.

Discard these since they are left
vertices that do not belong to current
visible polygon.

Discard these since they are left
vertices that do not belong to current
visible polygon.

to current visible
polygon, the vertex
is not visible, so
discard it.

s
end

7-25
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Algorithm (Continued)

Repeat this process iteratively by letting each visible
support vertex become point s
(i e assume e.g., compute the visibility as if (i.e., assume

robot
moved
th) end

e g , co pute t e s b ty as
the robot was now here.

there): end

More visible nodes. We will
compute visibility from these
as well.

7-26
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Algorithm (Continued)

By appending all these visible segments together, a
visibility graph is obtained:

start
end

7-27
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Algorithm (Continued)

We can then search this visibility graph for the
shortest path from the start to the goal:

start
end

7-28
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path in Graph
We can use Dijkstra’s shortest path algorithm to
compute the shortest path in this graph.

Takes O(V log V + E) time for a V vertex / E edge graph– Takes O(V log V + E) time for a V-vertex / E-edge graph

1 function Dijkstra(G, s, t)
2 for (each vertex v in V[G]) do

Initialize all distances to vertices (i.e., d[v]) to ∞, except
start which has distance 0

3 d[v] = infinity
4 previous[v] = undefined
5 d[s] = 0
6 Q = queue of all vertices Priority queue sorted by distances from s.

gRemembers how we got to this node.

q
7 while (Q is not empty) do
8 u = Extract-Min(Q)
9 if (u == t) then return;
10 for each edge (u,v) outgoing from u do

Get the next closet unprocessed vertex. If it
is the destination, we are done.

10 for each edge (u,v) outgoing from u do
11 if (d[v] > d[u] + dist(u,v)) then
12 d[v] = d[u] + dist(u,v)
13 previous[v] = u
14 Q = Update(Q)

Relax all edges from u to v, by updating
(reducing) the cost d[v] at each v if can be
reached quicker from u.

Re sort the queue since priorities may have changed

7-29
Winter 2012

14 Q = Update(Q)

Chapter 7 – Roadmap-Based Path Planning

Re-sort the queue since priorities may have changed.

Shortest Path in Graph
Alternatively, we can use the A* algorithm.
– employs "heuristic estimate" that ranks each node by an

estimate of the best route that goes through that nodeestimate of the best route that goes through that node.

Dijkstra employs breadth-first-search, while A* does
a best-first-searcha best-first-search. A* has more

focused
propagation
pattern.

Dijkstra has no
particular focus,
all nodes treated t tall nodes treated
equal. s s t

Can be just as bad as Dijkstra in worst case but often
much quicker in practice.

7-30
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path in Graph
A* algorithm is the same as Dijkstra’s except that:

– In Dijkstra’s alg., nodes vi in queue are sorted by d[vi]j g q y [

– In A*, they are sorted by d[vi] + E[vi,t] where E[vi,t] is an
underestimate of the distance from vi to t.

– Only the Extract-Min(Q) function of line 8 is affected.

E is often simply the straight line distance from v ’s E is often simply the straight line distance from vi s
coordinate to t’s coordinate.

This is l s d sti t si th l st f t – This is always an underestimate since the real cost from vi to
t can never be greater than the straight line cost.

7-31
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Path Traversal
From this produced path, we have a set of points
and angles.

We can then apply inverse kinematics for our robot
to move it along this path.

But wait a minute! Our robot is not a point, it’s a
rectangle. We cannot simply hug along the obstacle
b d ies!boundaries!

7-32
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
Our real-robot will collide with obstacles if it
travels along a path computed as we described:

start
end

7-33
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
We need a kind of “safety buffer” around each
obstacle according to the robot’s size & shape:

Buffer keeps robot safelyAs long as robot’s center stays Buffer keeps robot safely
away from obstacle edges.

As long as robot s center stays
outside safety buffer, robot’s body
won’t hit the actual obstacle.

W d t
In some cases,
there may be no
safe way between
the obstacles
(usually when two

We need to
compute these
safety buffers by
“growing” the
obstacles by an
amount that(usually when two

buffers intersect).
amount that
reflects the
robot’s shape
and size.

7-34
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
If robot is symmetrical in all directions, we can still
work with our same algorithm.

– Only circles are symmetrical in all directions.

– For simplicity, assume a square. We will use this point (arbitrarily
chosen) as our reference point.p chosen) as our reference point.

A circle that
models our
robot in any
orientation

Robot’s area
as it spins.

Our robot We will assume a square
model such that robot is
contained in this square in
any orientation.

7-35
Winter 2012Chapter 7 – Roadmap-Based Path Planning

orientation. y

Real Robot Shortest Path
Can apply a “growing” procedure to each obstacle:
– Determine edge vectors along

d l i CC d
m3

m4

model in CCW order:

– Determine edge vectors along

m1 m2

p1– Determine edge vectors along
polygon in CW order:

p2

p4

– Sort combined edge vectors

p3p3
p4

m2

m3

m4

by angle p1

p2 m1

7-36
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
Traverse the vectors radialy clockwise
starting at m1.

p3
p4

m2

m3

m4

– When sweeping between model vector
mi and polygon vector pi, translate the

p1

p2 m1

model such that mi = pi Connect reference
points of all model
translations to form
the grown obstaclem3m4

m1 m2p1 p2

p4

m3m4

m1 m2

the grown obstacle
which will have at
most n+4 vertices.

p3

1 2

m3m4

m1 m2

m3m4

m1 m2

7-37
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
It is easy to see that as long the reference point of
our model lies on our outside the grown obstacle,
then the robot will not collide with the real obstacle.then the robot will not collide with the real obstacle.

Reference point lies
t idon or outside grown

obstacle.

7-38
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
Grown obstacles may overlap …

Apply this
to all

Grown obstacles may overlap …
indicating that robot cannot travel
safely in between.

obstacles
to obtain

t
the
grown

s

t

obstacle

space.space.

7-39
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
Now apply previous point-robot algorithm.

t

s

t

New starting and
destination points are
found by centering robot
model shape about
original start and
destination, then using
the reference points

7-40
Winter 2012Chapter 7 – Roadmap-Based Path Planning

the reference points.

Real Robot Shortest Path
Robot now moves safely along path:

Robot avoids
b d i fboundaries of
real obstacles.

s

t

7-41
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
But our robot should be able to fit in between those
obstacle. Why doesn’t our solution allow this ?

Robot will fit at
certain angles.

7-42
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
Robot will fit throughUse a more

accurate

Robot will fit through
here now.

model
to produce
a more
accurate
path.

R b illRobot still cannot
fit through some
places.

7-43
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Real Robot Shortest Path
We could use a more complicated approach that
allows the robot to pass through certain

 l i ifi di ti areas only in specific directions.

– can shrink the model .

– must allow model to rotate.

– Too complicated for us in this course but can be doneToo complicated for us in this course, but can be done.

– Realistically, robot sensors are not reliable enough
nor accurate enough to ensure safe travel within areas that nor accurate enough to ensure safe travel within areas that
require a small margin of error.

7-44
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Non–Convex Obstacles
What about non-convex obstacles ?
– Can divide them into convex polygons and then apply the

same algorithms (although better solutions exist)same algorithms (although better solutions exist).

end
start

7-45
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Non-Convex Obstacles
What about non-convex obstacles ?
– Can divide them into convex polygons and then apply the

same algorithms (although better solutions exist)same algorithms (although better solutions exist).

end
start

7-46
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Paths in Grids
How do we find the shortest path in a binary grid ?

– Can apply Dijkstra’s algorithm by creating an “implicit” pp y j g y g p
graph from the grid.

– Assign weights to nodes
according to realistic distance

∞
1

1
√2√2

1

∞1

√2 ∞

7-47
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Paths in Grids
As cells are processed in order of distance from
source, a wavefront propagates through the grid:

Colors simply indicate a change inColors simply indicate a change in
distance. Each “ring” of color indicates
the same distance from the source.

Eventually,
destination is
reached Justreached. Just
remember which
grid cell neighbor
reached here first
and trace
backwards.

In this example, only 4 directions
or travel were allowed: →↓↑←

7-48
Winter 2012Chapter 7 – Roadmap-Based Path Planning

or travel were allowed: →↓↑←

Shortest Paths in Grids
For an M x N grid, the graph has O(MN) vertices and
O(MN) edges.

Algorithm thus takes O(MV log MN) runtime.

More accurate paths can be produced if we increase More accurate paths can be produced if we increase
the number of edges:

∞
1

1
√2√2
√5√5

√5 ∞
May set to 2 assuming
rectilinear travel
around obstacle:Additional edges

ff t ti b
1√2 ∞

√5

√5 ∞

∞
2

affect runtime by a
factor of around 2.

7-49
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Paths in Grids
It takes no effort to handle complicated obstacles
since algorithm merely concentrates on moving from
one grid unit to another.one grid unit to another.

What about non-point robots ?

Since robot shape is known
ahead of time, we can adjustj
the weights of adjacent nodes
in the grid accordingly.g gly

7-50
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Paths in Grids
For each grid location, center robot model (i.e., a
collection of grid cells) around that point. Cell disabled since

obstacle lies within

If any obstacle locations
intersect it, disable this

this square.

grid location either by:

– removing the node from theremoving the node from the
graph entirely

setting the weights of edges– setting the weights of edges
going in and out of it to ∞.

7-51
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Paths in Grids
Another solution to the grid shortest path problem
is to convert the grid into vector obstacles, then
apply the vector-based algorithm:apply the vector based algorithm:

s

tt

7-52
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Paths in Grids
Of course we can even do the reverse if we prefer to
work with grids (i.e., convert vector to grid):

s

t

7-53
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Shortest Paths in Grids
A problem does arise however in the more realistic
maps (i.e., certainty grids) since sensor data is noisy
and we no longer have binary values.and we no longer have binary values.

Not clear whether an
obstacle lies here or

Realistically, robots
cannot operate in
such a cluttered

not.

environment since
its sensors would
produce too much
noise and false
readings So

We can always choose
some threshold to

readings. So
choosing threshold
is reasonable.

produce binary grid
(e.g., >40% certainty
indicates obstacle)

7-54
Winter 2012Chapter 7 – Roadmap-Based Path Planning

lTriangulation
Dual Graph PathsDual Graph Paths

Triangulation
A geometric strategy is based on computing a
triangulation of the environment:

Decompose i to tria gular free space regio s– Decompose into triangular free-space regions

7-56
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Triangulation
There are MANY such triangulations and also many
algorithms for obtaining them.

One approach is to start by decomposing the free-
space region into y-monotone polygons.

– A simple polygon is called y-monotone if any horizontal line is
connected.

Connected
Broken, thus not
y-monotone

7-57
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Triangulation
W d t d t d diff t t f tiWe need to understand different types of vertices:
– A regular vertex is a vertex that is adjacent (connected to) at

least one vertex with a larger y-coordinate and one with a l v x l g y
smaller y-coordinate.

– A irregular up vertex is a vertex that is not connected to any
vertices with a larger y-coordinatevertices with a larger y coordinate.

– A irregular down vertex is a vertex that is not connected to
any vertices with a smaller y-coordinate.

Regular

Irregular Up

Irregular Down

7-58
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Triangulation
We need to regularize the polygon with holes:
– Break it into a subgraph such that all vertices

l h i iare regular except the most extreme vertices in
the y direction.

Result is a decomposition into monotone pieces.

Basic idea:B
– Vertical sweep from top to bottom regularizing vertices that

are irregular down
i l f b l i i i h– Vertical sweep from bottom to top, regularizing vertices that

are irregular up.

7-59
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Triangulation
Can do this by first sorting vertices in vertical order:

7-60
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Triangulation
Perform vertical sweep downwards connecting
irregular down vertices to the next nearby vertex:

Some edges willSome edges willSome edges will
be invalid, hence
ignored.

Some edges will
be invalid, hence
ignored.

7-61
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Triangulation
Perform vertical sweep upwards connecting irregular
up vertices to the next nearby vertex:

7-62
Winter 2012

Chapter 7 – Roadmap-Based Path Planning

Triangulation
Some details have been left out, but result is a set of
monotone polygons:

7-63
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Triangulation
Monotone pieces each triangulated separately:
– Do vertical sweep downward, connect vertices from left

monotone chain to rightmonotone chain to right

Right chain

Left chain

Connections added.
There are some

i l th tspecial cases that
must be considered.

7-64
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Triangulation
Monotone pieces each triangulated separately, then
results are joined together:

Unfortunately, this can produce
long/thin triangles

Can all be done in
O(n log n) time.

7-65
Winter 2012Chapter 7 – Roadmap-Based Path Planning

long/thin triangles.

Triangulation
Better algorithm is a Constrained Delaunay
Triangulation

– Produces “fatter” triangles
– Nicer looking decomposition

M li t d b t till ti l– More complicated, but still practical
– Beyond the scope of this course

vsvs.

7-66
Winter 2012Chapter 7 – Roadmap-Based Path Planning

The Dual Graph
Compute the dual graph which gives a rough idea as
to the paths that the robot may travel.

To get dual
graph, place
vertex at center
of each triangle.
Connect vertices

Will contain
loops around
obstacles.

Connect vertices
only if they share
a triangle edge.

May contain dead ends.May contain dead ends.

7-67
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Computing a Path
Robot can compute path in dual graph from start
triangle to goal triangle:

C ijk ’ l i h
Path not necessarily efficient.

– Can use Dijkstra’s algorithm
y

7-68
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Computing a Path
The efficiency of the path solutions are highly
dependant on the triangulation:

Triangulations with long thin triangles tend to
cause zig-zag effects on the path.

7-69
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Refining the Path
Can also simplify (i.e., refine) any path in the dual
graph by computing the shortest path in the sleeve
formed by connected triangles:formed by connected triangles:

7-70
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Refining the Path
As a result, the computed path will be more
efficient in terms of length

h ill ll l l b d i– But path will generally travel close to boundaries.

Possible
collision due
to inaccurate
sensors.

7-71
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Refining the Path
The zig-zag effect essentially disappears when path is
refined.

Caution: long thin triangles can also lead to
numerical problems during computations.

7-72
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Problems
If traveling between centers of
triangles, this could be
dangerous, for thin triangles:

Computing refined path will
always correct this:

7-73
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Problems
Alternatively, we can connect
vertices at midpoints of
triangulation edges:

7-74
Winter 2012Chapter 7 – Roadmap-Based Path Planning

l dGeneralized Voronoi
Diagram PathsDiagram Paths

Voronoi Road Maps
A Voronoi road map is a set of paths
in an environment that represent
maximum clearance between obstacles.

They are sometimes preferred in robotics since they They are sometimes preferred in robotics since they
reduce the chance of collisions because sensors are
often inaccurate and prone to error.

Other names for this roadmap are generalized
Voronoi diagram and retraction method.

It is considered as a generalization of the Voronoi
diagram for points.

7-76
Winter 2012

g p

Chapter 7 – Roadmap-Based Path Planning

Voronoi Diagram
Let S be a set of n points. For each point p of S, the
Voronoi cell of p is the set of points that are closer to
p than to any other points of S. p than to any other points of S.

The Voronoi diagram is the
i i i d d bspace partition induced by

Voronoi cells.

If the points were obstacles, a robot would
travel along the edges of a Voronoiv l l g g f
diagram if it wanted to keep maximum
distance away from the obstacles.

7-77
Winter 2012

distance away from the obstacles.

Chapter 7 – Roadmap-Based Path Planning

Voronoi Diagram
Multiple ways of computing a Voronoi Diagram.
– We consider the simplest, and leave the more advanced

algorithms for a computational geometry coursealgorithms for a computational geometry course.

Basically, we compute each Voronoi cell as the
intersection of a set of half-planes: O(n2 log n) timeintersection of a set of half-planes: O(n2 log n) time.

Completed cell in
O(n log n) time.O(n log n) time.

Some cells will
remain “open”.

7-78
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Generalized Voronoi Diagram
What if the obstacles are polygons ?

Now we compute the Generalized Voronoi Diagram in p G g
which the edges forming it maintain maximal
distance between edges of the environment, as
opposed to just pointsopposed to just points.

7-79
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Generalized Voronoi Diagram
Edges formed based on three types of interaction:

Edge-Edge Edge-Vertex Vertex-Vertexg g g

There are different ways of computing this diagram:

Certain portions
will be curved.

y p g g
– Exact computation
– Approximation – Discretize Obstacles
– Approximation – Discretize Space

7-80
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Computing the GVD
Exact computation

– Based on computing analytic boundariesp g y

– Boundaries may be composed of high-degree curves and
surfaces and their intersections.

– Complex and difficult to implement

– Robustness and accuracy problems– Robustness and accuracy problems

7-81
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 1
Approximation – Discretize Obstacles

– Convert each obstacle into a set of points by selecting samples p y g p
along boundaries.

– Compute regular Voronoi diagram on resulting point sets.

– Will produce some diagram edges that are not traversable.
Must prevent travel along these portions.

– Can be slow to compute, depending on samples.

Yellow portions are

This is no longer
a curve.

not traversable since
they are inside the
obstacle.

7-82
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Consider computing the GVD for the following example:p g g p

7-83
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Compute sample points along obstacle border.
The points were computed
manually from this website:
http://www.cs.cornell.edu/I
nfo/People/chew/Delaunay
.html

7-84
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Here is the Voronoi Diagram for the point set:

7-85
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Can discard (ignore) all edges of GVD that are defined by two
consecutive points from the same obstacle:consecutive points from the same obstacle:

C l di d llCan also discard all
edges that lie
completely interior
to any obstacle
(i.e., green ones
here)here).

7-86
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 1
Approximation – Discretize Obstacles (continued)

– Resulting GVD edges can be searched for a path from start to
goal (e g store GVD as graph run Dijkstra’s shortest path goal (e.g., store GVD as graph, run Dijkstra s shortest path
algorithm)

First/Last
edges
connect
start/goal tostart/goal to
closest
vertex of
GVD.

7-87
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 2
Approximation – Discretize Space

– Convert the environment into a grid.g

– Compute the Voronoi diagram on resulting grid by
propagating shortest paths from each obstacle point.

– Remember which obstacle point the shortest path came from
for each non-obstacle grid cell.

– Can be slow to compute, depending on samples.

A finer grid
produces a more
accurate answer
but takes longer

7-88
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Create a grid from the environment

7-89
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Compute the Voronoi diagram by running a grid shortest
path setting each obstacle cell as a sourcepath, setting each obstacle cell as a source

All cells in
each obstacle

Roadmap paths
found when point
is equally

i given unique
IDi.

reachable by two
different sources:
That is,

IDi == IDj
where i ≠ j.

Environment
border
included as
obstacle.

7-90
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Use secondary-ID’s to get path portions in between areas of
non-convex obstaclesnon-convex obstacles.

Now also keep
path-portions in
which cell has

Each cell k in
obstacle i
given a been reached

by two same
primary sources
with non-
consecutive
secondary IDs

given a
unique IDik
such that
consecutive
cells along
border given

1

secondary IDs.
That is,

IDik = IDim
where

ABS(k-m) >
1.

etc…

g
consecutive
IDs as IDi,
IDi+1, ID1+2,
etc…

7-91
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Compute a path in the Voronoi diagram

7-92
Winter 2012Chapter 7 – Roadmap-Based Path Planning

GVD Approximation – Method 2
Approximation – Discretize Space (continued)

– Resulting path is pretty good too:
Green path is discretized
space path (i.e., grid).

Red path is discretized
obstacles path (i.e., previous).

H i b it th tHere is a website that you
can try:
http://www.cs.columbia.ed
u/~pblaer/projects/path_pl
anner/applet.shtml

7-93
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Cell Decomposition PathsCell Decomposition Paths

Cell Decomposition
There are various ways to decompose
(i.e., split up) the environment into cells.

We have already looked at grid based methods which are – We have already looked at grid-based methods, which are
based on the same idea

Now we will look at how to geometrically break up Now we will look at how to geometrically break up
the environment into small-sized polygonal regions
called cells.

We will then see how to determine a path through
these cells.

7-95
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Trapezoidal Decomposition
Perhaps a simpler way to compute paths is to
decompose the environment into simpler vertical cells
in the form of trapezoids or triangles:in the form of trapezoids or triangles:

7-96
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Trapezoidal Decomposition
How do we make the trapezoids ?
– extend rays vertically directed up and

d f h f h b l

x x

down from each vertex of each obstacle
and (including outer boundary).

x
x

– when rays intersect obstacles (or
boundary), the ray stops, becoming
a trapezoid edge

Two separate
trapezoids are
created here.

a trapezoid edge

– need to compute intersections of each
 ith ll th b t lray with all other obstacles.

- can be done efficiently using a plane sweep technique, assuming
vertices of all obstacles are sorted in x direction.

7-97
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Trapezoidal Decomposition
While doing this, maintain which trapezoids are
adjacent (i.e., beside) one another.

– Adjacent trapezoids will share an
edge with the exact same endpoints.

– Determine midpoint of each trapezoid
edge (except polygon/boundary edges).

– Form a graph where
• the nodes are the midpoints of the trapezoidal

edges and two nodes are connected if they
represent midpoints of edges belonging to
the same trapezoid

7-98
Winter 2012

p

Chapter 7 – Roadmap-Based Path Planning

Computing a Path
Easy to compute path now in the resulting graph:
– Just determine which trapezoid contains start/goal and

connect the start/goal to each node of that trapezoidconnect the start/goal to each node of that trapezoid.

Goal

Computed path can be inefficient.

Start

7-99
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Improving the Path
Can we make the computed path more efficient ?

– Add more points (not just midpoint):p j p
• fixed number per edge, or
• fixed distance between points

As a result, the path:

– may take different path around obstaclesmay take different path around obstacles

– will be more efficient

– may travel closer to boundaries

7-100
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Boustrophedon Cell Decomposition
Boustrophedon cell decomposition considers only
critical points.

i i l i b l i f hi h b– critical points are obstacle vertices from which a ray can be

extended both upwards and downwards through free space.

– Connect midpoints of formed line

segments as with the trapezoidal
x

xxx

decomposition technique.
xx

x

x
x

Cells, in general, are no longer trapezoids or
triangles

7-101
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Boustrophedon Cell Decomposition
Now less cells than trapezoidal, but cells are more
complex Critical points

7-102
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Boustrophedon Cell Decomposition
Can interconnect cells, but connections are
topological, not actual valid paths:

7-103
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Boustrophedon Cell Decomposition
To find a path now, we can use various strategies:
– Bug algorithm, cell boundary following etc…

Bug2 algorithm

Cell boundary
following

7-104
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Canny’s Silhouette Algorithm
Another approach is to decompose the environment
into silhouette curves which represent borders of the
obstacles:obstacles:

Regions are no
longer trapezoids
or triangles
(in general).

7-105
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Canny’s Silhouette Algorithm
To do this, consider a vertical line sweeping
horizontally from the leftmost environment vertex to
the rightmost S li i lit i t t ti l litthe rightmost

As the line
sweeps, the

d

Sweep line is split into two vertical split
lines when an obstacle is encountered.

Two split lines
will merge
when their
endpoints
meet again
upon leavingtopmost and

bottommost
extreme points
form the
silhouette
boundary

upon leaving
the obstacle.

boundary.

The points at The points at
which splits & which splits &
merges occur merges occur
are called are called
critical pointscritical points

7-106
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Canny’s Silhouette Algorithm
Compute a path by determining extreme points of
vertical line passing through start/goal and then
following silhouette path:following silhouette path:

Here are two
solutions … one
going upwards,
the other
downwards.

7-107
Winter 2012Chapter 7 – Roadmap-Based Path Planning

l dSampling-Based
Road MapsRoad Maps

Sampling-Based Road Maps
There are a few that we will look at based on:
– Fixed Grid sampling

– Probabilistic sampling

– Random Tree expansion

Such algorithms work by choosing fixed or random
valid robot positions and then interconnecting them p g
based on close proximity to form a graph of valid
paths.

7-109
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Grid-Based SamplingGrid Based Sampling

Grid-Based Sampling
Grid-based sampling is perhaps the simplest
technique based on overlaying a grid of vertices and
connecting adjacent ones.connecting adjacent ones.
– Accuracy and feasibility of resulting path

depends on granularity of grid.p g y g

We already looked at this strategy
in terms of grid mapsin terms of grid maps.

Only interconnect vertices that do not intersect
b t l b d iobstacle boundaries

Multiple ways of interconnecting…

7-111
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Grid-Based Sampling
Here is a straight forward 4-connectivity grid.

– Compute path from start to goal using graph search:p p g g g p

7-112
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Grid-Based Sampling
With additional “neighbor” connections, the graph
allows more efficient paths…at a cost of increased
space and slower computation time.space and slower computation time.

Can use a variety
of neighbor
interconnection
strategies per
node:

7-113
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Grid-Based Sampling
Here is the result with a reduced-size sample set (i.e.,
more coarse grid)

Uh Oh! Graph willUh Oh! Graph will
become disconnected
eventually, as grid
becomes more
coarse.

As a result, there may
be no valid path from
start to goal nodes.

7-114
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Setting the Grid Size
We can ensure that a path exists:We can ensure that a path exists:
– choose grid size (i.e., width between connected nodes) to be

smaller than minimum distance between any two obstacle
d h d h edges that do not share a vertex:

Minimal edge distance here.
Choose grid size
accordingly:g y

7-115
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Setting the Grid Size
How do we determine the shortest distance between
two line segments L1 and L2 ?

b
Consider first the distance from a
point p to a line L:

L
ε

a

b

p

q

– p will intersect line L at a right angle, say at point q
– let u be the distance of q along L from a to bq g

(xp – xa)(xb – xa) + (yp – ya)(yb – ya)

(xb – xa)2 + (yb – ya)2
u =

– the coordinates of q are:
xq = xa + u(xb – xa) and yq = ya + u(yb – ya)

(xb xa) (yb ya)
ε is then just the
distance between p
and q.

7-116
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Setting the Grid Size
We then need to determine whether or not q=(xq,yq)
lies on the segment L = ab.

If 0 ≤ u ≤ 1 then q lies on the segment and
therefore ε = |pq| else ε = min(|pa|, |pb|)| | | | | |

L
b

L
qq b

L
b

L
L2

ε

a
p

L
ε

a
p

L

ε

a

p

q

p
0 ≤ u ≤ 1 u > 1 u < 0

7-117
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Setting the Grid Size
Let ε = δ(p, L) be the shortest distance function from
a point p to a segment L.

We can use this to find the minimum distance
between two segments L1 and L2 as:

ε = Min(δ(a, L2), δ(b, L2), δ(c, L1), δ(d, L1))

L1

L2
ε

c

b

d
2a

c

7-118
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Grid-Based Sampling
The main problem here is it causes too many grid
points in open areas.

Wasteful to have
many grid points y g p
here.

7-119
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Grid-Based Sampling
Can always do a quad-tree-like decomposition,
determining the smallest gaps within certain areas,
recursively.recursively.

Details have
been left out
as to how to
connect at
borders.

7-120
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Probabilistic Road MapsProbabilistic Road Maps

Probabilistic Road Maps
Probabilistic Road Maps (PRM)
are sampling-based mapping
strategies.

– They are created by selecting random points (i.e., samples) y y g p (, p)
from the environment and interconnecting points that
represent valid short path lengths.

f f l ll b b f– They perform fairly well, but are best for situations in which
robot configurations are more complex than a single point
robot.

– Solution depends on how many nodes are used and how much
interconnectivity there is between nodes.

7-122
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Probabilistic Road Maps
Algorithm produces a graph G=(V,E) as follows:
LET V and E be empty.
REPEATREPEAT

Let v be a random robot configuration (i.e., random point)
IF (v is a valid configuration) THEN // i.e., does not intersect obstacles

add v to Vadd v to V
UNTIL V has n vertices
FOR (each vertex v of V) DO

C b h k l i hb f // i h k l iLet C be the k closest neighbors of v // i.e., the k closest vertices to v
FOR (each neighbor ci in C) DO

IF (E does not have edge from v to ci) AND (path from v to ci is valid)
THENTHEN

Add an edge from v to ci in E
ENDFOR

ENDFOR

7-123
Winter 2012

ENDFOR

Chapter 7 – Roadmap-Based Path Planning

Probabilistic Road Maps
Here is an example of randomly added nodes and
their interconnections (roughly, n = 52 and k = 4):

Graph may be
disconnected
if n and/or k
are too smallare too small.

7-124
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Probabilistic Road Maps
How do we find the k-nearest neighbors ?

Multiple strategies:p g
– “Brute Force” (check everything O(n2 log n))
– KD-Trees Most popular

– R-Trees
– VP-Trees

p p

The KD tree is the most popular since it is relatively
straight forward to implement.

Basically, divides recursively the sets of points in
half…alternating with vertical/horizontal cuts.

7-125
Winter 2012Chapter 7 – Roadmap-Based Path Planning

K-D Trees
Here is how to a KD-Tree is constructed:

2

5
4

1
3

7
6

5

8 10 Each node in theEach node in the
Each leaf
in the tree8

9

10

11

12

Each node in the
tree defines a
rectangular region.

Each node in the
tree defines a
rectangular region.

in the tree
represents
one of the
points.

13
14

7-126
Winter 2012Chapter 7 – Roadmap-Based Path Planning

K-D Trees
Once constructed, we find the k-nearest
neighbors of a leaf.

– Start by recursively searching down the tree to
find the rectangle that contains the vertex v (for
which we are trying to find its neighbors) e.g., Look for this

guy’s neighbors.

7-127
Winter 2012Chapter 7 – Roadmap-Based Path Planning

K-D Trees
Compute closest neighbor on way back from
recursion:

We can find the k neareast
neighbors as follows:

1. Let closest neighbor vc be the
point in the first window on way
back from recursion.

2 Compute a circle with radius vv

vcv′c
2. Compute a circle with radius vvc.

3. Check vertices in all rectangles
that intersect the circle for a
better neighbor.

vc
v v

4. If a better neighbor v′c is found,
shrink the circle to a smaller
radius defined by vv′c.

5. Continue in this way until the root
is reached

vc vc
is reached.

Repeat the above procedure k
times…making sure to flag the
closest neighbor each time so that it
is not found again.

v v

7-128
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Probabilistic Road Maps
Here are some maps for various n and k values:

n=100, k=5 n=100, k=10 n=100, k=20

n=500, k=5 n=500, k=10 n=1000, k=5

7-129
Winter 2012Chapter 7 – Roadmap-Based Path Planning

n 500, k 5 n 500, k 10 n 1000, k 5

Probabilistic Road Maps
PRMs perform well in practice, but are susceptible to
missing vertices in narrow passages

Could lead to disco ected graphs a d o solutio– Could lead to disconnected graphs and no solution:

7-130
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Probabilistic Road Maps
PRMs perform well when the robot configurations
are more complex

whe robots are ot just poi ts but differe t shapes i – when robots are not just points, but different shapes in
different positions.

– performs very well for robot arm kinematics

7-131
Winter 2012Chapter 7 – Roadmap-Based Path Planning

dl l dRapidly-Exploring Random
Tree MapsTree Maps

Rapidly Exploring Random Trees
Rapidly Exploring Random Trees (RRTs):

– each node represents random robot configuration (i.e., point p g p
representing valid robot location in environment).

– single query planner which covers the space
between the start/goal locations quickly

– root starts at the current robot position.

– grows outwards from the start either completely randomly or
somehow biased towards the goal location.

– input parameters are the number of nodes to be used in the
tree and the length (i.e., step size) of edges to add.

7-133
Winter 2012Chapter 7 – Roadmap-Based Path Planning

RRT Algorithm
The algorithm produces a tree G=(V E) as follows:The algorithm produces a tree G=(V,E) as follows:
LET V contain the start vertex and E be empty.
REPEAT

LET q be a random valid robot configuration (i.e., random point)
LET v be the node of V that is closest to q.
LET b th i t l th f t th t i t di t LET p be the point along the ray from v to q that is at distance s
from v.
IF (vp is a valid edge) THEN // i.e., does not intersect
obstaclesobstacles

add new node p to V with parent v // i.e., add edge from v
to p in E

UN IL V h i
qqss

UNTIL V has n vertices
ppvv

7-134
Winter 2012Chapter 7 – Roadmap-Based Path Planning

RRT Maps
Here are some maps for various n and s values:

n=100, s=10 n=100, s=25 n=100, s=50

n=1000, s=10 n=1000, s=25 n=1000, s=50

7-135
Winter 2012Chapter 7 – Roadmap-Based Path Planning

n 1000, s 10 n 1000, s 25 ,

RRT Problems
RRTs have problems expanding through narrow
passages and getting around obstacles:

Difficult to expand into this
area since any random points
generated in this area tend to
result in an intersection with
the “L”- shaped obstaclethe L shaped obstacle.

7-136
Winter 2012Chapter 7 – Roadmap-Based Path Planning

RRT Guiding
Can we bias the results to head towards the goal ?
– Use goal point for expand direction instead of random

Use goal 95% Use goal 75% Use goal 50%Stuck in
“local
minima”.

Use goal 25% Use goal 5% Use goal 0%

7-137
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Greedy RRTs
A greedy approach to the RRT growth is to allow the
tree to expand beyond the step size s:

n=200 s=25n=100 s=10

ss

n 200, s 25n=100, s=10
Without greedy

qqpp44

LET V contain the start vertex and E be empty.
REPEAT
LET V contain the start vertex and E be empty.
REPEAT

pp11vv pp22
pp33

pp44

REPEAT
LET q be a random valid robot configuration
REPEAT

LET v be the node of V that is closest to q.
LET p be point along vq at distance s from v.
IF (vp is a valid edge) THEN

add new node p to V with parent v

REPEAT
LET q be a random valid robot configuration
REPEAT

LET v be the node of V that is closest to q.
LET p be point along vq at distance s from v.
IF (vp is a valid edge) THEN

add new node p to V with parent vadd new node p to V with parent v
UNTIL (p is invalid) OR (p is within distance s from q)

UNTIL V has n vertices

add new node p to V with parent v
UNTIL (p is invalid) OR (p is within distance s from q)

UNTIL V has n vertices

With greedyJust need to add this
REPEAT loop.

7-138
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Reaching the Goal
We have yet to see how to stop the growth when the
goal is reached.
M k th f ll i h t th l ithMake the following changes to the algorithm:
LET V contain the start vertex and E be empty.
REPEAT

LET q be a random valid robot configuration (i.e., random point)
LET v be the node of V that is closest to q.
IF (distance from v to goal < s) THEN

 lp = goal
ELSE

LET p be the point along the ray from v to q that is at distance s from v.
IF (vp is a valid edge) THEN // i e does not intersect obstaclesIF (vp is a valid edge) THEN // i.e., does not intersect obstacles

add new node p to V with parent v // i.e., add edge from v to p in E
UNTIL V has n vertices

7-139
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Dual Trees
It is more beneficial (faster) to maintain two trees
G1=(V1,E1) and G2=(V2,E2)

LET V1 contain the start vertex, V2 contain the goal vertex, LET E1 and E2 be empty.
REPEAT

LET q be a random valid robot configuration (i.e., random point)
LET v be the node of V1 that is closest to q.LET v be the node of V1 that is closest to q
LET p be the point along the ray from v to q that is at distance s from v.
IF (p is a valid configuration) THEN

add new node p to V1 with parent v
LET q′ be pLET q be p
LET v′ be the node of V2 that is closest to q′.
LET p′ be the point along the ray from v′ to q′

that is at distance s from v′.
IF (′ i lid fi ti) THEN

ss v′v′
p′p′

G2

IF (p′ is a valid configuration) THEN
add new node p′ to V2 with parent v′

Swap G1 and G2

ENDIF

ss qq
ppvv ==q′q′G1

7-140
Winter 2012

UNTIL V1 and V2 have n vertices in total

Chapter 7 – Roadmap-Based Path Planning

Merging Trees
As a result, the trees grow towards each other and
eventually (hopefully) merge:

Trees remain separate graphs, but merge when a
de f e t ee is withi dista ce s f the

n=100, s=10 n=200, s=10 n=300, s=10

node from one tree is within distance s from the
other tree.

7-141
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Merging Trees
A variety of environments work using this strategy:

Each of these
results have
n = 100
s = 20

7-142
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Merging Trees
Sometimes, it takes a while to get them to merge:

n=100, s=20 n=500, s=20

Th tThere are not
10,000 points
here…the path
was found
before that.

n=10000, s=20n=1000, s=20

7-143
Winter 2012Chapter 7 – Roadmap-Based Path Planning

Summary
You should now understand:

– How to efficiently plan the motion of a robot from one y p
location to another in a 2D environment.

– Various techniques for computing planned paths.

– How to “grow” obstacles to accommodate real robot solutions.

– How to combine what we’ve learned here with what we – How to combine what we ve learned here with what we
learned in robot position estimation and navigation to fully
control a robot’s position at all times.

7-144
Winter 2012Chapter 7 – Roadmap-Based Path Planning

