
d lSensor Models
and Mapping

Chapter 9
and Mapping

Objectives
To understand how to create maps from raw sensor
data.

To understand simple sensor sensor models

Investigate and model the errors associated with Investigate and model the errors associated with
sensors and their data.

To understand how occupancy grids are used to To understand how occupancy grids are used to
represent maps

T d t d h t t t b t l f t f To understand how to extract obstacle features from
raw sensor data as well as from grids.

9-2
Winter 2012Chapter 9 – Sensor Models and Mapping

What’s in Here ?
Mapping With Raw Data
– Mapping Raw Ping))) Data
– Mapping Raw DIRRS+ Data

Extracting Obstacle Features From Raw Data
– Line Extraction
– Split & Merge

Incremental
Mapping With Simplified Sensor Models
– Sensor Models
– Applying a Sensor Model

– Incremental

Extracting Obstacle Features From Occupancy
Grids

Thresholding– Sensor Model Implementation

More Realistic Sensor Models
– Error Distribution

– Thresholding
– Border Tracing
– Line Fitting

– Applying a Gaussian Distribution
– Converting to Probabilities
– Bayesian Updating
– Improving the Sensor Model
– Odds Representation
– Sensor Data Fusion

9-3
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping with Raw DataMapping with Raw Data

Mapping Raw Ping))) Data
Consider computing the ranges to obstacles from a
fixed location in the following environment:

Robot spins aroundRobot spins around
in this location
during this particular
test.

Position and
orientation is either
reported by the
Robot Tracker, or
estimated using
dead-reckoning.

9-5
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw Ping))) Data
Assume that RobotTracker/RBC provides the position
and angle of the robot accurately.

We will make use of the pose.x, pose.y and pose.angle
information and combine this with the sonar
readingsreadings.

Robot’s tracked position
(pose.x,pose.y)

Tracked pose angleTracked pose.angle

4.4cm

9-6
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw Ping))) Data
The sensor’s position is 4.4cm away from the robot’s
center (x, y) position at 0°

– where x = pose.x and y = pose.y from the RobotTracker

We need to adjust all distance readings by:j g y

– adding 4.4cm since the objects are further away from the
center of the robot than they are from the sensory

– calculating a position (xo, yo) for the obstacle by incorporating
the robot’s pose (x, y, angle) and the range reading.

9-7
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw Ping))) Data
To convert range distances we must compute the
position of the sensed obstacle.

Assuming that (x,y) is provided from the Robot-
Tracker in units of pixels, we need to either:

– convert (x,y) into cm first, resulting in cm units for (xo,yo):
xo = (distance + 4.4cm) * COS(angle) + (x / 3)

di l
1cm ≈ 3pixels in

yo = (distance + 4.4cm) * SIN(angle) + (y / 3)

– convert the range readings into pixels first, resulting in pixel
units for (x y):

Robot Tracker

units for (xo, yo):
xo = [(distance + 4.4cm) * 3] * COS(angle) + x
yo = [(distance + 4.4cm) * 3] * SIN(angle) + y

9-8
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw Ping))) Data
Blue lines show readings to obstacle from robot’s
center position (x,y) to the computed obstacle
position position
(xo, yo) Readings incorrect

due to coarse sonar
beam.

Readings incorrect
due to coarse sonar
beam.

Readings inaccurate
due to reflection.

9-9
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw Ping))) Data
Result is a “rough” outline of environment with some
inaccurate readings.

Most of these problemsMost of these problems
can be fixed by taking
many more readings
from different positions
and angles.

9-10
Winter 2012Chapter 9 – Sensor Models and Mapping

Changing Head Angle
Even if the robot’s head is not facing forward, then
the calculations will still be the same

Works o ly because tag rotates alo g with – Works only because tag rotates along with
head/sensor Make sure that the tag has not rotated a little

due to a loose bolt. The black triangle wedge
should be aligned with the sonar sensor.g

4.4cm

9-11
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw DIRRS+ Data
Consider computing the ranges to obstacles along a
path in the following environment:

Robot travels
along this path
during this
particular test.

Position and
orientation isorientation is
reported by the
Robot Tracker.

9-12
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw DIRRS+ Data
Take measurements along path at particular
locations:

Dot indicates location from which
robot took measurement. Line
from dot indicates direction robot

Positions and
directions obtained
from Robot Tracker

was facing.

Red and black colors
alternate to make picture
look clearer.

9-13
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw DIRRS+ Data
Assume that RobotTracker/RBC provides the position
and angle of the robot accurately.

We will make use of the pose.x, pose.y and pose.angle
information and combine this with the IR readings.

Robot’s Tracked Position
(pose.x, pose.y)

Tracked pose.angle

3 12

DIRRS+ Sensor

9-14
Winter 2012

3.12cm

Chapter 9 – Sensor Models and Mapping

Mapping Raw DIRRS+ Data
The sensor’s position is 3.12cm behind the robot’s
center (x, y) position.

d d ll di di bWe need to adjust all distance readings by:
– subtracting 3.12cm since the objects are closer to the center

of the robot than they are from the sensorof the robot than they are from the sensor

– calculating a position (xo, yo) for the obstacle by
incorporating the robot’s pose (x, y, angle) and the range p g p (y g) g
reading.

9-15
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw DIRRS+ Data
To convert range distances we must compute the
position of the sensed obstacle.

i h i id d f h bAssuming that (x,y) is provided from the Robot-
Tracker in units of pixels, we need to either:

t () i t fi t lti i it f ()– convert (x,y) into cm first, resulting in cm units for (xo,yo):
xo = (distance – 3.12cm) * COS(angle) + (x / 3)

yo = (distance – 3.12cm) * SIN(angle) + (y / 3)
1cm ≈ 3pixels in
RobotTrackeryo (distance 3.12cm) SIN(angle) (y / 3)

– convert the range readings into pixels first, resulting in pixel
units for (xo, yo):

RobotTracker

(o, yo)
xo = [(distance – 3.12cm) * 3] * COS(angle) + x

yo = [(distance – 3.12cm) * 3] * SIN(angle) + y

9-16
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw DIRRS+ Data
Blue lines show readings to obstacle from robot’s
center location (x, y):

These particular readings
were taken with the head
rotated 90° to the right so
that the sensor faced the
wall.

9-17
Winter 2012Chapter 9 – Sensor Models and Mapping

Mapping Raw DIRRS+ Data
Resulting map has reasonable accuracy:
– Map can be refined by taking additional readings

More accurate
than sonar.

9-18
Winter 2012Chapter 9 – Sensor Models and Mapping

l f dMapping With Simplified
Sensor ModelsSensor Models

Sensor Models
Before using a sensor for mapping, a
sensor model should be developed:

– specifies how the sensor readings are to be interpreted
– depends on physical parameters of sensor (e.g., beam width,

i iaccuracy, precision etc…)
– must be able to deal reasonably with noisy data

For range sensors, they all have similar common
characteristics that must be dealt with:

 s (dist)– range errors (distance accuracy)
– angular resolution (beam width)
– noise (invalid data)

9-20
Winter 2012

noise (invalid data)

Chapter 9 – Sensor Models and Mapping

Sensor Models
Various ways to come up with a sensor model:
– Empirical: Through testing

bj i h h i– Subjective: Through Experience
– Analytical: Through analysis of physical properties

Once sensor model is determined, it is applied to
each sensor reading so as to determine how it affects
the map being built.the map being built.

We will consider our sensor models in terms of how
they are used in generating occupancy grid mapsthey are used in generating occupancy grid maps.

9-21
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Models
Our sensor model will consider distance accuracy and
beam width.

Sensor beam width is not easy to model
– has different width at different distances
– different obstacles have different reflective effects

Most models assume that beam is a cone-shaped p
wedge:

beambeam
width distance

error

9-22
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Models
We will assume that our sensors have
beams with this simple cone shape:
– actually an approximation of the true shape
– simplifies calculations

ill b idth d di t ith h – will vary beam width and distance error with each sensor

How do we pick beam width and distance error ?
– beam width and distance error may vary between individual

sensors of the same type
– beam width and distance error usually obtained through beam width and distance error usually obtained through

experimentation
– take average of many readings at certain distances

9-23
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Models
We will make the following assumptions regarding
our two types of ranging sensors:

– Ping))) sensor
- beam width of 38°- beam width of 38
- distance error of ±10% 38° ± 10%

– DIRRS+ sensor
beam width of 6°- beam width of 6

- distance error of ±5% 6° ± 5%

9-24
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Models
What does this all mean ?

When we detect an obstacle, we will project the , p j
sensor model onto the grid and assign probabilities to
the grid cells by taking into consideration the model.

Darker shaded cells
indicate a higher
likelihood of an
object being at that
location.

9-25
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying a Sensor Model
Consider binary map
– every time sensor detects obstacle at some range, assume that

object is there with 100% certaintyobject is there with 100% certainty.

– did this with readings from our sonar sensor data earlier

Single dots indicate
reading.

9-26
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying a Sensor Model
Actual sensor data is not this precise.
– must apply sensor model, assuming that object is anywhere

within the specified 38° wedgewithin the specified 38 wedge.

– simplest strategy assumes all readings indicate obstacle

Each reading now
forms an arc
defined by the
beam angle.beam angle.

9-27
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying a Sensor Model
Now consider a more realistic grayscale map:
– keep a counter for each grid cell and increment every time

sensor has reading at this locationsensor has reading at this location

– over time, cells become darker with multiple readings

Darker indicates
more readings, and
thus higher
certainty.y

Lighter indicates
less readings, and
thus higherthus higher
likelihood of
spurious or invalid
readings.

9-28
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying a Sensor Model
Can eliminate invalid readings by ignoring cells with
counter below a certain threshold.

Here are some results of applying a threshold:

discard anything below
25% of max count.

discard anything below
50% of max count.

discard anything below
75% of max count.

9-29
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying a Sensor Model
Consider applying our IR model to our IR data:

– More accurate than sonar with only 6° beam angle.y g

Smaller
beam

langle.

Data without model Data with 6° model

9-30
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying a Sensor Model
Eventually, we want to “fuse” together the sensor
data from our IR and sonar data.

Before we do this, we must adjust our map data to
account for distance errors too.

9-31
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Model Implementation
How do we compute which cells are affected by our
sensor model ?

Need to determi e the cells covered by each arc– Need to determine the cells covered by each arc.

First, compute arc endpoints:
(x y)

xr = x + r * COS(θ)
yr = y + r * SIN(θ)
xa = x + r * COS(θ - σ/2)

(xa,ya)

(xr,yr)
θ is the
sensor’s
direction.

a ()
ya = y + r * SIN(θ - σ/2)
xb = x + r * COS(θ + σ/2)
yb = y + r * SIN(θ + σ/2) (xb,yb)σ

(x,y)

σ
θ

σ is the fixed angular
resolution of the sensor.

r is the sensor’s range
reading.

9-32
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Model Implementation
Then compute the angular interval so that we cover
each cell along the arc once (roughly):

ω = σ / √(xa-xb)2 + (ya-yb)2

Now go to each grid cell along the arc and increment Now go to each grid cell along the arc and increment
it accordingly:

FOR a = -σ/2 TO σ/2 BY ω DO {
Compute the grid cells at
various angles along the FOR a = σ/2 TO σ/2 BY ω DO {

gridX = (x + cos(θ + a) * r);

gridY = (y + sin(θ + a) * r);

incrementCell(gridX gridY);

g g
wedge. We choose angles
that should produce unique
grid cells by choosing the
appropriate angular
intervalincrementCell(gridX, gridY);

}

interval.

9-33
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Model Implementation
How do we account for the distance error ?
– we iterate through ranges corresponding to the range ε

defined by the distance error defined by the distance error.

FOR r′ = -ε TO ε DO {
ω = computed as described below

FOR /2 TO /2 BY ω DO {FOR a = -σ/2 TO σ/2 BY ω DO {
gridX = (x + cos(θ+a) * (r+r′))
gridY = (y + sin(θ+a) * (r+r′))
incrementCell(gridX, gridY)

}

(xa,ya)
(xr,yr)

σ

ε
ε

}
}

(x y)
xa = x + (r+r') * COS(θ - σ/2)
ya = y + (r+r') * SIN(θ - σ/2) σ

θ

(x,y)

(xb,yb)

ω = σ / √(x -xb)2 + (y -yb)2

ya y () ()
xb = x + (r+r') * COS(θ + σ/2)
yb = y + (r+r') * SIN(θ + σ/2)

9-34
Winter 2012Chapter 9 – Sensor Models and Mapping

ω σ / √(xa xb) + (ya yb)

Sensor Model Implementation
As a result, we end up with a blurred “band”
indicating the distance error of the sensor:

Due to round-off inaccuracies, there will likely be some grid
cells counted twice and some not counted during a single
update. This may lead to a speckled pattern.

10% distance error (ε = ±5%) 20% distance error (ε = ±10%)

9-35
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Model Implementation
Can eliminate speckled pattern by creating 2nd grid
on which to compute sensor readings and then
merge it onto the real grid when done.merge it onto the real grid when done.

2nd grid acts as a
binary mask
indicating whichindicating which
cells have been
affected by the new
sensor readings.

Without 2nd Grid With 2nd Grid (used as a mask)

9-36
Winter 2012Chapter 9 – Sensor Models and Mapping

()

Sensor Model Implementation
Here are the results for the IR sensor data when the
±5% distance error of the model is also applied:

Without Distance Error With Distance Error

9-37
Winter 2012Chapter 9 – Sensor Models and Mapping

lMore Realistic Sensor
ModelsModels

Error Distribution
As mentioned earlier, each sensor’s readings are
subject to angular errors as well as distance errors.

Consider a sonar with 38° beam angle.

When object is detected at, say 20 , it can actually When object is detected at, say 20cm, it can actually
be anywhere within the beam arc defined by the
20cm radius:

A 20 range reading can occur

20cm

A 20cm range reading can occur
whenever an object is anywhere
along the beam arc at 20cm.

cm

9-39
Winter 2012Chapter 9 – Sensor Models and Mapping

Error Distribution
The likelihood (or probability) that the
object is centered across the arc is greater
than if the object was off to the side of the arc.

We can thus express the sensor reading itself as a set We can thus express the sensor reading itself as a set
of probabilities across the grid.

As a result we end up with a probability distribution As a result, we end up with a probability distribution
representing the likelihood that the object is centered
at the detected angle.

Assume that the location (along the arc) of the
obstacle is a random variable.

9-40
Winter 2012Chapter 9 – Sensor Models and Mapping

Probability Density Functions
Random variables operating in continuous spaces are
called continuous random variables.

Assume that all continuous random variables posses a
Probability Density Function (PDF).

E.g., Probability
Density
Function

Probability
distribution
of a car
b i

Function
for this
distribution.

(Also known as
th P b bilitbeing a

certain age.
the Probability
Distribution
Function).

9-41
Winter 2012Chapter 9 – Sensor Models and Mapping

Probability Density Functions
Common PDF is the 1-D normal distribution:

– given mean μ and variance σ 2 the normal distribution isg

p(x) = (2πσ2)-½ exp{ -½ (x-μ)2 / σ2 } = e -(x - μ)2 / 2σ2

σ√(2π)

y
p(x)

The mean = μ

σ is the standard
deviation

Concave down p() deviation

Concave up

xμ μ+σμ-σ

9-42
Winter 2012Chapter 9 – Sensor Models and Mapping

Gaussian Distribution
A more realistic sensor model assigns probabilities to
the cells according to some error distribution such as
this Gaussian (or Normal) distribution.this Gaussian (or Normal) distribution.

We can apply this
di ib idistribution across our arc
to assign probabilities that
the cell is occupied:

(x,y)

9-43
Winter 2012Chapter 9 – Sensor Models and Mapping

Gaussian Distribution
How do we implement this on our grid ?

Often the probabilities are approximated using what p pp g
is known as the six-sigma rule. Which essentially
divides the probabilities into 6 probability regions.

+σ +2σ +3σ-3σ -2σ -σ

Total probabilities

x0 3413 0 3413 0 1359 0 02140 13590 0214

add to 0.9972 ≈ 1.0

9-44
Winter 2012Chapter 9 – Sensor Models and Mapping

0.3413 0.3413 0.1359 0.02140.13590.0214

Applying Gaussian Distribution
Hence, we can divide our arc into 6 “pieces” and
apply the specific probabilities to the cells in each
range.range.

Cells get probability p
according to how much
they lie in each rangey g

Hence, we need to
convert our grid into
probabilities instead of using an integer counter.

(x,y)

9-45
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying Gaussian Distribution
Here are the results of applying the
Gaussian distribution across the

Angular
distribution
for single
reading.

angular component of the data:
Distribution
is more

0.0214 0.1359 0.3413 0.3413 0.1359 0.02140.0214 0.1359 0.3413 0.3413 0.1359 0.0214

is more
noticeable
here.Probabilities for

each region.

Some regions

Without Gaussian Distribution on Angle With Gaussian Distribution on Angle

Some regions
are very
faint…

9-46
Winter 2012Chapter 9 – Sensor Models and Mapping

Without Gaussian Distribution on Angle With Gaussian Distribution on Angle

Applying Gaussian Distribution
The data is still somewhat “band-like”.

Should also apply Gaussian distribution across the pp y G
distance component.

Allows for uncertainty in the Allows for uncertainty in the
distance as well.

(x,y)

9-47
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying Gaussian Distribution
Here are the results of applying the
Gaussian distribution across the

Distance
distribution
for single
reading.

distance component of the data:
Notice the
blurring &

0.0214 0.1359 0.3413 0.3413 0.1359 0.0214

blurring &
thinning effect

Probabilities for
each region.

Without Gaussian Distribution on Distance With Gaussian Distribution on Distance

9-48
Winter 2012Chapter 9 – Sensor Models and Mapping

Without Gaussian Distribution on Distance With Gaussian Distribution on Distance

Applying Gaussian Distribution
We will apply the probability distribution over both
angular and distance components

this is k ow as a multivariate distributio– this is known as a multivariate distribution
– a distribution of the probabilities over 2 dimensions.

Must compute
cell probabilities p
accordingly.

(x y)(x y)

9-49
Winter 2012Chapter 9 – Sensor Models and Mapping

(x,y)(x,y)

Applying Gaussian Distribution
Consider occupancy grid cells
covered by single reading

Combined
angular &
distance
distribution
for single

– 18,519 cells are affected by a single
sonar sensor reading, in this particular example
ll ll li i f th b l (hi h ll dd t 1 0)

for single
reading.

– all cells lie in one of the ranges below (which all add to 1.0)
corresponding to a particular Gaussian
probability value:

0.0004579600

0.0029082602

0.0073038205

0.0029082602

0.0184688115

0.0463826733

0.0073038205

0.0463826733

0.1164856972

0.0073038205

0.0463826733

0.1164856972

0.0029082602

0.0184688115

0.0463826733

0.0004579600

0.0029082602

0.0073038205

0.0073038205

0.0029082602

0.0004579600

0.0463826733

0.0184688115

0.0029082602

0.1164856972

0.0463826733

0.0073038205

0.1164856972

0.0463826733

0.0073038205

0.0463826733

0.0184688115

0.0029082602

0.0073038205

0.0029082602

0.0004579600

9-50
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying Gaussian Distribution
Here are the results of applying the Gaussian
distribution across the distance component of the
data:data:

With
Gaussian
distribution
on angle

With
Gaussian
distribution
on distance

With Gaussian distribution on both
angle and distance

on distance

9-51
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying Gaussian Distribution
In fact, we can increase resolution in our data if we
sub-divide the 6-sigma areas.

Can obtain areas of normal distribution curve from a
statistics table:

+σ +2σ +3σ-3σ -2σ -σ

0.3413 0.3413 0.1359 0.02140.13590.0214

0.
49

87
0.

49
81

0.
49

74
0.

49
65

0.
49

53
0.

49
38

0.
49

18
0.

48
93

0.
48

61
0.

48
21

0.
47

72
0.

47
13

0.
46

41
0.

45
54

0.
44

52
0.

43
32

0.
41

92
0.

40
32

0.
38

49
0.

36
43

0.
34

13
0.

31
59

0.
28

81
0.

25
80

0.
22

57
0.

19
15

0.
15

54
0.

11
79

0.
07

93
0.

03
98

0.4987
0.4981
0.4974
0.4965
0.4953
0.4938
0.4918
0.4893
0.4861
0.4821
0.4772
0.4713
0.4641
0.4554
0.4452
0.4332
0.4192
0.4032
0.3849
0.3643
0.3413
0.3159
0.2881
0.2580
0.2257
0.1915
0.1554
0.1179
0.0793
0.0398

9-52
Winter 2012Chapter 9 – Sensor Models and Mapping

0 714538831123142222933910754938

Applying Gaussian Distribution
Can then subdivide into probability regions.

With original 6-sigma, we had 6 probability regions.g g , p y g

With this area data, we can have 60 regions:

+σ +2σ +3σ-3σ -2σ -σ

Of course, we can group these probabilities in
bi ti f 1 2 3 5 t bt i l ti 10combinations of 1, 2, 3, 5 to obtain resolutions 10x,

5x, 3x, and 2x than normal.

0.
00

06
0.

00
07

0.
00

09
0.

00
12

0.
00

15
0.

00
20

0.
00

25
0.

00
32

0.
00

40
0.

00
49

0.
00

59
0.

00
72

0.
00

87
0.

01
02

0.
01

20
0.

01
40

0.
01

60
0.

01
83

0.
02

06
0.

02
30

0.
02

54
0.

02
78

0.
03

01
0.

03
23

0.
03

42
0.

03
61

0.
03

75
0.

03
86

0.
03

95
0.

03
98

0.0006
0.0007
0.0009
0.0012
0.0015
0.0020
0.0025
0.0032
0.0040
0.0049
0.0059
0.0072
0.0087
0.0102
0.0120
0.0140
0.0160
0.0183
0.0206
0.0230
0.0254
0.0278
0.0301
0.0323
0.0342
0.0361
0.0375
0.0386
0.0395
0.0398

9-53
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying Gaussian Distribution
Here are some of the various resolutions:

1x resolution 2x resolution 3x resolution

5x resolution 10x resolution

10x resolution/
range readings
overlayed

9-54
Winter 2012Chapter 9 – Sensor Models and Mapping

Applying Gaussian Distribution
Pseudo code for processing data using 2x resolution:

aRes = 19
dE 0 10

angular resolution = ± 19°distance
error

dError = 0.10
SIGMA_PROBS = { 0.0049, 0.0166, 0.044, 0.0919, 0.1498, 0.1915, 0.1915, 0.1498, 0.0919, 0.044, 0.0166, 0.0049 }

FOR (each range reading d at pose p) DO {
tempGrid = new grid

FOR r = -d*dError TO d*dError BY 0 5 DO {

Probabilities for the 12
sigma sub-regions

± 10%

Same size as occupancy grid

FOR r d dError TO d dError BY 0.5 DO {
distProb = SIGMA_PROBS [(r + d*dError) / (d*dError) / 2 * 100 / 8.34f]

sX = (int)(p.x + COS(p.angle - aRes) * (d+r))
sY = (int)(p.y + SIN(p.angle - aRes) * (d+r))
dX = (int)(p.x + COS(p.angle + aRes) * (d+r))
dY = (int)(p.y + SIN(p.angle + aRes) * (d+r))

8.34 = 100/12
for 2x resolution
of 6-sigma regions

Compute number
of samples to take
along the arc

angularInterval = aRes / FLOOR(SQRT((sX-dX)*(sX-dX) + (sY-dY)*(sY-dY)))

FOR a = -aRes TO aRes BY angularInterval DO {
objX = p.x + COS(p.angle + a) * (d+r)
objY = p.y + SIN(p.angle + a) * (d+r)
angProb = SIGMA PROBS [(a + aRes) / (2*aRes) * 100 / 8 34f]

This can be
done in
many ways.
One way is
to simply
add the new

b bilit angProb = SIGMA_PROBS [(a + aRes) / (2 aRes) 100 / 8.34f]
tempGrid.setCell (objX,objY, angProb*distProb)

}
}
merge tempGrid to fullGrid

}

probability
values and
then
normalize
everything
later.

9-55
Winter 2012Chapter 9 – Sensor Models and Mapping

Converting to Probabilities
Until now, we have stored the likelihood of
occupancy for each cell as a combined sum of the
individual probabilities for each sensor reading.individual probabilities for each sensor reading.

The result is not really a probability of the cell being
occupied it is biased towards positive occupancy occupied, it is biased towards positive occupancy
readings.

This d s t ll s t disti ish lls This does not allow us to distinguish cells
that we know nothing about from cells

 k th t lik l t i dwe know that are likely not occupied.

9-56
Winter 2012Chapter 9 – Sensor Models and Mapping

Converting to Probabilities
Given probabilities from 0.0 to 1.0, we can divide
into three “groups” for occupancy:
> 0 5 cell is occupied> 0.5 → cell is occupied
= 0.5 → don’t know if cell is occupied or empty
< 0.5 → cell is empty0 5 cell is empty

Adjust occupancy grid to maintain a probability for
each cell, always in the range from 0 to 1.each cell, always in the range from 0 to 1.

– Assume occupancy for each cell is initially unknown (i.e., have
equal probability of being occupied or empty).eq al pro a ility of ei g occ pie or e pty)

– Change tempGrid.setCell(objX,objY, angProb*distProb) to
tempGrid.setCell(objX,objY, angProb*distProb / 2.0 + 0.5)

9-57
Winter 2012Chapter 9 – Sensor Models and Mapping

Convert from 0-1.0 range to 0.5-1.0 range.

Converting to Probabilities
As a result, the “white” areas become “medium
gray”, indicating uncertainty:

Unknown occupancy
(i e probability of 0 5)(i.e., probability of 0.5)
appears as medium gray.

Before Normalized Probabilities With Normalized Probabilities

9-58
Winter 2012Chapter 9 – Sensor Models and Mapping

Converting to Probabilities
Be aware! The higher resolution sensor models
attribute lower probabilities to each cell, so each
reading has less of an influence on the occupancy:reading has less of an influence on the occupancy:

M st w c side h w t c bi e p babilities f

1x resolution 2x resolution 5x resolution

Must now consider how to combine probabilities from
multiple sensor readings…

9-59
Winter 2012Chapter 9 – Sensor Models and Mapping

Bayesian Updating
Can update cell values in various ways:
– Bayesian

h f– Dempster - Shafer
– HIMM (Histogrammic in Motion Mapping)

Most common used is Bayesian.

– Essentially, it explains how we should change our existing y p g g
beliefs in the light of new evidence.

– e.g., when measuring the location of an obstacle, we take
lti l di d d t th b bilit f b t l multiple readings and update the probability of an obstacle

being at a certain location by updating our belief after each
sensor reading.

9-60
Winter 2012Chapter 9 – Sensor Models and Mapping

Bayesian Updating probability value obtained
during sensor reading R at

Bayes Rule is as follows
(assuming p(R) > 0):

|
prior probability distribution
at location L before reading

grid location L.

p(L|R) = p(R)

p(R|L) p(L)posterior probability
distribution at location
L given that sensor
measurement R was

at location L before reading
R is incorporated (i.e., value
at grid cell L before
applying sensor reading.

– Here, p(R) = p(R|L)p(L) + p(R|L)p(L)

just obtained. p(R) is the probability that
sensor reading R has
occurred.

Here, p(R) p(R|L)p(L) + p(R|L)p(L)
= p(R|L)p(L) + (1 - p(R|L))(1 - p(L))

In our case p(R|L) = 1 p(R|L) since: In our case, p(R|L) = 1 – p(R|L) since:
– we only update cells affected by sensor reading
– the Gaussian probabilities add to 0.9972 ≈ 1

Given that this cell is empty,
the prob of sensor reading R is
total of remaining probs in
Gaussian distribution.

9-61
Winter 2012

the Gaussian probabilities add to 0.9972 1

Chapter 9 – Sensor Models and Mapping

Bayesian Updating
Can be re-stated in terms of each cell in the
occupancy grid:

beliefCellOccupied =
likelihoodCellOccupiedBasedOnReading * priorBeliefCellOccupied

likelihoodThatReadingOccurredlikelihoodThatReadingOccurred

Can be shortened to:
|p(occupied|reading) =

p(reading|occupied) p(occupied)
p(reading|occupied) p(occupied) + p(reading|empty) p(empty)p(reading|occupied) p(occupied) + p(reading|empty) p(empty)

9-62
Winter 2012Chapter 9 – Sensor Models and Mapping

Bayesian Updating
How does this translate to code ?
– It all takes place during the merging of the temporary and

full grids from a single sensor reading:full grids from a single sensor reading:

FOR x = 0 TO WIDTH-1 DO { Only merge cells that

FOR y = 0 TO HEIGHT-1 DO {

IF (tempGrid(x,y) ≠ 0.5) THEN {

fullGrid(x,y) = (tempGrid(x,y) * fullGrid(x,y)) /

have been affected by
this sensor reading.

(,y) (p (,y) (,y)) /

(tempGrid(x,y) * fullGrid(x,y) +

(1 - tempGrid(x,y))*(1 - fullGrid(x,y)))

}}

}

}

9-63
Winter 2012Chapter 9 – Sensor Models and Mapping

Bayesian Updating
For example:
– assume initially unknown grid (all probabilities are 0.5)

di b i d i h G i di ib i– sensor reading obtained with Gaussian distribution

Original Gaussian probability =
0.1164856972 but when it is
converted to 0.5-1.0 range it
becomes: 0.5582428486

p(occupied|reading) = (0.5582428486 * 0.5) = 0.5582428486

((0. 5582428486 * 0.5) + (0.4417571514 * (1 - 0.5)))

9-64
Winter 2012

(() (()))

Chapter 9 – Sensor Models and Mapping

Improving the Sensor Model
Recall that the sensor model applied a Gaussian
distribution across the angle and distance.

Our model should also consider that a particular
range reading, r, implies that no obstacles are
detected within beam pattern at distance < rdetected within beam pattern at distance < r.

Must reduce certainty for Gaussian distribution
indicating high likelihood
of obstacle.

cells within beam pattern
with distance < r:

Likely no obstacle in
these ranges

Our scale goes from 0 to 1, not
-1 to 1 as shown here.

9-65
Winter 2012Chapter 9 – Sensor Models and Mapping

these ranges.

Improving the Sensor Model
Now we can apply our improved sensor model in
which cells within the beam have a high probability
of being unoccupied for ranges preceding the sensor of being unoccupied for ranges preceding the sensor
range reading:

There is a strong
“negative” chance that
there is NO obstacle in
this area.

Stronger likelihood of no
obstacle being present
as distance to the
source point decreases

(x,y)

source point decreases.

9-66
Winter 2012Chapter 9 – Sensor Models and Mapping

Improving the Sensor Model
We can modify the algorithm to “negate” the
probabilities in these areas.

Simply make the cha ges i purple below to the algorithm – Simply make the changes in purple below to the algorithm
(assuming probabilities are all added together)

…
FOR (each range reading d at pose p) DO { dError is the distance

hi h i 0 1
(g g p p) {

…
FOR r = -d TO d*dError BY 0.5 DO {

IF (r < -d*dError)
distProb = -1.0;

ELSE
di P b SIGMA PROBS [(d*dE) / (d*dE) / 2 * 100 / 8 34f]

error which is 0.1
(i.e., ± 10%)

distProb = SIGMA_PROBS [(r + d*dError) / (d*dError) / 2 * 100 / 8.34f]

…

FOR a = -aRes TO aRes BY angularInterval DO {
…
tempGrid.setCell (objX,objY, angProb*distProb / 2.0 + 0.5)

}
}
merge tempGrid to fullGrid using Bayesian strategy

}

9-67
Winter 2012Chapter 9 – Sensor Models and Mapping

}

Improving the Sensor Model
Here is the result from a single sensor reading by
using a various models pertaining to emptiness:

N ti G i ff t b C ll t d k li lNotice Gaussian effect across beam. Cells get darker linearly as
they approach the range
reading area.

Constant
region.

Linear
region.

Lighter
i di t

Constant Linear

indicates
higher
likelihood of
cell being
empty.

Combined
IF (r < -d*dError)

distProb = -1.0
IF (r < -d*dError)

distProb = r / d
IF (r < -d*2*dError)

distProb = -1
ELSE IF (r < -d*dError)

distProb = (r+d*dError) / (d*dError)

9-68
Winter 2012Chapter 9 – Sensor Models and Mapping

Improving the Sensor Model
Here are the comparisons of these models after
multiple sensor readings:

Constant Linear Combined

The combined model allows for higher certainty
regarding emptiness, and does so smoothly.

9-69
Winter 2012Chapter 9 – Sensor Models and Mapping

Improving the Sensor Model
This sensor model improvement helps in identifying
invalid and/or unlikely readings:

Some sensor
readings have
been
discarded,
resulting in
b tt

Actual wall
boundaries.

Some sensor
readings have
been discarded,
resulting in
better map
better map
accuracy.
better map
accuracy.

accuracy.

These readings were not
identified as invalid. Additional
readings from other locations
would eliminate these.

9-70
Winter 2012Chapter 9 – Sensor Models and Mapping

Improving the Sensor Model
We can similarly obtain the map corresponding to
our IR sensor readings:

9-71
Winter 2012Chapter 9 – Sensor Models and Mapping

Learning the Sensor Model
It is also possible to allow the sensor model to be
– Dynamically computed:

Analytical
(ideal) sensor
model.

Learned

– Dynamically chosen:

Learned
sensor
model.

y y

M d l

Model
for close
readingsModel

for far
readings

g

9-72
Winter 2012Chapter 9 – Sensor Models and Mapping

Odds Representation
Another popular way of maintaining the occupancy
status for each cell is to store odds as opposed to
probabilities.probabilities.
odds(occupied|afterReading) =

p(reading|occupied)
X dd (i d|b f R di)

p(g| p)
p(reading|notOccupied)

… in terms of coding for each cell [x][y] given

X odds(occupied|beforeReading)

… in terms of coding for each cell [x][y] given
Gaussian range probability r:

odds[x][y] = r / (1- r) * odds[x][y]

Advantage!!
Less calculations per cell….faster.

odds[x][y] = r / (1 r) odds[x][y]

Odds representation ranges from 0 to ∞ instead of
from 0 to 1

9-73
Winter 2012

from 0 to 1.

Chapter 9 – Sensor Models and Mapping

Odds Representation
As a result, our display strategy must be
different…find maximum cell value first and
distribute grey-scale values accordingly.distribute grey scale values accordingly.

Probability Representation Odds Representation

9-74
Winter 2012Chapter 9 – Sensor Models and Mapping

Display Options
Of course, we can also manipulate thresholds and
colors in various ways when displaying the map:

G l 2 C l 3 C lGray-scale 2-Color merge 3-Color merge

Normal
Color-Depth

ReducedReduced
Color-Depth

9-75
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Fusion
Until now, we have only examined sensor fusion in
regards to combining readings from a single sensor.

If there are multiple sensors of the same
type, it is easiest to combine them as if
they were multiple readings from the
same sensor.

For different types of sensors, we may wish to
incorporate a confidence level with each sensor.p f l v l
– some sensors are more accurate or reliable than others.
– we may wish to give higher confidence to these

9-76
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Fusion
Sensor fusion is often done by
– maintaining separate maps for different

i d h bi isensors over time and then combining
the maps afterwards

Let r1, r2, …, rn be n sensor readings from one sensor and
s1, s2, …, sm be m sensor readings from a different sensor

Th b bilit th t ll i i d ft th di b The probability that cell o is occupied after the readings can be
stated as:

p(o|r1,r2,…rn, s1,s2,…sm) =
| |p(o|r1,r2,…rn) w(r) + p(o|s1,s2,…sm) w(s)

where w(r) and w(s) are the confidence weights of the sensors such that w(r)
+ w(s) = 1

9-77
Winter 2012

+ w(s) 1

Chapter 9 – Sensor Models and Mapping

Sensor Fusion
We can choose w(r) and w(s) according
to the trustworthiness of the sensors.
E.g., we can choose weights according to:
– Angular Resolution:

- sonar with ±19° angular resolution may be roughly 1/6 as
accurate as an IR with ±3° resolution. Thus, we might assign
weights w(r) = 0.14 to the sonar and w(s) = 0.86 to the IR.

– Distance Resolution:
- sonar with ±10° distance resolution may be roughly 1/2 as

accurate as an IR with ±5° resolution Thus we might assign accurate as an IR with ±5 resolution. Thus, we might assign
weights w(r) = 0.34 to the sonar and w(s) = 0.66 to the IR.

– Equal:
 i () ()

9-78
Winter 2012

- we can assign w(r) = w(s) = 0.5

Chapter 9 – Sensor Models and Mapping

Sensor Fusion
Here are some fusion results:

Sonar = 0.5 & IR = 0.5No weights, single map used

Sonar = 0.34 & IR = 0.66 Sonar = 0.14 & IR = 0.86

9-79
Winter 2012Chapter 9 – Sensor Models and Mapping

Sensor Fusion
Classifying (or categorizing) the data, we can see that
some IR readings may be inhibited due to the false
sonar readings (or vice versa):sonar readings (or vice versa):

Too many “unoccupied”
readings from sonar
negates the “occupied”
IR readings.

High weight of
“unoccupied” IR p
readings negates
the “occupied”
sonar readings.

9-80
Winter 2012Chapter 9 – Sensor Models and Mapping

Other Updating Strategies
The Dempster-Shafer method of updating cells
– generalization of Bayesian strategy

id i il f h i– provides similar performance to the Bayesian strategy
– maintains p(occupied) + p(empty) + p(unknown) = 1.0
– can distinguish conflicting evidence from lack of evidence– can distinguish conflicting evidence from lack of evidence

We will not look any more into this.

HIMM (Histogram In-Motion Mapping) method for
updating cells:
– faster than other two, but less accurate
– meant for fast moving robot, performance can be poor when

slow movements made

9-81
Winter 2012

slow movements made

Chapter 9 – Sensor Models and Mapping

Other Updating Strategies
HIMM updating rule:
– if element is empty decrement its occupancy by 1

if l i i d i i b– if element is occupied increment its occupancy by 3

Believes that a region is occupied more than it
b li h i i believes that it is empty

Same idea as countingg

Only updates along sonar axis
beam (i e sonar is thin beam)beam (i.e., sonar is thin beam).
– Will leave gaps since narrow

beam reduces reading overlaps

9-82
Winter 2012

beam reduces reading overlaps.

Chapter 9 – Sensor Models and Mapping

b lExtracting Obstacle
Features From Raw DataFeatures From Raw Data

Line Extraction
An alternative to using an occupancy grid:
– extract the range readings as single points

– combine/merge
them to form a
piecewise linear
approximation
(i e line segments)(i.e., line segments)
that represent the
obstacle
boundaries.

9-84
Winter 2012Chapter 9 – Sensor Models and Mapping

Line Extraction
Advantages:

+ less processing powerp g p
+ quicker
+ gives model of obstacles

Disadvantages:

- data must come in sequence
- difficulty detecting and removing noise

t t i lid di lid- treats invalid readings as valid
- shapes are subjective to accuracy parameter

which is difficult to choose.

9-85
Winter 2012

which is difficult to choose.

Chapter 9 – Sensor Models and Mapping

Line Extraction
Key issues:
– How do we group range readings into line segments ?

H d d li i i di ?– How can we detect and eliminate noisy readings ?

There are a variety of common techniques:
– Split & Merge
– Incremental

i i

Simplest and most popular.

– Line Regression
– RANSAC (Random Sample Consensus)
– Hough-Transform– Hough-Transform
– EM (Expectation-Maximization)

9-86
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
Consider a set of range points:
– P = {p1, p2, p3, …, pn} where pi =(xi, yi), 1 ≤ i ≤ n

– Let pm be point of maximum distance from line L= p1pn

– If distance from pm to L > ε, split into two subsets:pm , p

P′ = {p1, p2, p3, …, pm} P′′ = {pm, pm+1, pm+2, …, pn}

Distance from pm to L is:

|(xn-x1)(y1-ym)-(x1-xm)(yn-y1)|

√ (x -x)2 + (y -y)2

pm

√ (xn-x1) + (yn-y1)

p1

pn ε

Adjustable parameter,
greatly affects result

L

9-87
Winter 2012Chapter 9 – Sensor Models and Mapping

greatly affects result.

Split & Merge
Do this recursively until no more splits can be made

pm pmpm pm

p1

pn

p1

pnε

Larger values of ε will stop the
recursion sooner.

p1

pn

p1

pn

9-88
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
Here are some results of the split phase on our sonar
data for various thresholds:

ε ≈ 1 cm ε ≈ 3 cm ε ≈ 16 cm

9-89
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
Here are some results of the split phase on our IR
data for various thresholds:

ε ≈ 1 cm ε ≈ 3 cm ε ≈ 16 cm

9-90
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
Consider a single line segment
pipk (i< k)

pi

obtained from our split phase.

We would like to find a line that
pk

We would like to find a line that
“best-fits” the data so as to not
be biased towards the segment

pi

be biased towards the segment
endpoints that were chosen
during split phase

pk

during split phase.

Can do this by “least squares method”

9-91
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
Let P = {pj, pj+1, pj+2, …, pk} where pi =(xi, yi), j ≤ i ≤
k be the set of points corresponding to a line
segment chosen during the split phase. segment chosen during the split phase.

Let g(x) = mx + b be a generic line equation

Define the Mean Squared Error function in
approximating the data as: pi

MSE = ∑ (yi - g(xi))2

∑ ((b))2
i=j

k1
k-j+1

k1 p

pi

This is
yi – g(xi)

(xi,yi)

= ∑ (yi - (mxi+b))2

The “best-fit” line will minimize MSE.
i=j

1
k-j+1

pk

9-92
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
After some joyful math work, we can obtain:

m = (∑ xi)*(∑ yi) – (k-j+1)*(∑ xiyi)
k k k

y j y

(∑ xi)2 – (k-j+1)*(∑ xi
2)

i=j i=j i=j

i=j

k

i=j

k

b = (∑ xi)*(∑ xiyi) – (∑ xi
2)*(∑ yi)

i=j

k

i=j

k

i=j

k

i=j

k

(∑ xi)2 – (k-j+1)*(∑ xi
2)

If we do this for each line segment we end up with a
i=j

k

i=j

k

If we do this for each line segment, we end up with a
set of intersecting lines

9-93
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
These line more closely fit the data.

Next, determine intersections of adjacent lines., j

To display a line, we need two
coordinates. E.g., choose x=0
and x=∞ then computeand x=∞, then compute
y=mx+b using computed
values of m and b.

Blue lines are
original lines
before best-
fitting.

Green lines represent
“best-fit” lines to data.

9-94
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
Take two consecutive lines with equations:

y = m1 x + b1

by = m2 x + b2

These intersect (provided that non-parallel) when:
m1 x + b1 = m2 x + b2 i.e., when x = (b2 – b1) / (m1 – m2)

So we do this for set of lines L = {L1, L2, L3, …, Ln}:1 2 3 n

FOR i = 2 to N-1 DO {

sxi = (bi - bi-1) / (mi-1 - mi)

sy = m *sx + b Here L (sx sy) (ex ey)syi = mi sxi + bi
exi = (bi+1 - bi)/(mi - mi+1)

eyi = mi*exi + bi
}

Here Li = (sxi,syi) → (exi,eyi)

9-95
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
This will cover all adjacent lines except for the first
and last lines:

No Intersection
computed since
first and last
lines.

Computed
Intersection
point.

9-96
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
We can allow a wraparound by assuming that the
first and last segments are adjacent:

W dWraparound
allows merge of
first and last
lines.

Notice that green lines are a
better fit to the actual data.

9-97
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
The wraparound may provide invalid line segments.

It may be best to ignore first and last lines. y g

Not really an
obstacle edge.

9-98
Winter 2012Chapter 9 – Sensor Models and Mapping

Split & Merge
Should also merge adjacent segments if:

– they are nearly collineary y

– angle between them is small

– they have very close endpoints

Difficult to choose parameters in terms of when to
split and when to merge:

ll h i t ll – usually chosen experimentally
– will not perform the best in all cases

9-99
Winter 2012Chapter 9 – Sensor Models and Mapping

Incremental
The incremental algorithm for determining the lines
is VERY similar and somewhat easier.
1 Start with a set S containing p1. Start with a set S containing p1

2. Add the next point pi to S
3. Compute the best-fit line L for all points in S

(h 0 d t t t di t)

ε

(choose x=0 and x=∞ to get two coordinates)

4. Determine the MSE for the points in S
(use the best-fit line for comparison)

5 IF (MSE > ε)

p1

5. IF (MSE > ε)
re-compute L with all points in S except pi

add L to the result and reset S to contain only pi-1 and pi

IF i i f i t t THEN it6. IF i = size of point set THEN quit
7. Set i = i+1 and go back to 2

9-100
Winter 2012Chapter 9 – Sensor Models and Mapping

Incremental
Here is how the algorithm works for a simple
example:

MSE exceeds
ε threshold

p4

p5
>εBest Fit line

ε threshold

p1

p2

p1

p3

p1 p1
White points
are in S

Now result

p5
p7

>εp6

p

p6
p7

Line added to
result. Now
start again with

Now result
contains a
second line.

p4 p4
p4

start again with
S containing p4
and p5 only.

9-101
Winter 2012Chapter 9 – Sensor Models and Mapping

Incremental
Here are some results of the incremental algorithm
on our sonar data for various thresholds:

ε ≈ 1.5 cm ε ≈ 3 cm ε ≈ 9 cm

9-102
Winter 2012Chapter 9 – Sensor Models and Mapping

Incremental
Here are some results of the incremental algorithm
on our IR data for various thresholds:

ε ≈ 3 cm ε ≈ 9 cm ε ≈ 18 cm

9-103
Winter 2012Chapter 9 – Sensor Models and Mapping

Other Schemes
As mentioned, there are other techniques to compute
these line segments.

Both Incremental and Split&Merge are the most
popular due to their simplicity and speed.

Note that it is always necessary to determine the
thresholds by examining data.

Also, the technique only works when
the data is ordered. the data is ordered.
– If data is given unordered, it must somehow be sorted first.

9-104
Winter 2012Chapter 9 – Sensor Models and Mapping

Extracting Obstacles
fFeatures from Occupancy
GridsGrids

Extracting Features
We just discussed how to extract features from raw
sonar data.

– this did not take into account errors in the data since it did
not use any sensor models.

– assumed that data was ordered along obstacle boundariesassumed that data was ordered along obstacle boundaries

Using a certainty grid in place of raw data, we can
take into account errors in the data:take into account errors in the data:

9-106
Winter 2012Chapter 9 – Sensor Models and Mapping

Thresholding
Can apply image analysis techniques to extract
important details.

Robot must ultimately assume occupancy or not:
– we must first obtain a binary grid by applying a threshold:

> 0.51 → 1
≤ 0.51 →0

> 0.55 → 1
≤ 0.55 →0

> 0.60 → 1
≤ 0.60 →0

9-107
Winter 2012Chapter 9 – Sensor Models and Mapping

Border Detection
We can then do a border detection on the resulting
binary data as follows:

search the data from top left cor er sca i g rows of pixels – search the data from top left corner, scanning rows of pixels
until the first black pixel is found at location (xs,ys)

(xs,ys)(0 0)(0,0)

123

– define directions as follows around a pixel: 04

5 6 7

9-108
Winter 2012Chapter 9 – Sensor Models and Mapping

5 6 7

Border Detection
123

Start with a direction d = 7 for pixel (xs,ys)

Trace out border of obstacle by doing a

04

5 6 7y g
traversal from the current point (xc,yc) = (xs,ys):

1 L t th t iti t b i d b d′ h 1. Let the next position to be examined be d′ where
d′ = (d+7) mod 8 if d is even, otherwise d′ = (d+6) mod 8

2 St ti t iti d′ h k i l d () i 2. Starting at position d′, check pixels around (xc,yc) in
counter-clockwise order (i.e., keep incrementing d′)
until a black pixel is found. Here are some scenarios:

found in
iti 5

found in
iti 6

found in
iti 7

found in
iti 0

d′ = 5

9-109
Winter 2012Chapter 9 – Sensor Models and Mapping

position 5 position 6 position 7 position 0

Border Detection
3. If there is no black pixel found, then (xc,yc)

must be a single pixel in the image.
(It should probably be ignored) None found(It should probably be ignored.)

4. Set (xc,yc) = (xc + xoff, yc + yoff)
(-1,1) (0,1) (1,1)

(1,0)(-1,0)

(xoff,yoff) depends on
d′ as shown here.

5. Add point (xc,yc) to set of border points

6. If (xc,yc) == (xs,ys) then we are done

(1,-1)(0,-1)(-1,-1)

Next (xs,ys)

Border just

otherwise set d=d′ and go back to step 1.

Repeat by scanning for another (xs,ys)

Border just
traced

p y g (xs,ys)
– must be black and not already a border
– must have a white pixel on its left

9-110
Winter 2012Chapter 9 – Sensor Models and Mapping

Border Detection
Here are the results of doing border detection on our
thresholded sonar data:

0.51 threshold
5 borders detected

0.55 threshold
14 borders detected

0.60 threshold
22 borders detected

Notice that the number of borders (or obstacles)
detected includes small (insignificant ones as well).

9-111
Winter 2012Chapter 9 – Sensor Models and Mapping

Border Detection
Of course, the data must be significantly connected
in order for the border detection to provide useful
information. information.

Here is the border detection result on the IR data:

58 b d d t t d58 borders detected.

9-112
Winter 2012Chapter 9 – Sensor Models and Mapping

Fitting Lines
Now we can take the set of border pixels from each
border we found (i.e., a border was formed each time
we found a new (xs,ys)):we found a new (xs,ys)):

Then apply either the Split&Merge or IncrementalThen apply either the Split&Merge or Incremental
segmentation algorithm:

9-113
Winter 2012Chapter 9 – Sensor Models and Mapping

Fitting Lines
Results:
– sonar data

– incremental
algorithm

– 0.51
threshold

ε ≈ 0.3 cm ε ≈ 1 cm

ε ≈ 3 cm ε ≈ 5 cm

9-114
Winter 2012Chapter 9 – Sensor Models and Mapping

Fitting Lines
Results:
– sonar data

– incremental
algorithm

– 0.60
threshold

ε ≈ 0.3 cm ε ≈ 1 cm

ε ≈ 3 cm ε ≈ 5 cm

9-115
Winter 2012Chapter 9 – Sensor Models and Mapping

Fitting Lines
More results:
– IR data

i t l l ith

– fused sonar and IR data
i c e e tal al ith– incremental algorithm

– 0.51 threshold
– incremental algorithm
– 0.51 threshold

9-116
Winter 2012Chapter 9 – Sensor Models and Mapping

Summary
You should now know how to:

– obtain raster (grid) & vector maps of raw sensor datag p

– use sensor models to account for errors in readings

ti t lik lih d f b t l l ti– estimate likelihood of obstacle locations

– perform simple sensor fusion from multiple sensors

– convert maps from raster to vector

9-117
Winter 2012Chapter 9 – Sensor Models and Mapping

