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Objectives
To understand how to create maps from raw sensor 
data.

To understand simple sensor sensor models

Investigate and model the errors associated with Investigate and model the errors associated with 
sensors and their data.

To understand how occupancy grids are used to To understand how occupancy grids are used to 
represent maps

T  d t d h  t  t t b t l  f t  f  To understand how to extract obstacle features from 
raw sensor data as well as from grids.
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What’s in Here ?
Mapping With Raw Data
– Mapping Raw Ping))) Data
– Mapping Raw DIRRS+ Data

Extracting Obstacle Features From Raw Data
– Line Extraction
– Split & Merge

Incremental
Mapping With Simplified Sensor Models
– Sensor Models
– Applying a Sensor Model

– Incremental

Extracting Obstacle Features From Occupancy 
Grids

Thresholding– Sensor Model Implementation

More Realistic Sensor Models
– Error Distribution

– Thresholding
– Border Tracing
– Line Fitting

– Applying a Gaussian Distribution
– Converting to Probabilities
– Bayesian Updating
– Improving the Sensor Model
– Odds Representation
– Sensor Data Fusion
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Mapping with Raw DataMapping with Raw Data



Mapping Raw Ping))) Data
Consider computing the ranges to obstacles from a 
fixed location in the following environment:

Robot spins aroundRobot spins around 
in this location 
during this particular 
test.

Position and 
orientation is either 
reported by the 
Robot Tracker, or 
estimated using 
dead-reckoning.
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Mapping Raw Ping))) Data
Assume that RobotTracker/RBC provides the position 
and angle of the robot accurately.  

We will make use of the pose.x, pose.y and pose.angle
information and combine this with the sonar 
readingsreadings.

Robot’s tracked position
(pose.x,pose.y)

Tracked pose angleTracked pose.angle

4.4cm
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Mapping Raw Ping))) Data
The sensor’s position is 4.4cm away from the robot’s 
center (x, y) position at 0°

– where x = pose.x and y = pose.y from the RobotTracker

We need to adjust all distance readings by:j g y

– adding 4.4cm since the objects are further away from the 
center of the robot than they are from the sensory

– calculating a position (xo, yo) for the obstacle by incorporating 
the robot’s pose (x, y, angle) and the range reading.
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Mapping Raw Ping))) Data
To convert range distances we must compute the 
position of the sensed obstacle.

Assuming that (x,y) is provided from the Robot-
Tracker in units of pixels, we need to either:

– convert (x,y) into cm first, resulting in cm units for (xo,yo):
xo = (distance + 4.4cm) * COS(angle) + (x / 3) 

di l
1cm ≈ 3pixels in 

yo = (distance + 4.4cm) * SIN(angle) + (y / 3)

– convert the range readings into pixels first, resulting in pixel
units for (x  y ):

Robot Tracker

units for (xo, yo):
xo = [(distance + 4.4cm) * 3] * COS(angle) + x
yo = [(distance + 4.4cm) * 3] * SIN(angle) + y

9-8
Winter 2012Chapter 9 – Sensor Models and Mapping



Mapping Raw Ping))) Data
Blue lines show readings to obstacle from robot’s 
center position (x,y) to the computed obstacle 
position position 
(xo, yo) Readings incorrect 

due to coarse sonar 
beam.

Readings incorrect 
due to coarse sonar 
beam.

Readings inaccurate 
due to reflection.
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Mapping Raw Ping))) Data
Result is a “rough” outline of environment with some 
inaccurate readings.

Most of these problemsMost of these problems 
can be fixed by taking 
many more readings 
from different positions 
and angles.
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Changing Head Angle
Even if the robot’s head is not facing forward, then 
the calculations will still be the same

Works o ly because tag rotates alo g with – Works only because tag rotates along with 
head/sensor Make sure that the tag has not rotated a little 

due to a loose bolt.  The black triangle wedge 
should be aligned with the sonar sensor.g

4.4cm
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Mapping Raw DIRRS+ Data
Consider computing the ranges to obstacles along a 
path in the following environment:

Robot travels 
along this path 
during this 
particular test.

Position and 
orientation isorientation is 
reported by the 
Robot Tracker.
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Mapping Raw DIRRS+ Data
Take measurements along path at particular 
locations:

Dot indicates location from which 
robot took measurement.  Line 
from dot indicates direction robot 

Positions and 
directions obtained 
from Robot Tracker

was facing.  

Red and black colors 
alternate to make picture 
look clearer.
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Mapping Raw DIRRS+ Data
Assume that RobotTracker/RBC provides the position 
and angle of the robot accurately.  

We will make use of the pose.x, pose.y and pose.angle
information and combine this with the IR readings.

Robot’s Tracked Position
(pose.x, pose.y)

Tracked pose.angle

3 12

DIRRS+ Sensor
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Mapping Raw DIRRS+ Data
The sensor’s position is 3.12cm behind the robot’s 
center (x, y) position.

d d ll di di bWe need to adjust all distance readings by:
– subtracting 3.12cm since the objects are closer to the center 

of the robot than they are from the sensorof the robot than they are from the sensor

– calculating a position (xo, yo) for the obstacle by 
incorporating the robot’s pose (x, y, angle) and the range p g p ( y g ) g
reading.
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Mapping Raw DIRRS+ Data
To convert range distances we must compute the 
position of the sensed obstacle.

i h i id d f h bAssuming that (x,y) is provided from the Robot-
Tracker in units of pixels, we need to either:

t ( ) i t  fi t  lti  i  it  f  ( )– convert (x,y) into cm first, resulting in cm units for (xo,yo):
xo = (distance – 3.12cm) * COS(angle) + (x / 3) 

yo = (distance – 3.12cm) * SIN(angle) + (y / 3)
1cm ≈ 3pixels in 
RobotTrackeryo  (distance 3.12cm)  SIN(angle)  (y / 3)

– convert the range readings into pixels first, resulting in pixel 
units for (xo, yo):

RobotTracker

( o, yo)
xo = [(distance – 3.12cm) * 3] * COS(angle) + x

yo = [(distance – 3.12cm) * 3] * SIN(angle) + y

9-16
Winter 2012Chapter 9 – Sensor Models and Mapping



Mapping Raw DIRRS+ Data
Blue lines show readings to obstacle from robot’s 
center location (x, y):

These particular readings 
were taken with the head 
rotated 90° to the right so 
that the sensor faced the 
wall.  
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Mapping Raw DIRRS+ Data
Resulting map has reasonable accuracy:
– Map can be refined by taking additional readings

More accurate 
than sonar.
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l f dMapping With Simplified 
Sensor ModelsSensor Models



Sensor Models
Before using a sensor for mapping, a 
sensor model should be developed:

– specifies how the sensor readings are to be interpreted
– depends on physical parameters of sensor (e.g., beam width, 

i iaccuracy, precision etc…)
– must be able to deal reasonably with noisy data

For range sensors, they all have similar common 
characteristics that must be dealt with:

 s (dist  )– range errors (distance accuracy)
– angular resolution (beam width)
– noise (invalid data)
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Sensor Models
Various ways to come up with a sensor model:
– Empirical: Through testing

bj i h h i– Subjective: Through Experience
– Analytical: Through analysis of physical properties

Once sensor model is determined, it is applied to 
each sensor reading so as to determine how it affects 
the map being built.the map being built.

We will consider our sensor models in terms of how 
they are used in generating occupancy grid mapsthey are used in generating occupancy grid maps.
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Sensor Models
Our sensor model will consider distance accuracy and 
beam width.

Sensor beam width is not easy to model
– has different width at different distances
– different obstacles have different reflective effects

Most models assume that beam is a cone-shaped p
wedge:

beambeam
width distance

error
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Sensor Models
We will assume that our sensors have 
beams with this simple cone shape:
– actually an approximation of the true shape
– simplifies calculations

ill  b  idth d di t   ith h – will vary beam width and distance error with each sensor

How do we pick beam width and distance error ?
– beam width and distance error may vary between individual 

sensors of the same type
– beam width and distance error usually obtained through beam width and distance error usually obtained through 

experimentation 
– take average of many readings at certain distances
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Sensor Models
We will make the following assumptions regarding 
our two types of ranging sensors:

– Ping))) sensor 
- beam width of 38°- beam width of 38
- distance error of ±10% 38° ± 10%

– DIRRS+ sensor
beam width of 6°- beam width of 6

- distance error of ±5% 6° ± 5%
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Sensor Models
What does this all mean ?

When we detect an obstacle, we will project the , p j
sensor model onto the grid and assign probabilities to 
the grid cells by taking into consideration the model.

Darker shaded cells 
indicate a higher 
likelihood of an 
object being at that 
location.
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Applying a Sensor Model
Consider binary map
– every time sensor detects obstacle at some range, assume that 

object is there with 100% certaintyobject is there with 100% certainty.

– did this with readings from our sonar sensor data earlier

Single dots indicate 
reading.
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Applying a Sensor Model
Actual sensor data is not this precise.
– must apply sensor model, assuming that object is anywhere 

within the specified 38° wedgewithin the specified 38 wedge.

– simplest strategy assumes all readings indicate obstacle

Each reading now 
forms an arc 
defined by the 
beam angle.beam angle.
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Applying a Sensor Model
Now consider a more realistic grayscale map: 
– keep a counter for each grid cell and increment every time 

sensor has reading at this locationsensor has reading at this location

– over time, cells become darker with multiple readings

Darker indicates 
more readings, and 
thus higher 
certainty.y

Lighter indicates 
less readings, and 
thus higherthus higher 
likelihood of 
spurious or invalid 
readings.
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Applying a Sensor Model
Can eliminate invalid readings by ignoring cells with 
counter below a certain threshold.

Here are some results of applying a threshold:

discard anything below 
25% of max count.

discard anything below 
50% of max count.

discard anything below 
75% of max count.

9-29
Winter 2012Chapter 9 – Sensor Models and Mapping



Applying a Sensor Model
Consider applying our IR model to our IR data:

– More accurate than sonar with only 6° beam angle.y g

Smaller 
beam 

langle.

Data without model Data with 6° model
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Applying a Sensor Model
Eventually, we want to “fuse” together the sensor 
data from our IR and sonar data.

Before we do this, we must adjust our map data to 
account for distance errors too.
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Sensor Model Implementation
How do we compute which cells are affected by our 
sensor model ?

Need to determi e the cells covered by each arc– Need to determine the cells covered by each arc.

First, compute arc endpoints: 
(x y )

xr = x + r * COS(θ)
yr = y + r * SIN(θ)
xa = x + r * COS(θ - σ/2)

(xa,ya)

(xr,yr)
θ is the 
sensor’s 
direction.

a ( )
ya = y + r * SIN(θ - σ/2)
xb = x + r * COS(θ + σ/2)
yb = y + r * SIN(θ + σ/2) (xb,yb)σ

(x,y)

σ
θ

σ is the fixed angular 
resolution of the sensor.

r is the sensor’s range 
reading.
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Sensor Model Implementation
Then compute the angular interval so that we cover 
each cell along the arc once (roughly):

ω = σ / √(xa-xb)2 + (ya-yb)2

Now go to each grid cell along the arc and increment Now go to each grid cell along the arc and increment 
it accordingly:

FOR a = -σ/2 TO σ/2 BY ω DO {
Compute the grid cells at 
various angles along the FOR a = σ/2 TO σ/2 BY ω DO {

gridX = (x + cos(θ + a) * r);

gridY = (y + sin(θ + a) * r);

incrementCell(gridX gridY);

g g
wedge.  We choose angles 
that should produce unique 
grid cells by choosing the 
appropriate angular 
intervalincrementCell(gridX, gridY);

}

interval.
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Sensor Model Implementation
How do we account for the distance error ?
– we iterate through ranges corresponding to the range ε

defined by the distance error  defined by the distance error. 

FOR r′ = -ε TO ε DO {
ω = computed as described below

FOR /2 TO /2 BY ω DO {FOR a = -σ/2 TO σ/2 BY ω DO {
gridX = (x + cos(θ+a) * (r+r′))
gridY = (y + sin(θ+a) * (r+r′))
incrementCell(gridX, gridY)

}

(xa,ya)
(xr,yr)

σ

ε
ε

}
}

(x y )
xa = x + (r+r') * COS(θ - σ/2)
ya = y + (r+r') * SIN(θ - σ/2) σ

θ

(x,y)

(xb,yb)

ω = σ / √(x -xb)2 + (y -yb)2

ya y ( ) ( )
xb = x + (r+r') * COS(θ + σ/2)
yb = y + (r+r') * SIN(θ + σ/2)
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Sensor Model Implementation
As a result, we end up with a blurred “band”
indicating the distance error of the sensor:

Due to round-off inaccuracies, there will likely be some grid 
cells counted twice and some not counted during a single 
update.  This may lead to a speckled pattern.

10% distance error (ε = ±5%) 20% distance error (ε = ±10%)
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Sensor Model Implementation
Can eliminate speckled pattern by creating 2nd grid 
on which to compute sensor readings and then 
merge it onto the real grid when done.merge it onto the real grid when done.

2nd grid acts as a 
binary mask 
indicating whichindicating which 
cells have been 
affected by the new 
sensor readings.

Without 2nd Grid With 2nd Grid (used as a mask)
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Sensor Model Implementation
Here are the results for the IR sensor data when the 
±5% distance error of the model is also applied:

Without Distance Error With Distance Error
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lMore Realistic Sensor 
ModelsModels



Error Distribution
As mentioned earlier, each sensor’s readings are 
subject to angular errors as well as distance errors.

Consider a sonar with 38° beam angle.

When object is detected at, say 20 , it can actually When object is detected at, say 20cm, it can actually 
be anywhere within the beam arc defined by the 
20cm radius:

A 20 range reading can occur

20cm

A 20cm range reading can occur 
whenever an object is anywhere 
along the beam arc at 20cm.

cm
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Error Distribution
The likelihood (or probability) that the 
object is centered across the arc is greater 
than if the object was off to the side of the arc.

We can thus express the sensor reading itself as a set We can thus express the sensor reading itself as a set 
of probabilities across the grid.

As a result  we end up with a probability distribution As a result, we end up with a probability distribution 
representing the likelihood that the object is centered 
at the detected angle.

Assume that the location (along the arc) of the 
obstacle is a random variable.
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Probability Density Functions
Random variables operating in continuous spaces are 
called continuous random variables.

Assume that all continuous random variables posses a 
Probability Density Function (PDF).

E.g., Probability 
Density 
Function

Probability 
distribution
of a car 
b i

Function
for this 
distribution.

(Also known as 
th P b bilitbeing a 

certain age.
the Probability 
Distribution 
Function).
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Probability Density Functions
Common PDF is the 1-D normal distribution:

– given mean μ and variance σ 2 the normal distribution isg

p(x) = (2πσ2)-½ exp{ -½ (x-μ)2 / σ2 }   = e -(x - μ)2 / 2σ2

σ√(2π)

y
p(x)

The mean = μ

σ is the standard 
deviation

Concave down p( ) deviation

Concave up

xμ μ+σμ-σ
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Gaussian Distribution
A more realistic sensor model assigns probabilities to 
the cells according to some error distribution such as 
this Gaussian (or Normal) distribution.this Gaussian (or Normal) distribution.

We can apply this 
di ib idistribution across our arc 
to assign probabilities that 
the cell is occupied:

(x,y)
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Gaussian Distribution
How do we implement this on our grid ?

Often the probabilities are approximated using what p pp g
is known as the six-sigma rule. Which essentially 
divides the probabilities into 6 probability regions.

+σ +2σ +3σ-3σ -2σ -σ

Total probabilities 

x0 3413 0 3413 0 1359 0 02140 13590 0214

add to 0.9972 ≈ 1.0
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Applying Gaussian Distribution
Hence, we can divide our arc into 6 “pieces” and 
apply the specific probabilities to the cells in each 
range.range.

Cells get probability p
according to how much 
they lie in each rangey g

Hence, we need to 
convert our grid into 
probabilities instead of using an integer counter.

(x,y)
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Applying Gaussian Distribution
Here are the results of applying the 
Gaussian distribution across the 

Angular 
distribution 
for single 
reading.

angular component of the data:
Distribution 
is more

0.0214 0.1359 0.3413 0.3413 0.1359 0.02140.0214 0.1359 0.3413 0.3413 0.1359 0.0214

is more 
noticeable 
here.Probabilities for 

each region.

Some regions

Without Gaussian Distribution on Angle With Gaussian Distribution on Angle

Some regions 
are very 
faint…
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Applying Gaussian Distribution
The data is still somewhat “band-like”.

Should also apply Gaussian distribution across the pp y G
distance component.

Allows for uncertainty in the Allows for uncertainty in the 
distance as well.

(x,y)
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Applying Gaussian Distribution
Here are the results of applying the 
Gaussian distribution across the 

Distance 
distribution 
for single 
reading.

distance component of the data:
Notice the 
blurring &

0.0214 0.1359 0.3413 0.3413 0.1359 0.0214

blurring & 
thinning effect

Probabilities for 
each region.

Without Gaussian Distribution on Distance With Gaussian Distribution on Distance
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Applying Gaussian Distribution
We will apply the probability distribution over both
angular and distance components

this is k ow  as a multivariate distributio– this is known as a multivariate distribution
– a distribution of the probabilities over 2 dimensions.

Must compute 
cell probabilities p
accordingly.

(x y)(x y)
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Applying Gaussian Distribution
Consider occupancy grid cells 
covered by single reading

Combined 
angular & 
distance 
distribution 
for single

– 18,519 cells are affected by a single
sonar sensor reading, in this particular example
ll ll  li  i   f th   b l  ( hi h ll dd t  1 0) 

for single 
reading.

– all cells lie in one of the ranges below (which all add to 1.0) 
corresponding to a particular Gaussian
probability value:

0.0004579600

0.0029082602

0.0073038205

0.0029082602

0.0184688115

0.0463826733

0.0073038205

0.0463826733

0.1164856972

0.0073038205

0.0463826733

0.1164856972

0.0029082602

0.0184688115

0.0463826733

0.0004579600

0.0029082602

0.0073038205

0.0073038205

0.0029082602

0.0004579600

0.0463826733

0.0184688115

0.0029082602

0.1164856972

0.0463826733

0.0073038205

0.1164856972

0.0463826733

0.0073038205

0.0463826733

0.0184688115

0.0029082602

0.0073038205

0.0029082602

0.0004579600
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Applying Gaussian Distribution
Here are the results of applying the Gaussian 
distribution across the distance component of the 
data:data:

With 
Gaussian 
distribution 
on angle

With 
Gaussian 
distribution 
on distance

With Gaussian distribution on both
angle and distance

on distance
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Applying Gaussian Distribution
In fact, we can increase resolution in our data if we 
sub-divide the 6-sigma areas.

Can obtain areas of normal distribution curve from a 
statistics table:

+σ +2σ +3σ-3σ -2σ -σ

0.3413 0.3413 0.1359 0.02140.13590.0214
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0.4987
0.4981
0.4974
0.4965
0.4953
0.4938
0.4918
0.4893
0.4861
0.4821
0.4772
0.4713
0.4641
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0.4332
0.4192
0.4032
0.3849
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0.3413
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0.1554
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Applying Gaussian Distribution
Can then subdivide into probability regions.

With original 6-sigma, we had 6 probability regions.g g , p y g

With this area data, we can have 60 regions:

+σ +2σ +3σ-3σ -2σ -σ

Of course, we can group these probabilities in 
bi ti f 1 2 3 5 t bt i l ti 10combinations of 1, 2, 3, 5 to obtain resolutions 10x, 

5x, 3x, and 2x than normal.

0.
00

06
0.

00
07

0.
00

09
0.

00
12

0.
00

15
0.

00
20

0.
00

25
0.

00
32

0.
00

40
0.

00
49

0.
00

59
0.

00
72

0.
00

87
0.

01
02

0.
01

20
0.

01
40

0.
01

60
0.

01
83

0.
02

06
0.

02
30

0.
02

54
0.

02
78

0.
03

01
0.

03
23

0.
03

42
0.

03
61

0.
03

75
0.

03
86

0.
03

95
0.

03
98

0.0006
0.0007
0.0009
0.0012
0.0015
0.0020
0.0025
0.0032
0.0040
0.0049
0.0059
0.0072
0.0087
0.0102
0.0120
0.0140
0.0160
0.0183
0.0206
0.0230
0.0254
0.0278
0.0301
0.0323
0.0342
0.0361
0.0375
0.0386
0.0395
0.0398
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Applying Gaussian Distribution
Here are some of the various resolutions:

1x resolution 2x resolution 3x resolution

5x resolution 10x resolution

10x resolution/
range readings
overlayed
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Applying Gaussian Distribution
Pseudo code for processing data using 2x resolution:

aRes = 19 
dE 0 10

angular resolution = ± 19°distance 
error

dError = 0.10
SIGMA_PROBS = { 0.0049, 0.0166, 0.044, 0.0919, 0.1498, 0.1915, 0.1915, 0.1498, 0.0919, 0.044, 0.0166, 0.0049 }

FOR (each range reading d at pose p) DO {
tempGrid = new grid

FOR r = -d*dError TO d*dError BY 0 5 DO {

Probabilities for the 12 
sigma sub-regions

± 10%

Same size as occupancy grid

FOR r  d dError TO d dError BY 0.5 DO {
distProb = SIGMA_PROBS [(r + d*dError) / (d*dError) / 2 * 100 / 8.34f]

sX = (int)(p.x + COS(p.angle - aRes) * (d+r))
sY = (int)(p.y + SIN(p.angle - aRes) * (d+r))
dX = (int)(p.x + COS(p.angle + aRes) * (d+r))
dY = (int)(p.y + SIN(p.angle + aRes) * (d+r))

8.34 = 100/12 
for 2x resolution 
of 6-sigma regions

Compute number
of samples to take 
along the arc

angularInterval = aRes / FLOOR(SQRT((sX-dX)*(sX-dX) + (sY-dY)*(sY-dY)))

FOR a = -aRes TO aRes BY angularInterval DO {
objX = p.x + COS(p.angle + a) * (d+r)
objY = p.y + SIN(p.angle + a) * (d+r)
angProb = SIGMA PROBS [(a + aRes) / (2*aRes) * 100 / 8 34f]

This can be 
done in 
many ways.   
One way is 
to simply 
add the new 

b bilit angProb = SIGMA_PROBS [(a + aRes) / (2 aRes)  100 / 8.34f]
tempGrid.setCell (objX,objY, angProb*distProb)

}
}
merge tempGrid to fullGrid

}

probability 
values and 
then 
normalize 
everything 
later.
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Converting to Probabilities
Until now, we have stored the likelihood of 
occupancy for each cell as a combined sum of the 
individual probabilities for each sensor reading.individual probabilities for each sensor reading.

The result is not really a probability of the cell being 
occupied  it is biased towards positive occupancy occupied, it is biased towards positive occupancy 
readings.

This d s t ll  s t  disti ish lls This does not allow us to distinguish cells 
that we know nothing about from cells 

 k  th t  lik l  t i dwe know that are likely not occupied.
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Converting to Probabilities
Given probabilities from 0.0 to 1.0, we can divide 
into three “groups” for occupancy:
> 0 5  cell is occupied> 0.5 → cell is occupied
= 0.5 → don’t know if cell is occupied or empty
< 0.5 → cell is empty0 5 cell is empty

Adjust occupancy grid to maintain a probability for 
each cell, always in the range from 0 to 1.each cell, always in the range from 0 to 1.

– Assume occupancy for each cell is initially unknown (i.e., have 
equal probability of being occupied or empty).eq al pro a ility of ei g occ pie or e pty)

– Change tempGrid.setCell(objX,objY, angProb*distProb) to 
tempGrid.setCell(objX,objY, angProb*distProb / 2.0 + 0.5)
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Converting to Probabilities
As a result, the “white” areas become “medium 
gray”, indicating uncertainty:

Unknown occupancy 
(i e probability of 0 5)(i.e., probability of 0.5) 
appears as medium gray.

Before Normalized Probabilities With Normalized Probabilities
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Converting to Probabilities
Be aware!  The higher resolution sensor models 
attribute lower probabilities to each cell, so each 
reading has less of an influence on the occupancy:reading has less of an influence on the occupancy:

M st w c side  h w t  c bi e p babilities f  

1x resolution 2x resolution 5x resolution

Must now consider how to combine probabilities from 
multiple sensor readings…
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Bayesian Updating
Can update cell values in various ways:
– Bayesian

h f– Dempster - Shafer
– HIMM (Histogrammic in Motion Mapping)

Most common used is Bayesian. 

– Essentially, it explains how we should change our existing y p g g
beliefs in the light of new evidence.

– e.g., when measuring the location of an obstacle, we take 
lti l  di  d d t  th  b bilit  f  b t l  multiple readings and update the probability of an obstacle 

being at a certain location by updating our belief after each 
sensor reading.
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Bayesian Updating probability value obtained 
during sensor reading R at 

Bayes Rule is as follows
(assuming p(R) > 0):

|
prior probability distribution 
at location L before reading

grid location L.

p(L|R) = p(R)

p(R|L) p(L)posterior probability 
distribution at location 
L given that sensor 
measurement R was 

at location L before reading 
R is incorporated (i.e., value 
at grid cell L before 
applying sensor reading.

– Here, p(R) = p(R|L)p(L) + p(R|L)p(L)

just obtained. p(R) is the probability that 
sensor reading R has 
occurred.

Here, p(R)  p(R|L)p(L) + p(R|L)p(L)
= p(R|L)p(L) + (1 - p(R|L))(1 - p(L))

In our case  p(R|L) = 1 p(R|L) since: In our case, p(R|L) = 1 – p(R|L) since: 
– we only update cells affected by sensor reading
– the Gaussian probabilities add to 0.9972 ≈ 1

Given that this cell is empty, 
the prob of sensor reading R is 
total of remaining probs in 
Gaussian distribution.
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Bayesian Updating
Can be re-stated in terms of each cell in the 
occupancy grid:

beliefCellOccupied =
likelihoodCellOccupiedBasedOnReading * priorBeliefCellOccupied

likelihoodThatReadingOccurredlikelihoodThatReadingOccurred

Can be shortened to:
|p(occupied|reading) =

p(reading|occupied) p(occupied)
p(reading|occupied) p(occupied) + p(reading|empty) p(empty)p(reading|occupied) p(occupied) + p(reading|empty) p(empty)
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Bayesian Updating
How does this translate to code ?
– It all takes place during the merging of the temporary and 

full grids from a single sensor reading:full grids from a single sensor reading:

FOR x = 0 TO WIDTH-1 DO { Only merge cells that 

FOR y = 0 TO HEIGHT-1 DO {

IF (tempGrid(x,y) ≠ 0.5) THEN {

fullGrid(x,y) = (tempGrid(x,y) * fullGrid(x,y)) / 

have been affected by 
this sensor reading.

( ,y) ( p ( ,y) ( ,y)) /

(tempGrid(x,y) * fullGrid(x,y) + 

(1 - tempGrid(x,y))*(1 - fullGrid(x,y)))

}}

}

}
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Bayesian Updating
For example: 
– assume initially unknown grid (all probabilities are 0.5)

di b i d i h G i di ib i– sensor reading obtained with Gaussian distribution

Original Gaussian probability = 
0.1164856972 but when it is 
converted to 0.5-1.0 range it 
becomes: 0.5582428486

p(occupied|reading) = (0.5582428486 * 0.5) = 0.5582428486

((0. 5582428486 * 0.5) + (0.4417571514 * (1 - 0.5)))
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Improving the Sensor Model
Recall that the sensor model applied a Gaussian 
distribution across the angle and distance.

Our model should also consider that a particular 
range reading, r, implies that no obstacles are 
detected within beam pattern at distance < rdetected within beam pattern at distance < r.

Must reduce certainty for Gaussian distribution 
indicating high likelihood 
of obstacle.

cells within beam pattern
with distance < r: 

Likely no obstacle in 
these ranges

Our scale goes from 0 to 1, not 
-1 to 1 as shown here.
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Improving the Sensor Model
Now we can apply our improved sensor model in 
which cells within the beam have a high probability 
of being unoccupied for ranges preceding the sensor of being unoccupied for ranges preceding the sensor 
range reading:

There is a strong 
“negative” chance that 
there is NO obstacle in 
this area.

Stronger likelihood of no 
obstacle being present 
as distance to the 
source point decreases

(x,y)

source point decreases.
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Improving the Sensor Model
We can modify the algorithm to “negate” the 
probabilities in these areas.

Simply make the cha ges i  purple below to the algorithm – Simply make the changes in purple below to the algorithm 
(assuming probabilities are all added together)

…
FOR (each range reading d at pose p) DO { dError is the distance 

hi h i 0 1
( g g p p) {

…
FOR r = -d TO d*dError BY 0.5 DO {

IF (r < -d*dError)
distProb = -1.0;

ELSE
di P b SIGMA PROBS [( d*dE ) / (d*dE ) / 2 * 100 / 8 34f]

error which is 0.1
(i.e., ± 10%)

distProb = SIGMA_PROBS [(r + d*dError) / (d*dError) / 2 * 100 / 8.34f]

…

FOR a = -aRes TO aRes BY angularInterval DO {
…
tempGrid.setCell (objX,objY, angProb*distProb / 2.0 + 0.5)

}
}
merge tempGrid to fullGrid using Bayesian strategy

}
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Improving the Sensor Model
Here is the result from a single sensor reading by 
using a various models pertaining to emptiness:

N ti G i ff t b C ll t d k li lNotice Gaussian effect across beam. Cells get darker linearly as 
they approach the range 
reading area.

Constant 
region.

Linear 
region.

Lighter 
i di t

Constant Linear

indicates 
higher 
likelihood of 
cell being 
empty.

Combined
IF (r < -d*dError)

distProb = -1.0
IF (r < -d*dError)

distProb = r / d
IF (r < -d*2*dError)

distProb = -1
ELSE IF (r < -d*dError)

distProb = (r+d*dError) / (d*dError)
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Improving the Sensor Model
Here are the comparisons of these models after 
multiple sensor readings:

Constant Linear Combined

The combined model allows for higher certainty 
regarding emptiness, and does so smoothly. 
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Improving the Sensor Model
This sensor model improvement helps in identifying 
invalid and/or unlikely readings:

Some sensor 
readings have 
been 
discarded, 
resulting in 
b tt

Actual wall 
boundaries.

Some sensor 
readings have 
been discarded, 
resulting in 
better map 
better map 
accuracy.
better map 
accuracy.

accuracy.

These readings were not 
identified as invalid.   Additional 
readings from other locations 
would eliminate these.
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Improving the Sensor Model
We can similarly obtain the map corresponding to 
our IR sensor readings:
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Learning the Sensor Model
It is also possible to allow the sensor model to be 
– Dynamically computed:

Analytical 
(ideal) sensor 
model.

Learned

– Dynamically chosen:

Learned 
sensor 
model.

y y

M d l

Model 
for close 
readingsModel 

for far 
readings

g
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Odds Representation
Another popular way of maintaining the occupancy 
status for each cell is to store odds as opposed to 
probabilities.probabilities.
odds(occupied|afterReading) =

p(reading|occupied)
X dd ( i d|b f R di )

p( g| p )
p(reading|notOccupied)

… in terms of coding for each cell [x][y] given 

X odds(occupied|beforeReading)

… in terms of coding for each cell [x][y] given 
Gaussian range probability r:

odds[x][y] = r / (1- r) * odds[x][y] 

Advantage!!
Less calculations per cell….faster.

odds[x][y] = r / (1 r)  odds[x][y] 

Odds representation ranges from 0 to ∞ instead of 
from 0 to 1
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Odds Representation
As a result, our display strategy must be 
different…find maximum cell value first and 
distribute grey-scale values accordingly.distribute grey scale values accordingly.

Probability Representation Odds Representation
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Display Options
Of course, we can also manipulate thresholds and 
colors in various ways when displaying the map:

G l 2 C l 3 C lGray-scale 2-Color merge 3-Color merge

Normal
Color-Depth

ReducedReduced
Color-Depth
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Sensor Fusion
Until now, we have only examined sensor fusion in 
regards to combining readings from a single sensor.

If there are multiple sensors of the same 
type, it is easiest to combine them as if 
they were multiple readings from the 
same sensor.

For different types of sensors, we may wish to 
incorporate a confidence level with each sensor.p f l v l
– some sensors are more accurate or reliable than others.
– we may wish to give higher confidence to these
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Sensor Fusion
Sensor fusion is often done by 
– maintaining separate maps for different 

i d h bi isensors over time and then combining
the maps afterwards

Let r1, r2, …, rn be n sensor readings from one sensor and 
s1, s2, …, sm be m sensor readings from a different sensor

Th  b bilit  th t ll i  i d ft  th  di   b  The probability that cell o is occupied after the readings can be 
stated as: 

p(o|r1,r2,…rn, s1,s2,…sm) = 
| |p(o|r1,r2,…rn) w(r) + p(o|s1,s2,…sm) w(s)

where w(r) and w(s) are the confidence weights of the sensors such that w(r)
+ w(s) = 1
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Sensor Fusion
We can choose w(r) and w(s) according 
to the trustworthiness of the sensors.
E.g., we can choose weights according to:
– Angular Resolution:  

- sonar with ±19° angular resolution may be roughly 1/6 as 
accurate as an IR with ±3° resolution.  Thus, we might assign 
weights w(r) = 0.14 to the sonar and w(s) = 0.86 to the IR.

– Distance Resolution:  
- sonar with ±10° distance resolution may be roughly 1/2 as 

accurate as an IR with ±5° resolution   Thus  we might assign accurate as an IR with ±5 resolution.  Thus, we might assign 
weights w(r) = 0.34 to the sonar and w(s) = 0.66 to the IR.

– Equal:
  i  ( )  ( )  
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Sensor Fusion
Here are some fusion results:

Sonar = 0.5 & IR = 0.5No weights, single map used

Sonar = 0.34 & IR = 0.66 Sonar = 0.14 & IR = 0.86
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Sensor Fusion
Classifying (or categorizing) the data, we can see that 
some IR readings may be inhibited due to the false 
sonar readings (or vice versa):sonar readings (or vice versa):

Too many “unoccupied” 
readings from sonar 
negates the “occupied” 
IR readings.

High weight of 
“unoccupied” IR p
readings negates 
the “occupied” 
sonar readings.
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Other Updating Strategies
The Dempster-Shafer method of updating cells 
– generalization of Bayesian strategy

id i il f h i– provides similar performance to the Bayesian strategy
– maintains p(occupied) + p(empty) + p(unknown) = 1.0
– can distinguish conflicting evidence from lack of evidence– can distinguish conflicting evidence from lack of evidence

We will not look any more into this. 

HIMM (Histogram In-Motion Mapping) method for 
updating cells:
– faster than other two, but less accurate
– meant for fast moving robot, performance can be poor when 

slow movements made
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Other Updating Strategies
HIMM updating rule:                                             
– if element is empty decrement its occupancy by 1                    

if l i i d i i b– if element is occupied increment its occupancy by 3

Believes that a region is occupied more than it 
b li  h  i  i  believes that it is empty

Same idea as countingg

Only updates along sonar axis
beam (i e  sonar is thin beam)beam (i.e., sonar is thin beam).
– Will leave gaps since narrow 

beam reduces reading overlaps
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b lExtracting Obstacle 
Features From Raw DataFeatures From Raw Data



Line Extraction
An alternative to using an occupancy grid:
– extract the range readings as single points

– combine/merge 
them to form a
piecewise linear
approximation
(i e  line segments)(i.e., line segments)
that represent the 
obstacle 
boundaries.
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Line Extraction
Advantages:

+ less processing powerp g p
+ quicker
+ gives model of obstacles

Disadvantages:

- data must come in sequence
- difficulty detecting and removing noise

t t  i lid di   lid- treats invalid readings as valid
- shapes are subjective to accuracy parameter

which is difficult to choose.
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Line Extraction
Key issues:
– How do we group range readings into line segments ?

H d d li i i di ?– How can we detect and eliminate noisy readings ?

There are a variety of common techniques:
– Split & Merge
– Incremental

i i

Simplest and most popular.

– Line Regression
– RANSAC (Random Sample Consensus)
– Hough-Transform– Hough-Transform
– EM (Expectation-Maximization)
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Split & Merge
Consider a set of range points:
– P = {p1, p2, p3, …, pn}   where pi =(xi, yi), 1 ≤ i ≤ n

– Let pm be point of maximum distance from line L= p1pn

– If distance from pm to L > ε, split into two subsets:pm , p

P′ = {p1, p2, p3, …, pm} P′′ = {pm, pm+1, pm+2, …, pn}

Distance from pm to L is:

|(xn-x1)(y1-ym)-(x1-xm)(yn-y1)|

√ (x -x )2 + (y -y )2

pm

√ (xn-x1) + (yn-y1)

p1

pn ε

Adjustable parameter, 
greatly affects result

L
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Split & Merge
Do this recursively until no more splits can be made

pm pmpm pm

p1

pn

p1

pnε

Larger values of ε will stop the 
recursion sooner.

p1

pn

p1

pn
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Split & Merge
Here are some results of the split phase on our sonar 
data for various thresholds:

ε ≈ 1 cm ε ≈ 3 cm ε ≈ 16 cm
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Split & Merge
Here are some results of the split phase on our IR 
data for various thresholds:

ε ≈ 1 cm ε ≈ 3 cm ε ≈ 16 cm
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Split & Merge
Consider a single line segment 
pipk (i< k)

pi

obtained from our split phase.

We would like to find a line that 
pk

We would like to find a line that 
“best-fits” the data so as to not
be biased towards the segment 

pi

be biased towards the segment 
endpoints that were chosen 
during split phase

pk

during split phase.

Can do this by “least squares method”
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Split & Merge
Let P = {pj, pj+1, pj+2, …, pk}  where pi =(xi, yi), j ≤ i ≤ 
k be the set of points corresponding to a line 
segment chosen during the split phase. segment chosen during the split phase. 

Let g(x) = mx + b be a generic line equation

Define the Mean Squared Error function in 
approximating the data as: pi

MSE = ∑ (yi - g(xi))2

∑ ( ( b))2
i=j

k1
k-j+1

k1 p

pi

This is 
yi – g(xi)

(xi,yi)

= ∑ (yi - (mxi+b))2

The “best-fit” line will minimize MSE.
i=j

1
k-j+1

pk
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Split & Merge
After some joyful math work, we can obtain:

m = (∑ xi )*(∑ yi) – (k-j+1)*(∑ xiyi) 
k k k

y j y

(∑ xi)2 – (k-j+1)*(∑ xi
2 )

i=j i=j i=j

i=j

k

i=j

k

b = (∑ xi )*(∑ xiyi ) – (∑ xi
2)*(∑ yi)

i=j

k

i=j

k

i=j

k

i=j

k

(∑ xi)2 – (k-j+1)*(∑ xi
2)

If we do this for each line segment  we end up with a 
i=j

k

i=j

k

If we do this for each line segment, we end up with a 
set of intersecting lines
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Split & Merge
These line more closely fit the data.

Next, determine intersections of adjacent lines., j

To display a line, we need two 
coordinates.  E.g., choose x=0 
and x=∞ then computeand x=∞, then compute 
y=mx+b using computed 
values of m and b.

Blue lines are 
original lines 
before best-
fitting.

Green lines represent 
“best-fit” lines to data.
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Split & Merge
Take two consecutive lines with equations:

y = m1 x + b1

by = m2 x + b2

These intersect (provided that non-parallel) when:
m1 x + b1 = m2 x + b2 i.e., when  x = (b2 – b1) / (m1 – m2)

So we do this for set of lines L = {L1, L2, L3, …, Ln}:1 2 3 n

FOR i = 2 to N-1 DO {

sxi = (bi - bi-1) / (mi-1 - mi)

sy = m *sx + b Here L (sx sy ) (ex ey )syi = mi sxi + bi
exi = (bi+1 - bi)/(mi - mi+1)

eyi = mi*exi + bi
}

Here Li = (sxi,syi) → (exi,eyi)
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Split & Merge
This will cover all adjacent lines except for the first 
and last lines:

No Intersection 
computed since 
first and last 
lines.

Computed
Intersection
point.
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Split & Merge
We can allow a wraparound by assuming that the 
first and last segments are adjacent: 

W dWraparound 
allows merge of 
first and last 
lines.

Notice that green lines are a 
better fit to the actual data.
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Split & Merge
The wraparound may provide invalid line segments.

It may be best to ignore first and last lines. y g

Not really an 
obstacle edge.
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Split & Merge
Should also merge adjacent segments if: 

– they are nearly collineary y

– angle between them is small

– they have very close endpoints

Difficult to choose parameters in terms of when to 
split and when to merge:   

ll  h  i t ll  – usually chosen experimentally 
– will not perform the best in all cases
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Incremental
The incremental algorithm for determining the lines 
is VERY similar and somewhat easier.
1 Start with a set S containing p1. Start with a set S containing p1

2. Add the next point pi to S
3. Compute the best-fit line L for all points in S

( h  0 d  t  t t  di t )

ε

(choose x=0 and x=∞ to get two coordinates)

4. Determine the MSE for the points in S
(use the best-fit line for comparison)

5 IF (MSE > ε) 

p1

5. IF (MSE > ε) 
re-compute L with all points in S except pi

add L to the result and reset S to contain only pi-1 and pi

IF i  i  f i t t THEN it6. IF i = size of point set THEN quit
7. Set i = i+1 and go back to 2
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Incremental
Here is how the algorithm works for a simple 
example: 

MSE exceeds  
ε threshold

p4

p5
>εBest Fit line

ε threshold

p1

p2

p1

p3

p1 p1
White points
are in S

Now result

p5
p7

>εp6

p

p6
p7

Line added to 
result.  Now 
start again with

Now result 
contains a 
second line.

p4 p4
p4

start again with 
S containing p4
and p5 only.
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Incremental
Here are some results of the incremental algorithm 
on our sonar data for various thresholds:

ε ≈ 1.5 cm ε ≈ 3 cm ε ≈ 9 cm

9-102
Winter 2012Chapter 9 – Sensor Models and Mapping



Incremental
Here are some results of the incremental algorithm 
on our IR data for various thresholds:

ε ≈ 3 cm ε ≈ 9 cm ε ≈ 18 cm
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Other Schemes
As mentioned, there are other techniques to compute 
these line segments.

Both Incremental and Split&Merge are the most 
popular due to their simplicity and speed.

Note that it is always necessary to determine the 
thresholds by examining data.

Also, the technique only works when 
the data is ordered.   the data is ordered.   
– If data is given unordered, it must somehow be sorted first.
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Extracting Obstacles 
fFeatures from Occupancy 
GridsGrids



Extracting Features
We just discussed how to extract features from raw 
sonar data.

– this did not take into account errors in the data since it did 
not use any sensor models.

– assumed that data was ordered along obstacle boundariesassumed that data was ordered along obstacle boundaries

Using a certainty grid in place of raw data, we can 
take into account errors in the data:take into account errors in the data:
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Thresholding
Can apply image analysis techniques to extract 
important details.

Robot must ultimately assume occupancy or not:
– we must first obtain a binary grid by applying a threshold:

> 0.51 → 1
≤ 0.51 →0

> 0.55 → 1
≤ 0.55 →0

> 0.60 → 1
≤ 0.60 →0
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Border Detection
We can then do a border detection on the resulting 
binary data as follows:

search the data from top left cor er  sca i g rows of pixels – search the data from top left corner, scanning rows of pixels 
until the first black pixel is found at location (xs,ys)

(xs,ys)(0 0)(0,0)

123

– define directions as follows around a pixel: 04

5 6 7
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Border Detection
123

Start with a direction d = 7 for pixel (xs,ys)

Trace out border of obstacle by doing a 

04

5 6 7y g
traversal from the current point (xc,yc) = (xs,ys):

1 L t th  t iti  t  b  i d b  d′ h  1. Let the next position to be examined be d′ where 
d′ = (d+7) mod 8 if d is even, otherwise d′ = (d+6) mod 8 

2 St ti  t iti  d′  h k i l  d ( ) i  2. Starting at position d′, check pixels around (xc,yc) in 
counter-clockwise order (i.e., keep incrementing d′) 
until a black pixel is found.  Here are some scenarios:

found in
iti 5

found in
iti 6

found in
iti 7

found in
iti 0

d′ = 5
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Border Detection
3. If there is no black pixel found, then (xc,yc) 

must be a single pixel in the image.
(It should probably be ignored ) None found(It should probably be ignored.)

4. Set (xc,yc) = (xc + xoff, yc + yoff)
(-1,1) (0,1) (1,1)

(1,0)(-1,0)

(xoff,yoff) depends on 
d′ as shown here.

5. Add point (xc,yc) to set of border points

6. If (xc,yc) == (xs,ys) then we are done

(1,-1)(0,-1)(-1,-1)

Next (xs,ys)

Border just

otherwise set d=d′ and go back to step 1. 

Repeat by scanning for another (xs,ys)

Border just 
traced

p y g (xs,ys)
– must be black and not already a border
– must have a white pixel on its left
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Border Detection
Here are the results of doing border detection on our 
thresholded sonar data:

0.51 threshold
5 borders detected

0.55 threshold
14 borders detected

0.60 threshold
22 borders detected

Notice that the number of borders (or obstacles) 
detected includes small (insignificant ones as well).
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Border Detection
Of course, the data must be significantly connected 
in order for the border detection to provide useful 
information.  information.  

Here is the border detection result on the IR data:

58 b d d t t d58 borders detected.
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Fitting Lines
Now we can take the set of border pixels from each 
border we found (i.e., a border was formed each time 
we found a new (xs,ys)):we found a new (xs,ys)):

Then apply either the Split&Merge or IncrementalThen apply either the Split&Merge or Incremental
segmentation algorithm:
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Fitting Lines
Results:
– sonar data

– incremental
algorithm

– 0.51
threshold

ε ≈ 0.3 cm ε ≈ 1 cm

ε ≈ 3 cm ε ≈ 5 cm
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Fitting Lines
Results:
– sonar data

– incremental
algorithm

– 0.60
threshold

ε ≈ 0.3 cm ε ≈ 1 cm

ε ≈ 3 cm ε ≈ 5 cm
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Fitting Lines
More results:
– IR data

i t l l ith

– fused sonar and IR data
i c e e tal al ith– incremental algorithm

– 0.51 threshold
– incremental algorithm
– 0.51 threshold
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Summary
You should now know how to: 

– obtain raster (grid) & vector maps of raw sensor datag p

– use sensor models to account for errors in readings

ti t  lik lih d f b t l  l ti– estimate likelihood of obstacle locations

– perform simple sensor fusion from multiple sensors

– convert maps from raster to vector
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