

COMP1406/1006 - Design and Implementation of
Computer Applications Winter 2006

 10 Animation

What's in This Set of Notes ?
Besides stationary graphics, we may also need to display graphics that change over time.
Sometimes the graphics must change on regular intervals (such as with a timer). We therefore
must learn a little about animation. We will look here at some very basic 2D animation
concepts and what is involved with implementing some simple "motion" aspects of graphics
programming.

Here are the individual topics found in this set of notes (click on one to go there):

• 10.1 Animation Concepts
• 10.2 Simple Animation and Threads
• 10.3 Kinetic Animation

 10.1 Animation Concepts

Simply put, computer animation is the term used when successive
images are displayed consecutively to cause the appearance of
"motion" in the image. Unfortunately for us computer science
guys n' gals, all of the hard work in animation is in the drawing of
the images, not displaying. So:

• BAD NEWS: computer animation is intended for the
artistically inclined.

Nevertheless, a person that is "lame" at drawing can still do
animation.

Computer animation has become quite popular. Almost all
computer animation that we see these days deals with 3D objects.
The objects are modeled in the computer and then manipulated as
wireframes using many techniques and various physics models.
The movements can be quite complex and much of this requires a

knowledg
3D. Afte
shading a
fully rend
machine.
video can

We will n
animate 2
screen.

ge of 3D tran
er the movem
and texture m
dered frame
. To make a
n take many

not deal with
2D images (

nsformation
ment is comp
mapping is a
it can take m

a 5 minute hi
hours to ren

h 3D animat
a.k.a. sprites

ns (i.e., transl
pleted, then
all applied. T
many minute
igh quality c
nder with a s

tion at all her
s) and move

lations and r
coloring, lig
To complete
es depending
computer ani
single machi

re. We will
 them aroun

rotations) in
ghting,
e a single
g on the
imated
ne.

simply
nd on the

The simp
type of fi
allow use
animation
under use

plest form of
ile with "bra
er interaction
n is very bas
er control.

f 2D animati
ain.gif". Unf
n. That is, w
sic. We will

ion in JAVA
fortunately, a
we cannot co
l therefore co

A is the use o
animated gif

ontrol the seq
onsider mak

of animated g
fs are "stuck
quence of im
king our own

Fram

The first
are called
"moveme
these fram

For exam
this with

Frame

It is not t
is that the
We can m
more pic
produce a

mes:

step in anim
d frames. T
ents" of the o
mes in seque

mple, conside
only two fra

1

Frame

too nice sinc
ere is no smo
make a big im
ture and dup
a 4 frame se

mation is to d
hese frames
object to be
ence, we ach

er a stick per
ames and jus

e 2 The A

ce it is a little
ooth transiti
mprovement
plicating the
equence:

draw a set of
represent th
animated. B

hieve animat

rson walking
st swap betw

Animation

e "jumpy". T
on between
t just by intr
2nd frame t

f pictures tha
he different
By displayin
tion!!

g. We can d
ween them:

The problem
the frames.
roducing one
twice to

at

ng

do

m

e

gif files. We
k" in endless
mages and he
n animated se

e have seen t
loops that d

ence the
equences tha

this
do not

at are

Frame
1

Notice th
have intr
second to
inter-fram

This chan
varying f

5/20 sec.

There isn

 10.2 S

Our first
display c
place an
button is
displayed
the layou
images, w
use, show

Frame
0

e

Frame
2

hat it looks m
roduced a 1/4
o complete a
me delay to

nge in time b
frame rates:

4/20 sec

n't too much

Simple A

example is t
consecutive i
ImageIcon
pressed, we

d by just sho
ut. As long a
we are fine.
wn in order f

e Frame
1

Frame
3

much smooth
4 second del
a cycle while
1/8 of a seco

between fram

c.

3/20 s

more to say

Animati

to use the C
images one a
on each of 4

e will cause c
owing the ne
as the picture
Here are the

from 0 to 3:

Frame
2

Frame
4

her. But hey
lay between
e in the 4-fra
ond and we w

me displayin

ec.

2/20

The
Animatio
n

y, it seems sl
frames. In

ame case, it t
will be fine.

y about anim

ion and

ardLayout
after another
4 buttons and
consecutive
xt card (i.e.,
es represent
e images tha

Frame
3

ng is known

sec. 1/20

mation right n

Thread

manager to
r. We will
d when the
images to be
, button) in
consecutive

at we will

Frame
0
again

lower! This
the 2-frame

takes a full s

is because in
situation it t

second. We

n both cases
takes 1/2 of
can reduce t

s we
a
the

as the framee rate. Heree are some

0 sec.

now.

ds

e

e

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class CardLayoutAnimation extends JFrame implements ActionListener {
 private CardLayout cardLayoutManager;

 public CardLayoutAnimation (String title) {
 super(title);
 cardLayoutManager = new CardLayout(0,0);
 setLayout(cardLayoutManager);

 // Add the 8 buttons, each with a different picture as the icon
 for (int i=0; i<4; i++) {
 JButton aButton = new JButton(new ImageIcon("Stick" + i +
".gif"));
 add(String.valueOf(i), aButton);
 aButton.addActionListener(this);
 }
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(80, 120);
 }

 // Cause a 1/10 second delay when called
 private void delay() {
 try {
 Thread.sleep(100);
 }
 catch (InterruptedException e){ /* do nothing */ }
 }

 // Implements the listener behavior, e.g. go to next button in the stack
 public void actionPerformed(ActionEvent theEvent) {
 for (int i=0; i<4; i++) {
 cardLayoutManager.next(getContentPane());
 // Now redraw the window by updating its appearance
 update(getGraphics()); // a standard JComponent method
 delay();
 }
 }

 // Create main method to execute the application
 public static void main(String args[]) {
 new CardLayoutAnimation("CardLayout Animation").setVisible(true);
 }
}

Notice the use of Thread.sleep(100) to provide a 1/10th second delay between image flips. Also
notice the use of update(getGraphics()) to ensure that the frame is updated after every image
change. This is a standard method available for all JComponents and it usually simply repaints
the component immediately. Why do we need to do this redraw update for each image ?
Remember, while executing code within an event handler, no other events can be handled,
including events responsible for redrawing components. So we have to explicitly call this
update method in order to see screen changes while we are still in our event handling code.

What happens if we increase the delay between images ? If the delay is too long, no events are
handled and so the interface seems to lock up. Let us add another button that prints out a
message when pressed.

We will increase the delay of the drawing so that this button becomes unresponsive while the
animation is taking place. A similar kind of delay may occur when we need to do a lot of
animating, or perhaps when the animation steps themselves require a lot of computation.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class CardLayoutAnimation2 extends JFrame implements ActionListener {

 private CardLayout cardLayoutManager;
 private JPanel panel;

 public CardLayoutAnimation2 (String title) {
 super(title);
 setLayout(new FlowLayout());

 // Make a panel to hold the buttons using a card layout manager
 cardLayoutManager = new CardLayout(0,0);
 panel = new JPanel();
 panel.setLayout(cardLayoutManager);
 for (int i=0; i<4; i++) {
 JButton aButton = new JButton(new ImageIcon("Stick" + i +
".gif"));
 panel.add(String.valueOf(i), aButton);
 aButton.addActionListener(this);
 }

 // Make another button, then add the panel and this button to the
frame
 JButton b = new JButton("Press Me");

 add(panel);
 add(b);

 // Print a simple message when the button is pressed
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent theEvent) {
 System.out.println("Hello");
 }});

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(80,160);
 }

 // Cause a 1 second delay when called
 private void delay() {
 try { Thread.sleep(1000); }
 catch (InterruptedException e){}
 }

 // implements the listener behavior, e.g. go to next button in the stack
 public void actionPerformed(ActionEvent theEvent) {
 for (int i=0; i<4; i++) {
 cardLayoutManager.next(panel);
 update(getGraphics());
 delay(); // Now a long delay
 }
 }

 public static void main(String args[]) {
 new CardLayoutAnimation2("Animated Title").setVisible(true);
 }
}

When the code runs, try pressing the "Press Me" button. It prints a message. Now try clicking
the image button. Notice that the animation is now slower, since we lengthened the frame rate
to 1 second. Try pressing the "Press Me" button a few times during the animating process.
Nothing happens. That is because the events are being queued, but not handled. Once the
animation stops, you will see that the queued messages are handled all at once. Try it again, this
time try to close the window during the animation.

So ... clearly this is a problem. How can we fix it ? We need to create a separate thread (i.e., a
separate process) to handle the animation, while the main process handles all other application
events. Generally, whenever you need to have an event handler that is computationally
intensive (i.e., it is slow at what it needs to do), you should make a separate thread to do it. Let
us look at making a separate thread in our example.

One way to make a separate process for doing our animation is to make a separate class, which
will be a subclass of the Thread class. We will make one called AnimationThread that will do
the animation on the panel which we specify:

import java.awt.*;
import javax.swing.*;
public class AnimationThread extends Thread {
 private JPanel aPanel;
 private CardLayout aLayoutManager;

 public AnimationThread(JPanel p, CardLayout c) {
 aPanel = p;
 aLayoutManager = c;
 }

 // Make a brief delay
 private void delay() {
 try { Thread.sleep(1000); }
 catch (InterruptedException e){}
 }

 public void run() {
 for (int i=0; i<4; i++) {
 aLayoutManager.next(aPanel);
 aPanel.update(aPanel.getGraphics());
 delay();
 }
 }
}

All Threads MUST have a run() method which contains all the code to be done in the thread.
It is kind of like the "main" method of a JFrame. When it is done executing, the Thread is
done too.

Now, we can change the listener in our CardAnimationExample2 to be:

public void actionPerformed(ActionEvent theEvent) {
 new AnimationThread(panel, cardLayoutManager).start();
}

Try the code. You will notice now that as the animation is working, the application still
responds to button clicks and window closing events.

A second way to do all of this would have been NOT to make a separate class of Thread, but in
fact make our application implement the Runnable interface. We would still write a run()
method, but everything goes into one class:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class CardLayoutAnimation4 extends JFrame
 implements ActionListener,
Runnable {

 private CardLayout cardLayoutManager;
 private JPanel panel;

 public CardLayoutAnimation2 (String title) {
 super(title);
 setLayout(new FlowLayout());

 // Make a panel to hold the buttons using a card layout
manager
 cardLayoutManager = new CardLayout(0,0);
 panel = new JPanel();
 panel.setLayout(cardLayoutManager);
 for (int i=0; i<4; i++) {
 JButton aButton = new JButton(new ImageIcon("Stick" +
i + ".gif"));
 panel.add(String.valueOf(i), aButton);
 aButton.addActionListener(this);
 }

 // Make another button, then add the panel and this
button to the frame
 JButton b = new JButton("Press Me");
 add(panel);
 add(b);

 // Print a simple message when the button is pressed
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent theEvent) {
 System.out.println("Hello");
 }});

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(80,160);
 }

 // Cause a 1 second delay when called
 private void delay() {
 try { Thread.sleep(1000); }
 catch (InterruptedException e){}
 }

 // Handle the animation
 public void run() {
 for (int i=0; i<4; i++) {
 cardLayoutManager.next(panel);
 panel.update(panel.getGraphics());
 delay();
 }
 }

 // implements the listener behavior, e.g. go to next button
in the stack
 public void actionPerformed(ActionEvent theEvent) {
 // Start a new thread using the run() method from this
class
 new Thread(this).start();
 }

 public static void main(String args[]) {
 new CardLayoutAnimation2("Animated
Title").setVisible(true);
 }
}

Often, this is the simplest way to do it :).

 10.3 Kinetic Animation

We will now look at kinetic animation, that is ... animation that moves as opposed to staying in
one location. Our task will be to move a bird around in a window. Here are the frames that we
will use:

These frames are numbered 0 to 7 starting
at the top left and numbering across first.
Getting this bird to fly in a single location on the screen is now easy. We can use the
CardLayout manager if we want to ... however, we will want to make the bird move around.
Our choice will be to display it on a JFrame or JPanel. We will write the code such that the
user gets to make the bird fly by causing it to flap its wings whenever he/she clicks the mouse.
Notice that our bird will only fly from left to right.

To start, let us consider making a FlyingBird class to represent
the bird.
What information (i.e., instance variables) should we keep for
the bird ?

• Point currentLocation; // the bird's
coordinate on the screen

• Image[] images; // the frames of the
bird (we will have 8)

• int currentFrame; // the frame currently
being displayed

Here is the start of our code. We will make two class variables to keep track of how many
frames the bird will have and the width of each frame (in pixels):

public static int NUM_FRAMES = 8;
public static int WIDTH = 78;

When making a bird, we must load up the images from the file and store them into the images
array. We probably also want to choose some starting frame (in our case #4) as well as a starting
location. We will not supply a "get" method for the image array. Instead, we will write a
method called appearance() that will return the image corresponding to the current frame of the
bird. Here is a start to our code:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class FlyingBird {
 public static int NUM_FRAMES = 8;
 public static int WIDTH = 78;

 // Instance variables
 private Point currentLocation; // the bird's coordinate on
the screen
 private Image[] images; // the frames of the bird
(we will have 8)
 private int currentFrame; // the frame currently
being displayed

 // Default constructor
 public FlyingBird() {
 currentFrame = 4;
 currentLocation = new Point(100,100);
 images = new Image[FlyingBird.NUM_FRAMES];
 for (int i=0; i<NUM_FRAMES; i++) {
 images[i] = Toolkit.getDefaultToolkit().getImage(
 "BIRDX" + (i+1) + ".gif");
 }
 }

 public int getCurrentFrame() { return currentFrame; }
 public Point getCurrentLocation() { return currentLocation; }

 // Return the image representing the bird's current
appearance
 public Image appearance() {
 return (images[currentFrame]);
 }
}

So, each bird will keep track of its current frame, location and
appearance. We will just need to supply some methods that we can call
from the application that will tell the bird to advance its frame to the
next one and move forward as necessary. For some added realism, we
will have the bird "fall" when its wings are not flapping. That brings up
some good questions:

• When is the bird flying and when is it falling ?
• What does it look like when its falling ?
• How do we make it fall ?

These are easily answered.

• The bird is flying when its wings are flapping down and falling
otherwise.

• We will choose frame 3 to represent the "falling" frame.
• We make it fall by increasing the y value of the location.

Here is the advance() method that moves the bird forward while advancing the frame and also
takes into accout gravity:

 // This method allows the frames to advance as well as move the bird
 public void advance() {
 // Move the bird forward 10 pixels
 currentLocation.translate(10,0);

 // Make gravity pull the bird down, unless its wings are flapping
 if (currentFrame > 3)
 currentLocation.translate(0,-5);
 else
 currentLocation.translate(0,5);

 if (currentFrame != 3)
 currentFrame = (currentFrame + 1) % 8;
 }

We will also want to make the bird flap its wings. To do this, we can just "jump" to the frame
that starts the flapping:

 // Set the frame to show the bird starting to flap its wings
 public void flapWings() {
 currentFrame = 4;
 }

The "follow-through" from the flapping (i.e., the continuation and completion of the flapping
motion) will be handled by successive calls to advance().

Now that we have the bird working, let us get the interface going. We will make a JFrame and
color the background white. We will set up a Timer that will cause the bird to advance every
1/5 of a second.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class FlyingBirdApp extends JFrame implements
ActionListener {
 private static int WIDTH = 600;
 private static int HEIGHT = 400;

 private FlyingBird aBird; // model
 private Timer aTimer;
 private Image background;

 public FlyingBirdApp (String title, FlyingBird theBird) {
 super(title);
 aBird = theBird;

 // We can use nice scenery for the background
 background =
Toolkit.getDefaultToolkit().getImage("beach.jpg");

 // Start the timer so that the bird comes to life
 aTimer = new Timer(100, this);
 aTimer.start();

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(540, 210);
 }

 // This is the timer event handler
 public void actionPerformed(ActionEvent e) {
 aBird.advance();
 if (aBird.getCurrentLocation().x > WIDTH)
 aBird.getCurrentLocation().x = -1 * FlyingBird.WIDTH;
 repaint();
 }

 public void paint(Graphics g) {
 g.drawImage(background, 0, 0, null);
 g.drawImage(aBird.appearance(),
aBird.getCurrentLocation().x,
 aBird.getCurrentLocation().y, this);
 }

 // Create main method to execute the application
 public static void main(String args[]) {
 new FlyingBirdApp("Flying Bird", new
FlyingBird()).setVisible(true);
 }
}

Notice that the Timer event causes the bird to advance and then repaints the frame. It also
checks to see if the bird goes off the end of the frame and brings it back around to the left side
again. The paint() method merely gets the appearance of the bird (i.e., the image) and displays it
at the bird's current location. Note that we use paint() instead of paintComponent() since this
is a JFrame, not a JPanel.

Now we just need to add the MousePressed event handler to make the bird flap its wings:

 // Add a MousePressed event handler
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 aBird.flapWings();
 }});

Here is the end result of our hard work:

	 10 Animation
	What's in This Set of Notes ?

