

COMP1406/1006 - Design and Implementation of Computer Applications W2006

 3 Events and Listeners

What's in This Set of Notes?

Now that we know how to design the "look" of a window by placing components on it, we need
to make the window respond properly to the user interaction. The techniques are based on
something called "Event Handling". In JAVA, we handle events by writing "Listeners" (also
known as event handlers).

Here are the individual topics found in this set of notes (click on one to go there):

• 3.1 Events and Event Handlers
• 3.2 Listeners and Adapter Classes
• 3.3 Handling ActionEvents with ActionListeners
• 3.4 Handling MouseEvents with MouseListeners
• 3.5 Key Press Events
• 3.6 Proper Coding Style for Component Interaction

 3.1 Events and Event Handlers

In the previous set of notes, we have seen how to create a GUI with various types of
components. However, none of the components on the window seem to respond to the user
interactions. In order to get the interface to "work" we must make it respond appropriately to all
user input such as clicking buttons, typing in text fields, selecting items from list boxes etc... To
do this, we must investigate events.

What is an event ?

• An event is something that happens in the program based on some kind of triggering
input.

• typically caused (i.e., generated) by user interaction (e.g., mouse press, button press,
selecting from a list etc...)

o the component that caused the event is called the source.
• can also be generated internally by the program

How are Events Used in JAVA ?

• events are objects, so each type of event is represented by a distinct class (similar to the
way exceptions are distinct classes)

• low-level events represent window-system occurrences or low-level input such as mouse
and key events and component, container, focus, and window events.

• some events may be ignored, some may be handled. We will write event handlers which
are known as listeners.

Nothing happens in your program UNLESS an event occurs. JAVA applications are thus
considered to be event-driven.

Here is a picture that describes the process of user interaction with a GUI through events:

Basically...here's how it works:

1. The user causes an event (e.g., click button, enter text, select list item etc...)

2. The JAVA VM invokes (i.e., triggers) the appropriate event handler (if it has been
implemented and registered).

o This invocation really means that a method is called to handle the event.
3. The code in the event handling method changes the model in some way.
4. Since the model has changed, the interface will probably also change and so components

should be updated.

Notice that JAVA itself waits for the user to initiate an action that will generate an event.

• This is similar to the situation of a cashier waiting for customers ... the cashier does
nothing unless an event occurs. Here are some events which may occur, along with how
they may be handled:

o a customer arrives - employee wakes up and looks sharp
o a customer asks a question - employee gives an answer
o a customer goes to the cash to buy - employee initiates sales procedure
o time becomes 6:00pm - employee goes home

JAVA acts like this employee who waits for a customer action. JAVA does this by means of
something called an EventLoop. An Event Loop is an endless loop that waits for events to
occur:

• events are queued (lined up on a first-come-first-served basis) in a buffer
• events are handled one at a time by an event handler (i.e., code that evaluates when event

occurs)
• everything you want done in your application MUST go through this loop

Here is a picture of how the event loop works:

Notice that incoming events (i.e., customers/clients) are stored in the event queue in the order
that they arrive. As we will see later, events MUST be handled by your program. The JVM
spends all of its time taking an event out of the queue, processing it and then going back to the
queue for another.

While each event is being handled, JAVA is unable to process any other events. You MUST be
VERY careful to make sure that your event handling code does not take too long. Otherwise the
JVM will not take any more events from the queue. This makes your application seem to
"hang" so that the screen no longer updates, and all buttons, window components seem to freeze
up !!!

In a way, the JVM event loop acts as a server. It serves (or handles) the incoming events one at
a time on a first-come-first-served basis. So when an event is generated, JAVA needs to go to
the appropriate method in your code to handle the event. How does JAVA know which method
to call ? We will register each event-handler so that JAVA can call them when the events are
generated. These event-handlers are called listeners (or callbacks).

A listener:

• acts on (i.e., handle) the event notification.
• must be registered so that it can be notified about events from a particular source.
• can be an instance of any class (as long as the class implements the appropriate listener

interface)

So ... when creating a GUI, we must:

• decide what types of events we want to handle
• inform JAVA which ones we want to handle by registering the event handlers (i.e., the

listeners)
• write the event handling code for each event

 3.2 Listeners and Adapter Classes

You should understand now that when the user interacts with your user interface, some events
will be generated automatically by JAVA. There are many types of events that can occur, and

we will choose to respond to some of them, while ignoring others. The JAVA VM is what
actually generates the events, so we will have to "speak JAVA's language" in order to understand
what the event means. In fact, to handle a particular event, we will have to write a particular
method with a predefined name (chosen by JAVA).

Here is a list of the commonly used types of events in JAVA:

• Action Events: clicking buttons, selecting items from lists etc....
• Component Events: changes in the component's size, position, or visibility.
• Focus Events: gain or lose the ability to receive keyboard input.
• Key Events: key presses; generated only by the component that has the current keyboard

focus.
• Mouse Events: mouse clicks and the user moving the cursor into or out of the

component's drawing area.
• Mouse Motion Events: changes in the cursor's position over the component.
• Container Events: component has been added to or removed from the container.

Here are a couple of the "less used" types of events in JAVA:

• Ancestor Events: containment ancestors is added to or removed from a container,
hidden, made visible, or moved.

• Property Change Events: part of the component has changed (e.g., color, size,...).

For each event type in JAVA, there are defined interfaces called Listeners which we must
implement. Each listener interface defines one or more methods that MUST be implemented in
order for the event to be handled properly.

There are many types of events that are generated and commonly handled. Here is a table of
some of the common events. The table gives a short description of when the events may be
generated, gives the interface that must be implemented by you in order for you to handle the
events and finally lists the necessary methods that need to be implemented. Note, for a more
complete description of these events, listeners and their methods, see the JAVA API
specifications.

Event Type Generated By Listener Interface Methods that "YOU" must
Write

ActionEvent

a button was pressed, a
menu item selected,
pressing enter key in a
text field or a timer
event was generated

ActionListener actionPerformed(ActionEvent e)

CaretEvent
moving cursor (caret)
in a text-related
component such as a

CaretListener caretUpdate(CaretEvent e)

JTextField

ChangeEvent
value of a component
such as a JSlider has
changed

ChangeListener stateChanged(ChangeEvent e)

DocumentEvent

changes have been
made to a text
document such as
insertion, removal in an
editor

DocumentListener

changedUpdate(DocumentEvent
e)
insertUpdate(DocumentEvent e)
removeUpdate(DocumentEvent
e)

ItemEvent

caused via a selection
or deselection of
something from a list, a
checkbox or a toggle
button

ItemListener itemStateChanged(ItemEvent e)

ListSelectionEve
nt

selecting (click or
double click) a list item

ListSelectionListen
er

valueChanged(ListSelectionEve
nt e)

WindowEvent

open/close,
activate/deactivate,
iconify/deiconify a
window

WindowListener

windowOpened(WindowEvent
e)
windowClosed(WindowEvent
e)
windowClosing(WindowEvent
e)
windowActivated(WindowEvent
e)
windowDeActivated(WindowEv
ent e)
windowIconified(WindowEvent
e)
windowDeiconified(WindowEve
nt e)

FocusEvent

a component has
gained or lost focus.
Pressing tab key
changes focus of
components in a
window

FocusListener focusGained(FocusEvent e)
focusLost(FocusEvent e)

KeyEvent
pressing and/or
releasing a key while
within a component

KeyListener
keyPressed(KeyEvent e)
keyReleased(KeyEvent e)
keyTyped(KeyEvent e)

MouseEvent

pressing/releasing/click
ing a mouse button,
moving a mouse onto
or away from a

MouseListener

mouseClicked(MouseEvent e)
mouseEntered(MouseEvent e)
mouseExited(MouseEvent e)
mousePressed(MouseEvent e)

component mouseReleased(MouseEvent e)

MouseEvent
moving a mouse within
a component while the
button is up or down

MouseMotionListe
ner

mouseDragged(MouseEvent e)
mouseMoved(MouseEvent e)

ContainerEvent

Adding or removing a
component to a
container such as a
panel

ContainerListener

componentAdded(ContainerEve
nt e)
componentRemoved(ContainerE
vent e)

So, if you want to handle a button press in your program, you need to write an
actionPerformed()method:

 public void actionPerformed(ActionEvent e) {
 //Do what needs to be done when the button is clicked
 }

If you want to have something happen when the user presses a particular key on the keyboard,
you need to write a keyPressed() method:

 public void keyPressed(KeyEvent e) {
 //Do what needs to be done when a key is pressed
 }

Once we decide which events we want to handle and then write our event handlers, we then need
to register the event handler. This is like "plugging-in" the event handler to our window. In
general, many applications can listen for events on the same component. So when the
component event is generated, JAVA must inform everyone who is listening. We must therefore
tell the component that we are listening for (or waiting for) an event. If we do not tell the
component, it will not notify us when the event occurs (i.e., it will not call our event handler).
So, when a component wants to signal/fire an event, it sends a specific message to all listener
objects that have been registered (i.e., anybody who is "listening"). For every event, therefore,
that we want to handle, we must write the listener (i.e., event handler) and also register that
listener.

To help you understand why we
need to do this, think of the
Olympic games. There are
various events in the Olympics
and we may want to participate
(i.e., handle) a particular event.
Our training and preparation for
the event is like writing the event
handler code which defines what
we do when the event happens.
But, we don't get to participate in
the Olympic games unless we
"sign-up" (or register) for the
events ... right ? So registering
our event handlers is like joining
JAVA's sign-up list so that JAVA
informs us when the event
happens and then allows our event
handler to participate when the
event occurs.

To register for an event (i.e., enable it), we need to merely add the listener (i.e., your event
handler) to the component by using an addXXXListener()
method (where XXX depends on the type of event to be handled). Here are some examples:

aButton.addActionListener(ActionListener anActionListener);
aJPanel.addMouseListener(MouseListener aMouseListener);
aJFrame.addWindowListener(WindowListener aWindowListener);

Here anActionListener, aMouseListener and aWindowListener can be instances
of any class that implements the specific Listener interface.
So, for example, if you wanted to have your application handle a button press, you can make
your application itself be the ActionListener as follows:
public class SimpleEventTest extends JFrame implements ActionListener {

 public SimpleEventTest(String name) {
 super(name);

 JButton aButton = new JButton("Hello");
 add(aButton);

 // Plug-in the button's event
handler
 aButton.addActionListener(this);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(200, 200);
 }

 // Must write this method now since SimpleEventTest implements
the ActionListener interface
 public void actionPerformed(ActionEvent e) {
 System.out.println("I have been pressed");
 }

 public static void main(String[] args) {
 JFrame frame = new SimpleEventTest("Making a
Listener");
 frame.setVisible(true);
 }
}

You can also "unregister" from an event (i.e., disable the listener), by merely removing it using a
removeXXXListener() method. Here are some examples:

aButton.removeActionListener(ActionListener anActionListener);
aJPanel.removeMouseListener(MouseListener aMouseListener);
aJFrame.removeWindowListener(WindowListener aWindowListener);

Why would you want to disable a listener ? If we don't want to use it, why even make one ? We
will see later that we sometimes need to temporarily disable events while other events are being
handled so as to avoid overlapping events, which can cause problems.

Adapter Classes:
Assume that we would like to handle a single event ... a mouseClicked event whenever someone
clicks the mouse inside of our application's window. Recall from COMP1405/1005, that if a
class implements an interface it MUST implement ALL of the methods listed in the interface.
For example, the MouseListener interface is defined as follows:

public interface MouseListener {
 public void mouseClicked(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
}

So, if we simple make our main application implement the MouseListener interface, then we
will be forced to implement all 5 methods: mouseClicked, mouseEntered, mouseExited,
mousePressed and mouseReleased !!!! We can however, merely write empty methods for these
other 4 event types but this is a lot of extra code writing that just wastes time and makes the code
more confusing:

public class MyApplication extends JFrame implements
MouseListener {
 ...
 public void mouseClicked(MouseEvent e) { /* Put your code

here */ };
 public void mouseEntered(MouseEvent e) {};
 public void mouseExited(MouseEvent e) {};
 public void mousePressed(MouseEvent e) {};
 public void mouseReleased(MouseEvent e {};
 ...
}

It does seem a little silly to have to write 4 blank methods when we do not even want to handle
these other kinds of events. The JAVA guys recognized this inconvenience and solved it using
the notion of Adapter classes. For each listener interface that has more than one method
specified, there exists an adapter class with a corresponding name:

• MouseListener has MouseAdapter
• MouseMotionListener has MouseMotionAdapter
• DocumentListener has DocumentAdapter
• WindowListener has WindowAdapter
• ...and so on.
• ActionListener does NOT have an adapter class since it is only one method long.

These adapter classes are abstract JAVA classes that implement the interfaces they correspond
to. However, even though they implement these interfaces ... their methods remain empty. For
example, the MouseAdapter class looks like this:
public abstract class MouseAdapter implements MouseListener {
 public void mouseClicked(MouseEvent e) {};
 public void mouseEntered(MouseEvent e) {};
 public void mouseExited(MouseEvent e) {};
 public void mousePressed(MouseEvent e) {};
 public void mouseReleased(MouseEvent e {};
}
They are merely classes that are provided for convenience sake to help us avoid writing empty
methods. So, we can simply write subclasses of these adapter classes, then we can take
advantage of these blank methods through inheritance.

Well, we don't want to have to make our user interfaces subclass one of these adapter classes ...
this would be bad since we would lose the freedom of creating our own arbitrary class
hierarchies. Consider handling an event for dealing with a simple mouse click. We could make
our own internal class to handle this event.

class MyClickHandler extends MouseAdapter {
 public void mouseClicked(MouseEvent event) {
 System.out.println("Do Something fun");
 }
}

But this strategy creates an additional .java file. It may make our code more complicated, since
we increase the number of source code files. Well, we can actually write this code within our
GUI class itself, provided that we don't put the public modifier in front of this class definition.
This makes it an internal class. When you compile a .java file that has internal classes, you will
notice that you will have additional .class files for these additional internal classes (which will
have a $ in their name).

To reduce clutter, JAVA allows another way for us to create inner classes which uses VERY
strange syntax:

new MouseAdapter() {
 public void mouseClicked(WindowEvent event) {
 System.out.println("Do Something fun");
 }
}

This syntax actually creates an internal class as a subclass of MouseAdapter. The class has no
name, it is considered to be an anonymous class. This code actually creates an instance of the
anonymous class and returns it to us. It is weird syntax. We will see below how we can
"embed" this code inside other code just like we use any other objects.

Summary of Making Your Own Event Handlers:
Let us now summarize the various ways (i.e., styles) that you can write your event handler
code. Here are 4 ways ... you should understand them all:

1. Make your class implement the specific interfaces needed:
o Advantages:

 Simple
o Disadvantages:

 must write methods for ALL events in the interface.
 can get messy/confusing if your class has many components that trigger

the same events or if your class handles many different types of events.

public class YourClass extends JFrame implements MouseListener {

 // This line must appear in some method, perhaps the constructor
 ... {
 aComponent.addMouseListener(this);
 }

 // Some more of your code

 public void mouseClicked(MouseEvent e) { /* Put your code here */
};
 public void mouseEntered(MouseEvent e) { /* Put your code here */
};
 public void mouseExited(MouseEvent e) { /* Put your code here */
};
 public void mousePressed(MouseEvent e) { /* Put your code here */
};
 public void mouseReleased(MouseEvent e { /* Put your code here */
};

 // Put your other methods here
}

2. Create a separate class that implements the interface:
o Advantages:

 nice separation between your code and the event handlers.
 class can be reused by other classes

o Disadvantages:
 can end up with a lot of classes and class files
 can be confusing as to which classes are just event handler classes

public class YourClass extends JFrame {

 // This line must appear in some method, perhaps the constructor
 ... {
 aComponent.addActionListener(new MyButtonListener(this));
 }

 // Some more of your code
}

public class MyButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent theEvent) {
 // Do what needs to be done when the button is clicked
 }
}

3. Create an "inner" class that implements the interface:
o Advantages:

 nice separation between your code and the event handlers.
 class can be reused in different situations within your class
 Inner class has access to the "guts" of your class

o Disadvantages:
 can still end up with a lot of class names to remember

public class YourClass extends JFrame {

 // This line must appear in some method, perhaps the constructor
 ... {
 aComponent.addActionListener(new MyButonListener());
 }

 // Some more of your code

 class MyButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent theEvent) {
 // Do what needs to be done when the button is clicked
 }
 }
}

4. Create an anonymous subclass of an Adapter class or a Listener interface.

o Advantages:
 nice and compact
 do not need to come up with class names, reduces complexity
 only need to handle one event instead of worrying about all events in the

interface.
o Disadvantages:

 the syntax takes a little "getting use to"
 requires event handler code to be specified where listener is registered

(unless helper methods are used)

public class YourClass extends JFrame {

 // This line must appear in some method, perhaps the constructor
 ... {
 aComponent.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent theEvent) {
 // Do what needs to be done when the button is
clicked
 }
 }
);
 }

 // Some more of your code
}

 3.3 Handling ActionEvents with ActionListeners

In this section, we give various examples showing how to handle one or more ActionEvents
from different kinds of objects:

Handling two button clicks

We have already seen how to handle a simple button
press by writing an ActionPerformed method. Here is
an application that shows how to handle events for two
different buttons. We will make use of the
getActionCommand() method for the ActionEvent
class that allows us to determine the label on the button
that generated the event. Take notice of the packages
that need to be imported.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class Handle2Buttons extends JFrame implements ActionListener {
 public Handle2Buttons(String title)
 super(title);

 JButton aButton1 = new JButton("Press Me");
 JButton aButton2 = new JButton("Don't Press Me");

 setLayout(new FlowLayout());
 add(aButton1);
 add(aButton2);

 // Indicate that this class will handle 2 button clicks
 // and that both buttons will go to the SAME event handler
 aButton1.addActionListener(this);
 aButton2.addActionListener(this);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(250,100);
 }

 // This is the event handler for the buttons
 public void actionPerformed(ActionEvent e) {
 // Ask the event which button was the source that generated it
 if (e.getActionCommand().equals("Press Me"))
 System.out.println("That felt good!");
 else
 System.out.println("Ouch! Stop that!");
 }

 public static void main(String args[]) {
 Handle2Buttons frame = new Handle2Buttons("Handling 2 Button
Presses");
 frame.setVisible(true);
 }
}

Notice that the getActionCommand() method is sent to the ActionEvent. It returns a String
containing the text that is on the button that generated the event. We then compare this string
with the labels that we put on the buttons to determine which button was pressed. One
disadvantage of this approach is that our event handler depends on the label associated with the
button. Although this is safe in this particular example, there are many occasions when the label
associated with a button could change (e.g., international applications). Therefore, we could use
the getSource() method which returns the component (i.e., an Object) that raised the event
instead of getActionCommand() to compare the actual button objects instead of the labels. To
do this, we need to make two modifications. First, we need to store the buttons we create into
instance variables and second, we need to compare the object that generated the event with these
buttons using the identity (==) comparison.

 // We need to make the buttons instance variables and assign
 // them in the constructor so that we can access these objects
 // from within our event handler code.
 JButton aButton1, aButton2;

 // Change the event handler to use getSource() to compare the actual
objects
 public void actionPerformed(ActionEvent e) {
 // Ask the event which button was the source that generated the event
 if (e.getSource() == aButton1)
 System.out.println("That felt good!");
 else
 System.out.println("Ouch! Stop that!");
 }

Another disadvantage of the previous example is that if more buttons (or other components that
generate action events) are added, the number of "if-statements" in our handler will increase and
become more complex, which may not be desirable. One way to handle this disadvantage (and
the previous one as well) is by using anonymous classes. The following code would replace the
code in the constructor that registers our frame subclass as a listener. The actionPerformed
method of our class would no longer be required. Here, each button has its own event handler:

 aButton1.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("That felt good!");
 }
 });
 aButton2.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Ouch! Stop that!");
 }
 });

A Simple Slide Show

Now let us make a more interesting example that uses
anonymous classes for two buttons. We will create a simple
Slide Show application. We will create a window that has a
JPanel which uses a CardLayout to represent the slides (one
at a time) and then we will also add two arrow buttons to the
window to rewind and forward the slides. Notice the
following:

• the buttons we will use are the standard
BasicArrowButton objects that are available in
JAVA in the javax.swing.plaf.basic
package.

• the JPanel and CardLayout are made into instance
variables so that we can access them from our event
handlers

• the main window is set to use a FlowLayout, the
default was BorderLayout.

• we used BorderFactory.createLineBorder() to
make a nice black border around our panel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.plaf.basic.BasicArrowButton;
public class SlideShow extends JFrame {

 JPanel slides;
 CardLayout layoutManager;

 public SlideShow(String title) {
 super(title);

 setLayout(new FlowLayout(FlowLayout.CENTER, 5, 5));

 // Create a JPanel with a CardLayout manager for the
slides
 slides = new JPanel();
 slides.setBackground(Color.WHITE);

slides.setBorder(BorderFactory.createLineBorder(Color.BLACK));
 slides.setLayout(layoutManager = new CardLayout(0,0));
 slides.add("trilobot.jpg", new JLabel(new
ImageIcon("trilobot.jpg")));
 slides.add("laptop.jpg", new JLabel(new
ImageIcon("laptop.jpg")));

 slides.add("satelite.jpg", new JLabel(new
ImageIcon("satelite.jpg")));
 slides.add("torch7.gif", new JLabel(new
ImageIcon("torch7.gif")));
 slides.add("SIGNIN.jpg", new JLabel(new
ImageIcon("SIGNIN.jpg")));
 add(slides);

 // Now add some slide show buttons for forward and
reverse
 JButton rev = new BasicArrowButton(JButton.WEST);
 add(rev);
 JButton fwd = new BasicArrowButton(JButton.EAST);
 add(fwd);

 // Set up the listeners using anonymous classes
 rev.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 layoutManager.previous(slides);
 }
 });

 fwd.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 layoutManager.next(slides);
 }
 });

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(220,300);
 }

 public static void main(String args[]) {
 SlideShow frame = new SlideShow("Simple Slide Show");
 frame.setVisible(true);
 }
}

Working With JTextFields

Here is a new application that has a button and
some text fields. One text field will hold an
integer. When the button is pressed, it will
compute and display (in two other text fields) the
"square" as well as the "square root" of the value
within the first text field. Note a few things about
the code:

• When creating JTextFields, we can
specify the initial content to be displayed
(a string) as well as the maximum number
of characters allowed to be entered in
them (8, 16 and 20 in this example).

• We need to convert to and from Strings
when accessing/modifying text field data

• We access/modify a text field's contents
using getText() and setText()

• The code below will generate exceptions
if a valid integer is not entered within the
value text field.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class HandleTextFieldAndButton extends JFrame {
 JTextField valueField, squareField, rootField;

 public HandleTextFieldAndButton(String title) {
 super(title);

 setLayout(new BoxLayout(this.getContentPane(),BoxLayout.Y_AXIS));

 // Add the value text field, along with a label
 add(new JLabel("Value:"));
 valueField = new JTextField("10", 8);
 add(valueField);

 // Add the compute button
 JButton aButton = new JButton("Compute");
 add(aButton);

 // Add the square text field, along with a label
 add(new JLabel("Square:"));
 squareField = new JTextField("0", 16);
 add(squareField);

 // Add the square root text field, along with a label
 add(new JLabel("Square Root:"));
 rootField = new JTextField("0", 20);
 add(rootField);

 // Handle the button click
 aButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 int value = Integer.parseInt(valueField.getText());
 squareField.setText("" + value * value);
 rootField.setText("" + Math.sqrt(value));
 }
 });

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(250,180);
 }

 public static void main(String args[]) {
 HandleTextFieldAndButton frame = new
HandleTextFieldAndButton("Working With TextFields");
 frame.setVisible(true);
 }
}

Notes:

Although not done in our example here, we can actually handle an ActionEvent for a text field.
An action event is generated when the user presses the ENTER key while typing in a text field.
As with button clicks, you can handle this ENTER key press in the text field by writing an
actionPerformed() method for the text field. In such a method, the getActionCommand()
method will return the text inside the text field. We can also send the getSource() method to the
action event to get the text field itself and then get its text as follows:
((JTextField)e.getSource()).getText()

As we will discuss later, the style of coding that we are using in our example here is not "clean"
since the button accesses the text field directly.

Handling RadioButtons

Let us modify the previous example by using radio
buttons that allow us to decide which kind of operation
we will do on the value entered in the text field. We
will replace the Compute button with 4 radio buttons
where each radio button, when clicked, will perform a
different operation on the value from the text field a
then display the result in the answer text field. Here are
some interesting points about the c

nd

ode:

window
startup.

;

• All JRadioButtons go to the same event handler.
• The JRadioButtons are stored in an array, which

is searched using a FOR loop to determine which
one generated the event so that we could perform
the desired operation.

• The JRadioButtons are added to a
ButtonGroup as well, which ensures that JAVA
allows only one to be "on" at a time. When
created, we can specify with a boolean whether a
particular button is to be "on" upon

import java.awt.*;
import java.awt.event.*
import javax.swing.*;
public class HandleTextFieldWithRadioButtons extends
implements

 JTextField valueField
 JRadio

 public HandleTextFi

 setLayout(new
BoxLayout(

 // Add the value text fi
 add(new JLabel("X:"));
 ad new

and
 // also to a ButtonGroup so that one is on at
 ButtonGroup operations = new But p();
 buttons = new JRadioButton[4];

 JFrame
 ActionListener {

, answerField;
Button[] buttons;

eldWithRadioButtons(String title) {
 super(title);

this.getContentPane(),BoxLayout.Y_AXIS));

eld, along with a label

d(valueField = JTextField("10", 8));

 // Add the operation type radio buttons to the window

 a time
tonGrou

 buttons[0] = new JRadioButton("X + X", false);
 buttons[1] = new JRadioButton("X * X", false);
 buttons[2] = new JRadioButt false
 buttons[3] = new JRadi
 for (int i=0; i<4; i++) {
 add(buttons[i]);

 }

 // Add the answer text field, along with a la
 ad new
 add(answerField = new JTextField("0", 16))

 }

 // Handle a radio button click
 public void actionPerformed
 int value = Integer.parseInt(valueField.getText());
 int buttonNumber = 0;
 for (buttonNumbe
 if
 break;
 }
 double result=0;
 switch (buttonNumber) {
 case 0: result = value + value; break;
 case 1: result = value * value; break;
 case break
 case 3: result = 1 / (double)va

 answerField.se
 }

 public static void main(String args[]) {
 JFrame frame = new
HandleT

on("X ^ 0.5",);
oButton("1 / X", false);

 operations.add(buttons[i]);
 buttons[i].addActionListener(this);

bel
d(JLabel("Answer:"));

;

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(250,220);

(ActionEvent e) {

r=0; buttonNumber<4; buttonNumber++) {
(buttons[buttonNumber] == e.getSource())

 2: result = Math.sqrt(value); ;
lue; break;

 }
tText("" + result);

extFieldWithRadioButtons("Working With Radio Buttons");
 frame.setVisible(true);

 }

ple it seems appropriate to have our JFrame class act as a listener since
the event handling code is the same for all components. Nothing is gained by using another class

}

Note that for this exam

to handle the events.

Note as well that the JCheckBox works similar to the JRadioButton, except that normally
JRadioButtons should have only one on at a time, while JCheckBoxes may normally have
many on at a time. Here is how the window would look if JCheckBoxes were used instead
(although keep in mind that in this application, it doesn't make sense to have more than one
button on at a time.

Handling JButton Selections

In addition to radio buttons and checkbo
buttons, JButtons themselves can
maintain selected states. For example,
we can create an application that
one of several JButtons to be selected.
As it turns out, JButtons have a
setSelectedIcon() method that allows
to change the picture on a button when
is selected. Here is an example that
makes 4 JButtons with icons on them
which may be used to select a shape for
drawing. When the user selects o
these buttons, the image changes on the
button and so the button appears
selected. All we have to do is use the

x

allows

 us
it

ne of

 methods

's state.

;
le

se
to change or query the button

import java.awt.*;
import java.awt.event.*;
import javax.swing
public class

tSelected() and getSelected()

.*
SelectedButtonsExamp extends JFrame implements

Listener { Action

 private JButton[] buttons;

 super(title);

 setLayout(new FlowLayout());

 ButtonGroup group = new Butt nGro
 buttons = new JButton[4];
 for (int i=
 buttons[i] = new JButton(new ImageIcon("button" +
(i+1) + ".gif"));
 buttons[i].setSelectedIcon(new ImageIco
(i+1) + "b.gif"));
 buttons[i].setRoll false
 buttons[i].addActionList

 }

 setSize
 }

 public void actionPerformed(ActionEvent e) {
 for (int i=0; i<4;

buttons[i]);
 }

 public static void main(String args[]) {
 SelectedButtonsExample fr new
Selecte

 public SelectedButtonsExample(String title) {

o up();

0; i<4; i++) {

n("button" +

overEnabled();
ener(this);

 add(buttons[i]);
 group.add(buttons[i]);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
(350,75);

 i++)
 buttons[i].setSelected(e.getSource() ==

ame =
dButtonsExample("Selected Buttons");

 frame.setVisible(true);
 }

work with ButtonGroups. Instead, we had to do everything

manually. If we wanted to allow multiple buttons on at a time, we would merely change the
action p

) {
 JButton src = (JButton)e.getSource();

}

Notice that we did not use a ButtonGroup to ensure that only one button is selected by itself.
That is because JButtons do not

erformed method to be:

public void actionPerformed(ActionEvent e

 src.setSelected(!src.isSelected());
}

T
don't have to worry about changing the icon. It is done automatically for us when we set the
button to be selected or not.

Notice that we did a setRolloverEnabled(false) for our buttons. This is because JAVA, by
default, has a default rollover enabled value of true for the buttons, which redraw
w
So, we can modify our code to have our image show when the mouse rolls over t
instead of when we click it b

his would allow the buttons to be toggled on and off individually. Notice one good thing, we

s our buttons

henever the mouse passes over them. In this case, a completely separate icon may be used.
he button

y setting this icon and enabling the rollover effect.

 We would need to use these methods to accomplish this: setRolloverIcon() and
setRolloverSelectedIcon().

 3.4 Handling MouseEvents with MouseListeners

In this section, we talk about mouse events. Mouse events are typically used in graphics

 and released within the

ponent's area.
mouseExited ouse cursor has left the component's area.

 has been pressed.
• mouseReleased - a mouse button has been released.

Example using Mouse Listener

applications (as we'll see later in a graph editing application). There are many kinds of mouse
events as we have shown in an earlier table:

• mouseClicked - one of the mouse buttons has been both pressed
same component.

• mouseEntered - the mouse cursor has entered the com
• - the m
• mousePressed - a mouse button

s

In this example we create two
components: a yellow JPanel and
a white JTextArea within a
JScrollPane. Both the JFrame
itself as well as the JPanel will
respond to all MouseEvents and
display an appropriate message
within the text area. We will also
add an ImageIcon to the JPanel as
a JLabel and we will move it
around depending on where the
user presses the mouse. We make
use of the following MouseEvent
methods to get information about
mouse presses:

• getClickCount() -
returns the number of
successive mouse clicks

• getButton() - returns the
button that was pressed (1
= left, 2 = middle, 3 =
right)

• getX() - returns the x
coordinate of the mouse
location w.r.t. top left
corner of component.

• getY() - returns the x
coordinate of the mouse
location w.r.t. top left
corner of component.

• getPoint() - returns the
(x,y) point of the mouse
location w.r.t. top left
corner of component.

Here is the code for the application:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class WorkingWithMouseEvents extends JFrame implements
MouseListener {
 JPanel blankArea;
 JTextArea textArea;
 JLabel movableImage;
 Class latestComponent;

 public WorkingWithMouseEvents(String title) {
 super(title);

 setLayout(new FlowLayout(FlowLayout.LEFT, 5, 5));

 // Create a yellow JPanel
 blankArea = new JPanel();
 blankArea.setLayout(null);
 blankArea.setBackground(new Color(255,255,200));
 blankArea.setOpaque(true);

blankArea.setBorder(BorderFactory.createLineBorder(Color.black));
 blankArea.setPreferredSize(new Dimension(350, 150));
 add(blankArea);

 // Add an image to the JPanel
 blankArea.add(movableImage = new JLabel(new
ImageIcon("brain.gif")));
 movableImage.setSize(80,80);
 movableImage.setLocation(100,100);

 // Create a text area to display event information
 textArea = new JTextArea();
 textArea.setEditable(false);
 JScrollPane scrollPane = new JScrollPane(textArea);
 scrollPane.setPreferredSize(new Dimension(350, 200));
 add(scrollPane);

 //Register for mouse events on the JPanel AND the JFrame
 blankArea.addMouseListener(this);
 addMouseListener(this);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(370,390);
 }

 // Handle the mouse events (pressed, released, entered,
exited & clicked)
 public void mousePressed(MouseEvent event) {
 addToTextArea("MousePressed", event);
 if (event.getComponent().getClass() != this.getClass())
 movableImage.setLocation(event.getX()-40,
event.getY()-40);
 }

 public void mouseReleased(MouseEvent event) {
 addToTextArea("MouseReleased", event);
 }

 public void mouseEntered(MouseEvent event) {
 addToTextArea("MouseEntered", event);
 }

 public void mouseExited(MouseEvent event) {
 addToTextArea("MouseExited", event);
 }

 public void mouseClicked(MouseEvent event) {
 String s;
 if (event.getButton() == 3)
 s = "Right";
 else s = "Left"; // Ignores the middle button case
 addToTextArea("Mouse" + s + "-Clicked " +
event.getClickCount() +
 " times successively ", event);
 }

 // Append the specified event-specific text to the text area
 private void addToTextArea(String eventDescription,
MouseEvent event) {
 if (latestComponent != event.getComponent().getClass())
 textArea.append("------------------------------------
--------\n");
 latestComponent = event.getComponent().getClass();
 if (latestComponent == this.getClass())
 textArea.append("JFrame event: ");
 else
 textArea.append("JPanel event: ");
 textArea.append(eventDescription + "\n");
 }

 public static void main(String args[]) {
 JFrame frame = new WorkingWithMouseEvents("Mouse Event
Example");
 frame.setVisible(true);
 }
}

How can we modify the code to only handle clicked events if it was a double-click ?

 public void mouseClicked(MouseEvent event) {
 if (event.getClickCount() == 2)
 // do something
 }

 3.5 Key Press Events

Every Component in JAVA can listen for KeyEvents. KeyEvents are
generated when the user presses, releases or types a key while in a
component. In order for the event to be generated, the component MUST
have the focus. The focus represents the current component that is
selected (e.g., we all understand how the TAB key moves the focus from
one component to another in many windows applications). Thus, if a
particular component is listening for a key press, but that component does
not have the focus, then no events are generated.

We can have a component listen for KeyEvents by adding a KeyListener with the
addKeyListener() method. Inside these listeners, we can determine which key was pressed by
examining the KeyEvent object itself. The KeyEvent class has a bunch of static constants that
represent all the keys on the keyboard. These constants all begin with VK_ and you can look in
the JAVA API to get the exact names. Here are a few:

• VK_A, VK_B, VK_C,, VK_Z
• VK_SHIFT, VK_ALT, VK_CONTROL, VK_ENTER
• VK_DOWN, VK_UP, VK_LEFT, VK_RIGHT
• etc...

We send the getKeyCode() message to the KeyEvent to get back the code representing the key
that was pressed. We then compare the code to one of these constants. Since every key press
generates an event, if we want to detect multiple keys pressed at the same time, me must make
use of both keyPressed() and keyReleased() listeners and keep track by ourselves as to which
key has been pressed. There is also a keyTyped() event which can detect the entering of a
Unicode character. Often a keyTyped() event is synonymous with a key press/release sequence
(kinda like a mouseClicked event).

The keyTyped() event is generated along with a keyPressed() event, whenever
letter/number/symbol keys are pressed. However, the keyTyped() event is not generated when
the control-related keys are pressed (e.g., shift, alt, ctrl, caps-lock, insert, home, end,
pageup/down, break, arrow keys, function keys etc...) In this case, just the keyPressed() and
keyReleased() events are generated. Odly enough, some control-related keys do generate
keyTyped() events (e.g., esc, del), some keys generate only a keyReleased() event (e.g., print
screen) and some keys do not generate events at all (e.g., tab, function key)!!!!! Check to make
sure that the key you want to handle behaves the way you want it to.

Also, we can combine other listeners with key presses ... for example, if we want to detect a
SHIFT-CLICK operation.

Here is an example with code that detects three things:

• Pressing the 'A' key by itself
• Pressing the 'SHIFT' and 'A' keys together
• Pressing the 'SHIFT' key and pressing a button together

Note that there are two buttons. The bottom one is not hooked up to the listeners so when it has
the focus, no key events are generated. The image on the top (below) shows the first button
having the focus (notice the thin gray line around the text of the button). The bottom image
shows the non-listener button with the focus.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class ShiftButtonTest extends JFrame implements ActionListener,
KeyListener {
 private boolean shiftPressed;

 public ShiftButtonTest(String title) {
 super(title);
 setLayout(new FlowLayout(5));

 JButton aButton = new JButton("Press Me With/Without the Shift Key");
 JButton bButton = new JButton("No Listeners here");
 add(aButton);
 add(bButton);

 shiftPressed = false;

 //Indicate that this class will handle the button click
 aButton.addActionListener(this);
 aButton.addKeyListener(this); // Change aButton to this if you want
to ignore focus

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300,100);
 }

 //This is the event handler for the button
 public void actionPerformed(ActionEvent e) {
 if (shiftPressed)
 System.out.println("You SHIFTED Me!!");
 else
 System.out.println("You did not SHIFT Me.");
 }

 public void keyPressed(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_SHIFT)
 shiftPressed = true;
 else if (e.getKeyCode() == KeyEvent.VK_A) {
 if (shiftPressed)
 System.out.println("You pressed the [SHIFT]+[A]
keys");
 else
 System.out.println("You pressed the [A] key");
 }
 }
 public void keyReleased(KeyEvent e) {
 if (e.getKeyCode() == KeyEvent.VK_SHIFT)
 shiftPressed = false;
 }
 public void keyTyped(KeyEvent e) {
 // Get and display the character for each key typed
 System.out.println("Key Typed: " + e.getKeyChar());
 }

 public static void main(String args[]) {
 ShiftButtonTest frame = new ShiftButtonTest("Example: Handling a
SHIFT+Button Press");
 frame.setVisible(true);
 }
}

If you do not want this "focus-oriented" behavior (e.g., perhaps you want to listen for a particular
key press regardless of which component has been selected) you can have the JFrame listen for
the key press. In this case, you must "disable" the focus ability for all the components on the
window (but not the JFrame itself). In our example, we would replace the line:

aButton.addKeyListener(this);

with the following lines that disallow the buttons to have the focus:

this.addKeyListener(this);
aButton.setFocusable(false);
bButton.setFocusable(false);

Be aware however, that this disables the "normal" behavior for the window and will prevent
standard use of the TAB key to traverse between components in the window.

 3.6 Proper Coding Style for Component Interaction

Recall that before designing an application, we must distinguish between the model and the
interface.

Recall as well that the model is:

• the underlying "meat" of the application (represents "business/problem domain" logic)
• corresponds to all classes and objects that do not deal with the user interface appearance

or operation.

The GUI (Graphical User Interface) is:

• the portion of your code that deals with the appearance of the application and the
interaction between the interface components.

It is IMPORTANT to keep the model separate from the interface. Also, with respect to the
GUI, we need to have a "good" understanding of how the components of the interface will work
and interact with each other. Let us see if we can explain how the components interact. We
need to determine ALL of the following:

1. What events do we need to handle for each component ?
2. What should happen when each event is triggered ?
3. How do the events affect the model ?
4. How do we make changes to the model ?
5. How do these model changes affect the appearance of the interface ?

Recall that a user interface works as follows (based on what is called the Observer Pattern).

There are two questions regarding the updating stage of the components:

• When do we do this updating ? (i.e., where in our code)
• Which components need updating ?

Well, as a rule of thumb, we should do an update whenever we make any change to the model.
When we go to do the update, if we know our code very well, we can determine which
components will need updating based on the particular change to the model. However, in case
we have a complex application, we may not know which ones need updating, so we can take the
simple brainless approach and just update everything. We often simply write an update()
method, where we update all the components (i.e., a kind of global update is performed). We
call this method whenever the model changes.

So, REMEMBER the two VERY important things that
you should normally do in every event handler:

1. Change the model
2. Call update()

Example:

Let us now build the following application which represents a list of "things to do":

The application will work as follows:

• The model consists of a collection (stored in a list) of items. In our example, the items
will be Strings.

• The user can add new items to the list by typing the new item in the text field and
clicking the Add Button.

• Items are removed from the list by selecting an item from the list and clicking the
Remove Button.

In this "to do list" application, the model is simply the collection (e.g., a Vector) of things to do
(i.e. Strings). So we don't need to make a model class in this simple example. What about the
GUI ? First, we determine how the interface should react to user input. We must determine
which events are necessary to be handled. The events and their consequences are as follows:

AddButton
actionPerformed() - Should take text from text field and add it to the list.

RemoveButton

actionPerformed() - Should determine selected item from the list and then
remove it.

TextField
Nothing for now. We will add some behavior here later.

List
Nothing for now. We will add some behavior here later.

Now what about the model updating ? How do these events change the model ? How does the
model then change the window again ?

• Adding an item should cause a new entry to be added to the list (i.e., model). Then we
must show these changes in the list.

• Removing an item also changes the model and we should show the changes right away in
the list as well.

Refreshing the user interface to show the changes in the model is called updating.

Let us now look at a basic "working" application. We will handle the Adding and Removing of
items from the list. The highlighted code below indicates the code required for handling the
events from the buttons and updating the interface:

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class TodoListFrame extends JFrame {
 private JTextField newItemField;
 private JList itemsList;
 private JButton addButton;
 private JButton removeButton;

 private Vector<String> items; // The model

 public TodoListFrame() {
 this(new Vector<String>());
 }
 public TodoListFrame(Vector<String> todoEntries) {
 super("To Do List");
 items = todoEntries;

 // ...
 // The code for building the window has been omitted
 // ...

 // Add listeners for the buttons and then enable them
 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 addButtonEventHandler();
 }
 });
 removeButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 removeButtonEventHandler();
 }
 });

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300,200);

 update();

 }

 // Event Handler for the Add button
 private void addButtonEventHandler() {
 items.add(newItemField.getText());
 update();
 }

 // Event Handler for the Remove button
 private void removeButtonEventHandler() {
 items.remove((String)itemsList.getSelectedValue());
 update();
 }
 // Update all the components
 private void update() {
 itemsList.setListData(items);
 }

 public static void main(String[] args) {
 // Set up the items to be put into the list
 Vector<String> todoItems = new Vector<String>();
 todoItems.add("wash my car");
 todoItems.add("go to dentist");
 todoItems.add("shovel the laneway");
 todoItems.add("pick up milk");
 todoItems.add("laundry");

 TodoListFrame frame = new TodoListFrame(todoItems);
 frame.setVisible(true);
 }
}

Notice:

• we made a single update() method that is called from the Add and Remove button
event handlers as well as when the window is first opened.

• the update really just updated the data in the JList to reflect the changes in the model.

So, REMEMBER the two VERY important things that
you should normally do in your update() method:

1. Read the model's
information
2. Change the "look" of the
interface components

There are two problems with the application:

1. When no text is in the text field and Add is pressed, a blank item is added.
2. When no item is selected from the list and a Remove is done, our code tries to remove a

null item from the model. Since the model is a Vector, and the remove method for
vectors handles this attempt with grace (i.e., no exception), then it is not really a
problem. However, what if someone changes the underlying model to be something
other than a vector ? We should fix this.

How can we fix these ? First check if there is any text before doing the Add. If there is none,
don't add. The change occurs in the event handler for the Add button. Here is the changed code:

private void addButtonEventHandler() {
 if (newItemField.getText().length()
> 0) {
 items.add(newItemField.getText());
 update();
 }
}

For the remove problem, we would like to have a way of determining whether or not anything
was selected from the list. To do this, we merely ask if the selected list value is null:

private void removeButtonEventHandler() {
 if (itemsList.getSelectedValue() !=
null) {

items.remove((String)itemsList.getSelectedValue());
 update();
 }
}

We have fixed the problems ... but now we have a messy situation. It seems that the JButtons
MUST know about the JList component. The JButtons are somehow "tied" with the JList so

that if the JList is removed and perhaps replaced by something else, we must go into the
JButton event handler and make changes. This is "messy".

• code is not easily maintained when many components rely on other components
• components need to know exactly how they affect other components

A better way to solve these problems is to make the list selection a part of the model. We would
like to use the model as a kind of "middle man" between all component interaction so that this
"dependence" between components is severed.

So ... we will keep track of the item that was selected and this will be part of our model.
Of course this means that we will have to handle the selection event for the JList component.

Here is what we need to add/change:

1. Add an instance variable to store the selected item:

private String selectedItem; // Part of the model

2. Modify the constructor to initially select a list item if there is one available, and also add
a list selection listener for whenever someone makes a selection from the list:

public TodoListFrame(Vector<String> todoEntries) {
 super("To Do List");
 items = todoEntries;

 if (items.size() > 0)
 selectedItem = (String)items.firstElement();
 else
 selectedItem = null;

 // ... Some code has been omitted ...

 // Add listeners for the buttons and then enable them
 addButton.addActionListener(...);
 removeButton.addActionListener(...);

 itemsList.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 listSelectionEventHandler();
 }
 });

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300,200);
 update();
 }

3. Write the listSelectionEventHandler() so that the new instance variable is updated to
reflect the latest selection made:

private void listSelectionEventHandler() {
 selectedItem = (String)itemsList.getSelectedValue();
 update();
}

4. Modify the Remove button event handler to use the new selectedItem variable now. We
must make sure to set the selectedItem to null after an item is removed, since the list will
not have anything selected in it anymore:

private void removeButtonEventHandler() {
 if (selectedItem != null) {
 items.remove(selectedItem);
 selectedItem == null;
 update();
 }
}

5. Modify the update() method to make sure that the selectedItem variable always matches
the item selected from the list:

private void update() {
 itemsList.setListData(items);

 itemsList.setSelectedValue(selectedItem, true);

}

At this point, we have a strange bug in our application. It seems that we are unable to actually
select anything from our JList now ! The problem is that our update() method calls
setSelectedValue() which changes the contents of the list. This generates an internal
valueChanged() event ... which is the event that we are handling. Hence, when we do a list

selection, our event handler is called, which itself calls update(). Then update generates another
valueChanged() event which again calls our handler and update() again. Really, this is an
endless loop. JAVA is able to deal with this problem without generating exceptions, but it does
not give us desirable results in that we cannot really select anything from the list ;).

The simplest and most logical solution is to disable the list selection listener while updating and
then re-enable it afterwards. To do this, we will need the actual listener object and de-register it
at the beginning of the update() method, then re-register it afterwards. Here are the steps:

1. Declare the following instance variable:

private ListSelectionListener itemsListListener;

2. Store the ListSelectionListener that was created in our constructor:

 itemsList.addListSelectionListener(itemsListListener =
 new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 listSelectionEventHandler();
 }
 }
);

3. Disable and then re-enable the listener in our update() method:

private void update() {
 itemsList.removeListSelectionListener(itemsListListener);
 itemsList.setListData(items);
 itemsList.setSelectedValue(selectedItem, true);
 itemsList.addListSelectionListener(itemsListListener);
}

The application now works and has nice clean code.

We have prevented the Add button from doing anything when there is no text in the text field
and the Remove button from doing anything when there is nothing selected. It is best to let the
user know that these buttons will not work under these circumstances. The proper way of doing
this is to disable the buttons at these times. Let us make these changes now. We will make use
of the setEnabled() method for buttons which enables or disables the button according to a
given boolean.

Where do we write the code for disabling these buttons ? Well, does it have to do with
functionality or with appearance ?
After some thought, you realize that this is a "cosmetic" issue and that it has to do with the
"look" of the buttons. Hence, we should make these changes in the update() method.

Disabling the Remove button is easy. Just add the following line to the update() method:

 removeButton.setEnabled(selectedItem != null);

For the Add button, we can add a similar line:

 addButton.setEnabled(newItemField.getText().length() > 0);

There is a small problem. When the interface starts up, the text field is empty and so the Add
button is disabled. That's good. But when the user starts typing in the text field, there is then
text in the text field but the Add button remains enabled. The problem is that update() is not
being called unless an event occurs. So we need to have some kind of event for when the user
types text in the text field. So we will need to make some changes. In addition, this approach
to enabling the Add button results in a dependency on there being a text field. We should create
another instance variable to indicate whether or not there is any text in the text field. We can just
use a boolean, but we may as well keep the whole item that is in there instead of just a flag.
First we need to make the following additions:

// Add this as an instance variable
private String newItem;

// Add this to the constructor
newItem = "";

Now, we could use handle ActionEvents for the TextField, but these events only occur when
the user presses Enter within that field. Instead, we will make use of something called a
DocumentListener. Every JTextField has a document object associated with it that can be
obtained with getDocument(). We can then add the listener to this object. This way, we can
handle events that occur whenever the text changes (character by character) even if no Enter key
is pressed. We need to make the following changes to our code:

// Declare this instance variable at the top
private DocumentListener newItemFieldListener;

// Add this to the constructor
newItemField.getDocument().addDocumentListener(newItemFieldListener =
 new DocumentListener() {
 public void changedUpdate(DocumentEvent theEvent) {
 handleTextFieldEntry();
 }
 public void insertUpdate(DocumentEvent theEvent) {
 handleTextFieldEntry();
 }
 public void removeUpdate(DocumentEvent theEvent) {
 handleTextFieldEntry();
 }
 }
);

// Add this event handler for the text field
private void handleTextFieldEntry() {
 newItem = newItemField.getText();
 update();
}

Notice that there are three events that may be generated by the DocumentListener. These
correspond to typing in text, inserting and removing (i.e., paste/cut). Notice that despite the
particular edit change in the text field, all three events call our helper method which simply sets
the newItem variable to match the contents of the text field.

Of course, we will want to now modify the event handler for the Add button to make use of the
newItem field. We will also select the item that was just added. This is not necessary, but it is
a nice form of "feedback" for the user:

private void addButtonEventHandler() {
 if (newItem.length() > 0) {
 items.add(newItem);
 selectedItem = newItem; // select the newly added item
 update();
 }
}

We should also modify our update() method so that the Add button uses the newItem variable
now:

 addButton.setEnabled(newItem.length() > 0);

Now our code should work fine.

One last feature that we will add is to clear out the text field AFTER we add a new item. Well,
to do this, we will have to set the newItem to "" in the Add button handler as follows:
private void addButtonEventHandler() {
 if (newItem.length() > 0) {
 items.add(newItem);
 selectedItem = newItem;
 newItem = "";
 update();
 }
}
Notice however, that at this point, the newItem variable will be "", but there will still be some
contents in the text field ... so they are not in agreement. To fix this, we will have to actually
clear out the text field contents. This, of course, has to do with the appearance of the text field,
so we could try placing the following code within the update() method:
newItemField.setText(newItem);
But, we have a small problem. If we were to run our code right now, we would notice a bug
when we tried to type into the text field. Our code would generate the following exception:

java.lang.IllegalStateException: Attempt to mutate in
notification

JAVA version 1.4 and onward, however, will not allow us to set or modify the contents of the
JTextField while we are handling one of its document events. So, we will need to make the
following changes:

1. avoid setting the text field's text within the update() whenever we call update() from a
DocumentListener

2. remove/add the document listener at the start/end of the update() method.

To do this, we will make a special update() method. In fact, we will split up our update()
method as follows:
// Update called by Document Listeners directly
private void update(boolean calledFromTextField) {
 itemsList.removeListSelectionListener(itemsListListener);
 newItemField.getDocument().removeDocumentListener(newItemFieldListener);

 itemsList.setListData(items);
 itemsList.setSelectedValue(selectedItem, true);
 removeButton.setEnabled(selectedItem != null);
 addButton.setEnabled(newItem.length() > 0);
 if (!calledFromTextField) newItemField.setText(newItem);

 itemsList.addListSelectionListener(itemsListListener);
 newItemField.getDocument().addDocumentListener(newItemFieldListener);
}

// Update used by all the event handlers, except Document event handlers
private void update() {
 update(false);
}

The make the following change in the handleTextFieldEntry() method:

private void handleTextFieldEntry() {
 newItem = newItemField.getText();
 update(true); // since we called from this document
listener
}

Note that all event handlers will call the usual update() method (which will set the text in the
text field), but the DocumentListeners will call update(true) so as to avoid setting the text
illegally. Thus, when we press the Add button and set the newItem variable to "", the call to
update() at the end of the event handler will ensure that the text field's contents are set to "".
Meanwhile, if we make changes to the text field directly, we will not be updating the text field
appearance, as it does not need updating since it will always have the same contents as the
newItem variable anyway.

Now the last improvement is within the update() method. When we make changes to our code
by adding or removing components, we must go to the update method and make changes. It is
difficult to determine what code pertains to which components. We can extract this update code
so that we make separate methods such as updateTextField(), updateList(), and
updateButtons(). These will do the corresponding updates for the individual components. This
way, when we modify or remove a component, it is clear as to what code should be
modified/removed. This alternative method also allows us to update only those components that
have changed (not all). This is good if the interface becomes slow in drawing the components.

We can speed everything up by only updating necessary components. We can also extract the
code for disabling/enabling the listeners into separate methods as well.

The final completed code is shown below (the class name has been changed to
ToDoListFrame2):

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class ToDoListFrame2 extends JFrame {
 private JTextField newItemField;
 private JList itemsList;
 private JButton addButton;
 private JButton removeButton;

 // Listeners that need to be disabled/enabled during update()
 private ListSelectionListener itemsListListener;
 private DocumentListener newItemFieldListener;

 private Vector<String> items; // The model
 private String selectedItem; // item selected in the list
 private String newItem; // String contained in text field

 public ToDoListFrame2() {
 this(new Vector<String>());
 }

 public ToDoListFrame2(Vector<String> todoEntries) {
 super("To Do List");
 items = todoEntries;

 if (items.size() > 0)
 selectedItem = (String)items.firstElement();
 else
 selectedItem = null;

 newItem = ""; // nothing in the text field yet

 initializeComponents();

 // Add listeners for the buttons, list and text field
 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 addButtonEventHandler();
 }
 });
 removeButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 removeButtonEventHandler();
 }
 });

 itemsList.addListSelectionListener(itemsListListener =
 new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 listSelectionEventHandler();
 }
 }
);
 newItemField.getDocument().addDocumentListener(newItemFieldListener =
 new DocumentListener() {
 public void changedUpdate(DocumentEvent theEvent) {
 handleTextFieldEntry();
 }
 public void insertUpdate(DocumentEvent theEvent) {
 handleTextFieldEntry();
 }
 public void removeUpdate(DocumentEvent theEvent) {
 handleTextFieldEntry();
 }
 }
);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300,200);

 update();
 }

 // Build the frame by adding all the components
 private void initializeComponents() {
 GridBagLayout layout = new GridBagLayout();
 GridBagConstraints constraints = new GridBagConstraints();
 setLayout(layout);

 newItemField = new JTextField();
 constraints.gridx = 0;
 constraints.gridy = 0;
 constraints.gridwidth = 1;
 constraints.gridheight = 1;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.insets = new Insets(12, 12, 3, 3);
 constraints.weightx = 1;
 constraints.weighty = 0;
 layout.setConstraints(newItemField, constraints);
 add(newItemField);

 addButton = new JButton("Add");
 addButton.setMnemonic('A');
 constraints.gridx = 1;
 constraints.gridy = 0;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.insets = new Insets(12, 3, 3, 12);
 constraints.anchor = GridBagConstraints.NORTHWEST;
 constraints.weightx = 0;
 constraints.weighty = 0;
 layout.setConstraints(addButton, constraints);
 add(addButton);

 itemsList = new JList();
 itemsList.setPrototypeCellValue("xxxxxxxxxxxxxxxxxxxxxxxxxxxxx");
 JScrollPane scrollPane = new JScrollPane(itemsList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 constraints.gridx = 0;
 constraints.gridy = 1;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.insets = new Insets(3, 12, 12, 3);
 constraints.weightx = 1;
 constraints.weighty = 1;
 layout.setConstraints(scrollPane, constraints);
 add(scrollPane);

 removeButton = new JButton("Remove");
 removeButton.setMnemonic('R');
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 constraints.insets = new Insets(3, 3, 0, 12);
 constraints.anchor = GridBagConstraints.NORTH;
 constraints.weightx = 0;
 constraints.weighty = 0;
 layout.setConstraints(removeButton, constraints);
 add(removeButton);
 }

 // Event Handler for the Add button
 private void addButtonEventHandler() {
 if (newItem.length() > 0) {
 items.add(newItem);
 selectedItem = newItem; // select the newly added item
 newItem = ""; // clear the text
 update();
 }
 }

 // Event Handler for the Remove button
 private void removeButtonEventHandler() {
 if (selectedItem != null) {
 items.remove(selectedItem);
 selectedItem = null;
 update();
 }
 }

 // Event Handler for List Selection
 private void listSelectionEventHandler() {
 selectedItem = (String)itemsList.getSelectedValue();
 update();
 }

 // Handler for entering text in the text field
 private void handleTextFieldEntry() {
 newItem = newItemField.getText();
 update(true);
 }

 // Update all the components
 private void update(boolean calledFromTextField) {
 disableListeners();

 updateList();
 updateButtons();
 if (!calledFromTextField)
 updateTextField();

 enableListeners();
 }

 private void update() {
 update(false);
 }

 private void disableListeners() {
 itemsList.removeListSelectionListener(itemsListListener);

newItemField.getDocument().removeDocumentListener(newItemFieldListener);
 }
 private void enableListeners() {
 newItemField.getDocument().addDocumentListener(newItemFieldListener);
 itemsList.addListSelectionListener(itemsListListener);
 }
 private void updateList() {
 itemsList.setListData(items);
 itemsList.setSelectedValue(selectedItem, true);
 }
 private void updateButtons() {
 removeButton.setEnabled(selectedItem != null);
 addButton.setEnabled(newItem.length() > 0);
 }
 private void updateTextField() {
 newItemField.setText(newItem);
 }

 public static void main(String[] args) {
 // Set up the items to be put into the list
 Vector<String> todoItems = new Vector<String>();
 todoItems.add("wash my car");
 todoItems.add("go to dentist");
 todoItems.add("shovel the laneway");
 todoItems.add("pick up milk");
 todoItems.add("laundry");

 ToDoListFrame2 frame = new ToDoListFrame2(todoItems);
 frame.setVisible(true);
 }
}

Exercise:

But wait a minute! There is still a problem with our code. If we try adding two or more items
with the same name, JAVA will not allow us to select any of these items except the topmost
one!

Looking at the updateList() method and the listSelectionEventHandler() method, can you
determine what the problem is ? As a practice exercise, try to solve this problem by making
some appropriate changes to the code. You may want to look at the JList class in the JAVA
documentation.

	 3 Events and Listeners
	/
	Adapter Classes:
	Summary of Making Your Own Event Handlers:
	Handling two button clicks
	A Simple Slide Show
	Working With JTextFields
	Handling RadioButtons
	Handling JButton Selections
	Example using Mouse Listeners

