

COMP1406/1006 - Design and Implementation of Computer Applications Winter 2006

 4 A Traffic Light Application

What's in This Set of Notes?
It is a good idea now to look at an application with a more interesting model component. We
will look at the example of a TrafficLight model object with a user interface attached to it. We
will also look at how we can use a Timer object to have automatic updating of the TrafficLight.

Here are the individual topics found in this set of notes (click on one to go there):

• 4.1 Application Description
• 4.2 Developing the Model
• 4.3 Designing the User Interface Layout
• 4.4 Connecting it all Together
• 4.5 Hooking up the Timer
• 4.6 Splitting up the Model, View and Controller

 4.1 Application Description

The purpose of this application is to give you more experience in understanding how to create an
application by using the following steps:

1. Understand what you want the interface to do.
2. Understand what the model should be and then develop the model.
3. Create the user interface layout.
4. Connect the interface to the model.

You should follow these steps whenever creating an interface in this course.

Understanding the interface:

First let us describe the application. The application is a window with the following
components:

• A set of 3 JRadioButtons to represent the traffic light state (Red, Yellow or Green).

• A JComboBox to indicate actions (i.e., Stop, Yield and Go) which correspond to the
traffic light state.

• a JButton with a traffic light icon which reflects (and allows advancing of) the state of the
traffic light.

• a JCheckBox which will allow the light to advance automatically, based on a timer.
• a JSlider that will allow the user to adjust the speed of the automatic time advance

feature.
• a JProgressBar that will indicate how much longer the traffic light will remain in its

current state.
• various JLabels to make the window more self-explanatory.

The interface will look something like this:

Here is how the behaviour of the interface is described:

• The radio buttons and the combo box should be linked together such that if the Red light
is selected, then the Stop item is selected automatically in the combo box as well. The
same goes for the Yellow/Yield and Green/Go options as well. Also, if a selection is
made in the combo box, then this selection is also made in the radio button group as
mentioned.

• The status pane should show the following messages depending on the state of the lights:
o Red: "Red Traffic Light Means: 'Stop Please'"
o Yellow: "Yellow Traffic Light Means: 'Yield to Others'"
o Green: "Green Traffic Light Means: 'Go Really Fast'"

• The Advance button should cause the light to advance to the next state in a cyclic fashion
in the order red, green, yellow, red, green,

• When the Auto button is pressed, the lights will advance automatically such that the red
light stays on for 6 seconds, the green for 8 seconds and the yellow for 3 seconds.
Pressing the Advance button while in Auto mode will also advance the state of the
light. The progress bar should indicate the number of seconds that the traffic light has
been in its current state.

 4.2 Developing the Model

How do we make the model ? What is the model ? It is a traffic light.
Two simple ways of representing a traffic light are as:

• an integer from 1 to 3 (where 1 = Red, 2 = Yellow, 3 = Green) or some other numbering
scheme

• one of the following Strings: "Red", "Yellow" or "Green"

This would work, but then we don't get to define any behaviour such as getState() or
advanceState(). We should make our own class.
Within this class, we will simply use an integer to store the state.

Note:

• It is always a good idea to make a "stand-alone" model with behaviour such that any kind
of user interface can be plugged into it.

Here is the model code:

public class TrafficLight {
 int currentState;

 // Constructor that makes a red traffic light
 public TrafficLight() {
 currentState = 1;
 }

 // Advance the traffic light to the next state
 public int advanceState() {
 currentState = ++currentState % 3 + 1;
 return currentState;
 }

 // Return the state of the traffic light (as a number from 1 to 3)
 public int getState() {
 return currentState;
 }

 // Set the state of the traffic light (as a number from 1 to 3)
 // If the integer is out of range, do nothing

 public void setState(int newState) {
 if ((newState > 0) && (newState <4))
 currentState = newState;
 }

 // Return a string representation of the traffic light
 public String toString() {
 String[] colours = {"Red", "Yellow", "Green"};
 return colours[currentState] + " Traffic Light";
 }
}

Making a traffic light is easy:

 new TrafficLight();

We can ask for the state or change the state. A state of 1 is a Red light, 2 is a Yellow light and 3
is a Green light.
The advance method will cause the state to cycle as follows: 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, ...

Notice that there are no System.out.println() messages here, nor is there any keyboard input.
That is because, those are actually I/O operations and they depend heavily on the type of user
interface that will be used. We leave that kinda "stuff" out of the model let the user interface
worry about those issues. (Sometimes we may have println statements for debugging/testing
purposes, but ultimately these should be removed from the model class code). That way, we can
"plug-in" the model into any user interface and the model becomes modular, clean, shared code.
So remember,

Model classes should NOT:

• print to the console, nor
• get input from the keyboard

 4.3 Designing the User Interface Layout

Now ... the user interface. We will use a GridBagLayout manager. The basic code for building
the window is shown below, although we will add more to it. There is nothing tricky about the
code.

import java.awt.*;
import javax.swing.*;
import javax.swing.*;
import javax.swing.event.*;

public class TrafficLightFrame extends JFrame {

 // These are the window's components
 private JRadioButton[] buttons = new JRadioButton[3];
 private JButton advButton;
 private JProgressBar progressBar;
 private JSlider slider;
 private JComboBox actionList;
 private JCheckBox autoButton;

 public TrafficLightFrame(String title) {
 super(title);
 buildWindow();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(400, 250);
 }

 // Add all components to the frame's panel
 private void buildWindow() {
 GridBagLayout layout = new GridBagLayout();
 GridBagConstraints constraints = new GridBagConstraints();
 setLayout(layout);

 // Add all the labels
 JLabel label = new JLabel("Manual");
 constraints.gridx = 0;
 constraints.gridy = 0;
 constraints.gridwidth = 1;
 constraints.gridheight = 1;
 constraints.weightx = 0;
 constraints.weighty = 0;
 constraints.fill = GridBagConstraints.NONE;
 constraints.anchor = GridBagConstraints.NORTHWEST;
 constraints.insets = new Insets(5, 5, 0, 0);
 layout.setConstraints(label, constraints);
 add(label);

 label = new JLabel("Action");
 constraints.gridx = 1;
 layout.setConstraints(label, constraints);
 add(label);

 label = new JLabel("Advance");
 constraints.gridx = 2;
 layout.setConstraints(label, constraints);
 add(label);

 label = new JLabel("Timer Progress");
 constraints.gridx = 0;
 constraints.gridy = 4;
 layout.setConstraints(label, constraints);
 add(label);

 // Add the Radio Buttons
 ButtonGroup lights = new ButtonGroup();
 JPanel aPanel = new JPanel();
 aPanel.setLayout(new BoxLayout(aPanel, BoxLayout.Y_AXIS));
 aPanel.setBackground(Color.black);
 for (int i=0; i<3; i++) {
 buttons[i] = new JRadioButton("", false);
 buttons[i].setBackground(Color.black);
 lights.add(buttons[i]);
 aPanel.add(buttons[i]);
 }
 buttons[0].setText("Red");
 buttons[1].setText("Yellow");
 buttons[2].setText("Green");
 buttons[0].setForeground(Color.red);
 buttons[1].setForeground(Color.yellow);
 buttons[2].setForeground(Color.green);
 constraints.gridx = 0;
 constraints.gridy = 1;
 constraints.gridheight = 3;
 constraints.fill = GridBagConstraints.BOTH;
 layout.setConstraints(aPanel, constraints);
 add(aPanel);

 // Make the Actions List
 String[] actions = {"Stop", "Yield", "Go"};
 actionList = new JComboBox(actions);
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.gridheight = 1;
 constraints.weightx = 1;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 layout.setConstraints(actionList, constraints);
 add(actionList);

 // Make the Slider
 slider = new JSlider(JSlider.HORIZONTAL, 0, 20, 1);
 slider.setMajorTickSpacing(5);
 slider.setMinorTickSpacing(1);
 slider.setPaintTicks(true);
 slider.setPaintLabels(true);
 constraints.gridx = 1;
 constraints.gridy = 3;
 layout.setConstraints(slider, constraints);
 add(slider);

 // Add the auto checkbox button
 autoButton = new JCheckBox("Auto Advance");
 constraints.gridx = 1;

 constraints.gridy = 2;
 constraints.fill = GridBagConstraints.BOTH;
 layout.setConstraints(autoButton, constraints);
 add(autoButton);

 // Add the Advance Picture button
 advButton = new JButton(new ImageIcon("RedLight.jpg"));
 constraints.gridx = 2;
 constraints.gridy = 1;
 constraints.gridheight = 3;
 constraints.weightx = 0;
 constraints.weighty = 1;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.insets = new Insets(5, 5, 0, 5);
 layout.setConstraints(advButton, constraints);
 add(advButton);

 // Add the progress bar
 progressBar = new JProgressBar(JProgressBar.HORIZONTAL, 0, 8);
 constraints.gridx = 0;
 constraints.gridy = 5;
 constraints.gridwidth = 3;
 constraints.gridheight = 1;
 constraints.weightx = 1;
 constraints.weighty = 2;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.insets = new Insets(5, 5, 5, 5);
 layout.setConstraints(progressBar, constraints);
 add(progressBar);
 }

 public static void main(String args[]) {
 TrafficLightFrame frame = new TrafficLightFrame("Traffic Light");
 frame.setVisible(true);
 }
}

When we run the application at this point, the components all appear on the window, although
the interface does not really do anything useful yet. Some interesting things to note are:

• We made an array of JRadioButtons so that we can access the buttons by index. This is
useful since we need to change the state of a button based on the traffic light's state
(which will be an integer).

• The JRadioButtons were added to a JPanel so that it is easier to keep them grouped
together when the window resizes.

• The JProgressBar uses a range from 0 to 8. We will see more about this later.
• The JButton initially has a picture called "RedLight.jpg" representing a red traffic

light. This file must be in the same directory as this code as well as two others which
will be used later, called "GreenLight.jpg" and "YellowLight.jpg".

 4.4 Connecting it all Together

Now we must connect the model and the interface together to make it all work.

We begin by adding an instance variable representing the model:

 // This is the model
 private TrafficLight aTrafficLight = new TrafficLight();

This model MUST ALWAYS be synchronized with the user interface. That is, the user
interface should always reflect perfectly the state of the traffic light. That means, upon startup,
the application should show the default traffic light state in the radio buttons, the combo box and
the picture on the advance button. To do this, we will make sure that our update() method
always updates the components properly. In fact, it is best to first write the update() method
BEFORE writing any event handlers. That way, the interface always reflects the model, making
debugging the event handlers easier. Also, it ensures that you put your code in the correct place.

Always follow these steps:

1. Create the model
2. Create your user interface "look" (i.e.,

frame with its components)
3. Write the update() method to refresh

ALL components that may change their
look

4. Write and test your event handlers one
by one

So now let us write our update method. It is often the case that we write helper methods (one
for each component or group of components) to help keep our code neat and tidy. We will start
by updating the radio buttons, combo box and advance button only, since they deal directly with
the traffic light state:

 // Update all relevant components according to the traffic light state
 public void update() {
 updateRadioButtons();
 updateComboBox();
 updateAdvanceButton();
 }

Notice the three helper methods. These methods should put the appropriate data into the
components based on the current state of the model. These methods will also be used later on
when we make changes to the model and need to reflect these changes in the window.

 private void updateRadioButtons() {
 for (int i=0; i<3; i++)

 buttons[i].setSelected(aTrafficLight.getState() == (i+1));
 }
 private void updateComboBox() {
 actionList.setSelectedIndex(aTrafficLight.getState() - 1);
 }
 private void updateAdvanceButton() {
 String[] iconNames =
{"RedLight.jpg","YellowLight.jpg","GreenLight.jpg"};
 advButton.setIcon(new ImageIcon(iconNames[aTrafficLight.getState()-
1])); }
 }

Notice a couple of things:

• Each helper update method corresponds to a single component (or group, as with radio
buttons).

• Each helper update method relies on the model only, not on any other components (this is
clean).

In our constructor, we will call the update() method (after we add the components) so that when
the frame is created, the components will all be updated to reflect the initial state of the model.

 public TrafficLightFrame(String title) {
 super(title);
 buildWindow();

 update();

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(400, 250);
 }

OK. When we run our window now, it should represent our default traffic light state (which is
red). So, the top radio button should be selected, the combo box should indicate "Stop" and the
red light image should be on the advance button.

It is now time to write the event handlers.

How can we get the radio buttons to change the state of the model ? We need to add an action
listener for each button. We need to write the following in the constructor in order to register the
listener for each Radio Button:

 // Register the JRadioButton Listeners
 for (int i=0; i<3; i++)
 buttons[i].addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleRadioButtonPress((JRadioButton)e.getSource());
 }
 });

Then, we can write the handleRadioButtonPress() helper method. What should it do ? Do
you remember ... its simple ... change the model ... then call update(). But how does it change
the model ? Well, the model's state should match the index of the button, shouldn't it ?

 // This is the radio button event handler
 private void handleRadioButtonPress(JRadioButton source) {
 for (int i=0; i<3; i++) {
 if (source == buttons[i])
 aTrafficLight.setState(i+1);
 }
 update();
 }

Notice that the event handler determines which button was pressed by using getSource() and
comparing this to the actual buttons by using the identity operator. Notice also, that we simply
ask the model to change its state and then call update(). The update() method will take care
of making sure that all other components will reflect the recent model changes. If we were to
test things now, we would see that by clicking the radio buttons, the ComboBox and icon on the
Advance button would be updated properly to reflect the model changes as desired.

To get this to happen for selecting combo box items as well, we merely add an ActionListener
to the ComboBox (again in out constructor):

 // Register the JComboBox Listener
 actionList.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleComboBoxSelection((JComboBox)e.getSource());
 }
 });

Now here is the helper method which simply determines the index of the selected item and
updates the model accordingly

 // The ComboBox selection event handler
 private void handleComboBoxSelection(JComboBox source) {
 aTrafficLight.setState(source.getSelectedIndex() + 1);
 update();
 }

Once again, we can use getSource() to get the component (i.e. the combo box). Alternatively,
we could have just accessed the actionList instance variable (simpler code, but it would be
dependent on the variable name ... which is not too bad). After making these changes, both the
radio buttons and combo box are "synchronized" in that selection from one causes selection in
the other. Neat isn't it ?

There is a slight problem. The setSelectedIndex() call in our updateComboBox() method will
generate an ActionEvent again, leading to another call to update() and we are led into an
endless loop as with our "todo List" example. So we need to disable the ActionListener for the
combobox while we are updating. We can store the ActionListener into an instance variable
when we create it and then remove/add it in the update() method:

 // Add this new instance variable
 private ActionListener comboBoxListener;

 public TrafficLightFrame(String title) {
 ...
 actionList.addActionListener(comboBoxListener = new
ActionListener() {
 public void actionPerformed(ActionEvent e) {

handleComboBoxSelection((JComboBox)e.getSource());
 }
 });
 ...
 }

 public void update() {
 actionList.removeActionListener(comboBoxListener);
 updateRadioButtons();
 updateComboBox();
 updateAdvanceButton();
 updateProgressBar();
 actionList.addActionListener(comboBoxListener);
 }

So what about the Advance button ? Well, it too should advance the state of the model and then
update all components. We add this code to the constructor:

 advButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleAdvanceButtonPress();
 }
 });

And then add this very simple helper method:

 // This is the Advance button event handler
 private void handleAdvanceButtonPress() {
 aTrafficLight.advanceState();
 update();
 }

Wow! Isn't this getting really easy now. We just ask the model to do the advancing of state and
then call update(). Now everything is just peachy.

 4.5 Hooking up the Timer

Our last step is to get the Timer working properly. This is actually quite easy. We will add an
instance variable to hold the Timer so that we can grab it whenever we want to Start or Stop it:

 private Timer aTimer;

Now we must make the timer. To make one, we simply call a constructor which specifies the
number of milliseconds that we would like between timer events as well as the listener (i.e.,
event handler). As it turns out, the listener is simply an ActionListener ... just as with JButtons.
We can write the following code in our constructor to generate a timer tick twice per second (i.e.,
1secons / 500ms = 2 seconds):

 // Add a timer for automode. Set it to go off every 500 milliseconds
 aTimer = new Timer(500, new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleTimerTick();
 }
 });

After doing this, the timer has NOT yet started and so no events are actually generated. We
have to explicitly start and/or stop the timer with separate methods. When do we want the timer
to start anyway ? Well, if the "Auto Advance" checkbox is turned on, we should start the timer.
 If it is turned off, we should stop the timer. We need to add an event handler for the check
box. We can do this by adding the following code to the constructor:

 autoButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleAutoButtonPress((JCheckBox)e.getSource());
 }
 });

And here is the helper method:

 // This is the Auto button event handler
 private void handleAutoButtonPress(JCheckBox source) {
 if (source.isSelected())
 aTimer.start();
 else
 aTimer.stop();
 update();
 }

As can be seen, when the checkbox is turned on, the timer is started. When turned off, it is
stopped.
Let us now look at what we must do on each timer event. We can write the following code as
our TimerEventHandler:

 // This is the Timer event handler
 private void handleTimerTick() {
 aTrafficLight.advanceState();

 update();
 }

Wow! It is the same code as the advance button. In fact, we could have used the exact same
event handler ! If you were to test this, you would see the traffic light change state every 0.5
seconds as long as the check box remains selected. Once turned off, the advancing stops. Notice
that the advance button will still cause the light to change state as well.

We forgot one of our criteria ... we must have the lights remain in a certain state for different
amounts of time. Remember, red for 6 seconds, green for 8 seconds, then yellow for 3 seconds.
We will have to keep a counter of some kind to keep track of how long the light has been in the
current state. Once it has been on long enough, we advance.

But doesn't this have something to do with the model ? Shouldn't the traffic light itself know
how long to remain in each state ? It looks like we may want to adjust our model. We will
need to add some kind of counter to our model that counts how long the traffic light remains in a
certain state. We can add the following instance variable to our TrafficLight model class:

 private int stateCount; // amount of time in this
state

We can also choose a maximum amount of time that the traffic light remains in any particular
state. This can be used by the progress bar later. We will define the following static constant:

 public static final int MAX_TIME_COUNT = 8;

We should set the stateCount to zero in our constructor and reset this counter to zero whenever
we make state changes.

 public TrafficLight() {
 currentState = 1;
 stateCount = 0;
 }
 public int advanceState() {
 currentState = ++currentState % 3 + 1;
 stateCount = 0;
 return currentState;
 }
 public void setState(int newState) {
 if ((newState > 0) && (newState <4)) {
 currentState = newState;
 stateCount = 0;
 }
 }

We will likely want a get method for this counter too:

 public int getStateCount() {
 return stateCount;
 }

Now how (and when) do we go about making the traffic light advance automatically over time
? Well, we will let the user interface decide on how fast to make the timer go, but we will want
a method in our model that "simulates" the passing of time. We can write a method called
advanceTime() that will be called once per time unit (e.g., once per second) to advance the time
(i.e., our stateCount counter). So then in this method we just have to check and see if the
counter reached its limit according to what state it is in:

 // Simulate a single time unit of time passing by
 public void advanceTime() {
 // advance the time spent in the current state
 stateCount++;

 // The number of seconds (i.e., time units) that
 // the traffic light remains in each state
 int[] stateTimes = {6, 3, 8};

 // Check if we have reached time limit for current state
 if (stateCount > stateTimes[currentState-1])
 advanceState();
 }

So now we can get back to our user interface. We need to change the call from advanceState()
to advanceTime() in our timer tick event handler:

 private void handleTimerTick() {
 aTrafficLight.advanceTime();
 update();
 }

So what about the progress bar ? How can we have it reflect the current count ? We first need
to go back to our code that built our window and now use the static constant that we defined in
our model representing the maximum limit for the progress bar:

progressBar = new JProgressBar(JProgressBar.HORIZONTAL, 0,
TrafficLight.MAX_TIME_COUNT);

We will need to update the progress bar every time that the traffic light increments its
stateCount. We will write an update method for this:

 // Update all relevant components according to the traffic light state
 public void update() {
 updateRadioButtons();
 updateComboBox();
 updateAdvanceButton();

 updateProgressBar();

 }

 // Update the progress bar
 private void updateProgressBar() {
 progressBar.setValue(aTrafficLight.getStateCount());
 }

That's it. The progress bar will now show the amount of time that the traffic light remains in its
current state.

The last remaining task for us to complete is to get the slider working. We need to register for a
stateChanged event. We can add this to our constructor:

 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 handleSlider((JSlider)e.getSource());
 }
 });

Now of course, we need to write the event handler. We only want to make a change to the timer
delay when the user lets go of the slider. So while the user is adjusting the value, we do not
want to handle the event. We can check for this with a getValueIsAdjusting() method call to
our slider. Then, we can get the value of the slider with getValue(). It will return an integer
within the range that we specified when creating the slider (from 0 to 20 in our case). Lastly, we
just need to call setDelay(int) for our timer, passing it in the new delay value. Of course, if the
delay is 0, we probably want to pick a HUGE delay such as Integer.MAX_VALUE. Also, we
will need to restart the timer after making the change (as long as it has already been started by
the check box):

 // This is the Slider event handler
 private void handleSlider(JSlider source) {
 if (!source.getValueIsAdjusting()) {
 int delay = source.getValue();
 if (delay > 0) {
 aTimer.setDelay(1000/delay);
 if (aTimer.isRunning())
 aTimer.restart();
 }
 else
 aTimer.setDelay(Integer.MAX_VALUE);
 update();
 }
 }

Well ... that is it! We are done.

 4.6 Splitting up the Model, View and Controller

Taking a look at our traffic light application, we notice a couple of things:

• The TrafficLightFrame class mixes together code related to
o how the interface looks and
o how the interface behaves.

• There is a problem if some other "entity" changes the TrafficLight model.....then the
TrafficLightFrame GUI will not be updated.

We will now make a distinction between a view and a controller.

Recall that a view is:

• the part of the application that specifies how the model is shown visually.
• the part of the code that deals with the appearance of the interface.

and a controller is:

• the part of the application that specifies how the model interacts with the view.
• the part of the code that deals with the behaviour of the interface.
• code that serves as a "mediator" between the model and the view.

Also, recall that it is ALWAYS a good idea to separate the model, view and controller (MVC):

• code is cleaner and easier to follow when the view and controller are separated
• we may want to have multiple views and controllers on the same model.

Consider this second point for a moment. If we have multiple controllers and views on the same
model (i.e., two windows for the same traffic light), then we have two different windows
affecting the model.

How can we cleanly allow one view to change the model and have the other view updated
automatically ?

We could have each view/controller keep track of all other views and controllers. This could get
messy, especially if we get more controllers and views later on down the road. A nice solution is
to have the model inform all interested parties whenever it has changed. Things brings up the
notion of a commonly used Object-Oriented Design pattern called the "subject/observer"
pattern.

If we make our model inform all interested applications when it has changed, then it must
somehow keep track of all applications that need to be updated when a change occurs. The
model becomes a kind of subject which the applications observe. To make a clean connection

between the two, we will make our model class implement a standardized Subject interface that
allows observers to register or un-register with it. We will write the following interface:

public interface Subject {
 public void registerObserver(Observer observer);
 public void unregisterObserver(Observer observer);
}

The model should therefore keep track of the applications that have registered with it so that it
can later update them. The applications should make sure that they have an update() method so
that this will all work. To do this, we will have the applications implement an Observer
interface.

public interface Observer {
 public void update();
}

As a result, we will have to change the model code so that it:

• keeps a list of all Observers that have registered
• informs all Observers whenever it changes (i.e., whenever its instance variables change)

We will also have to go through our interface code and:

• split up the view and controller into two separate classes
• remove all the calls to update() from the controller (except maybe one for initializing)

The Model:

Let us take a look at how the model now looks. Notice the changes highlighted:

// Making the TrafficLight model implement the Subject interface allows
// it to inform all of the observers whenever there has been a change
import java.util.ArrayList;
public class TrafficLight implements Subject {

 public static final int MAX_TIME_COUNT = 8;

 private int currentState; // 1=red, 2=yellow, 3=green
 private int stateCount; // amount of time in this state

 ArrayList<Observer> observers = new ArrayList<Observer>();

 // Constructor that makes a red traffic light
 public TrafficLight() {
 currentState = 1;
 stateCount = 0;
 }

 // Advance the traffic light to the next state
 public int advanceState() {

 currentState = ++currentState % 3 + 1;
 stateCount = 0;

 updateObservers(); // Tell the observer applications about this change

 return currentState;
 }

 // Simulate a single time unit of time passing by
 public void advanceTime() {
 // The number of seconds (i.e., time units) that
 // the traffic light remains in each state
 int[] stateTimes = {6, 3, 8};

 // advance the time spent in the current state
 stateCount++;

 updateObservers(); // Tell the observer applications about this change

 // Check if we have reached time limit for current state
 if (stateCount > stateTimes[currentState-1])
 advanceState();
 }

 // Return the amount of time spent in the current state
 public int getStateCount() {
 return stateCount;
 }

 // Return the state of the traffic light (as a number from 1 to 3)
 public int getState() {
 return currentState;
 }

 // Set the state of the traffic light (as a number from 1 to 3)
 // If the integer is out of range, do nothing
 public void setState(int newState) {
 if ((newState > 0) && (newState <4)) {
 currentState = newState;
 stateCount = 0;

 updateObservers(); // Tell the observer applications about this change

 }
 }

 // Return a string representation of the traffic light
 public String toString() {
 String[] colours = {"Red", "Yellow", "Green"};
 return colours[currentState] + " Traffic Light";
 }

 public void registerObserver(Observer observer) {

 observers.add(observer);
 }

 public void unregisterObserver(Observer observer) {
 observers.remove(observer);
 }

 // This method is called whenever there is a change to the model.
 // It informs all registered observer applications of the change.
 private void updateObservers() {
 for (Observer anObserver: observers)
 anObserver.update();
 }

}

The View:

What portion of code represents the view ? All of the stuff related to adding
Frames/Panels/Components etc.. We can take the TrafficLightFrame class and "strip away" all
of the behaviour and model related stuff (i.e., remove the Listeners etc..) If we do this, then the
controller MUST add the behaviour-related stuff (i.e., event handlers, updates, listeners etc..).

One problem is that the controller must be able to access the view's components in order to add
listeners, get their contents, change them etc.. One solution to this problem is to make instance
variables for all the components and then supply public "get" methods for each.

We will make our views as separate JPanels that hold the entire contents of the window:

import java.awt.*;
import javax.swing.*;
public class TrafficLightPanel extends JPanel {

 // These are the components
 private JRadioButton[] buttons = new JRadioButton[3];
 private JButton advButton;
 private JProgressBar progressBar;
 private JSlider slider;
 private JComboBox actionList;
 private JCheckBox autoButton;

 // Make some get methods so that the controller can access this view
 public JRadioButton getButton(int i) { return buttons[i]; }
 public JButton getAdvanceButton() { return advButton; }
 public JProgressBar getProgressBar() { return progressBar; }
 public JSlider getSlider() { return slider; }
 public JComboBox getActionList() { return actionList; }
 public JCheckBox getAutoButton() { return autoButton; }

 public TrafficLightPanel() {
 GridBagLayout layout = new GridBagLayout();

 GridBagConstraints constraints = new GridBagConstraints();
 setLayout(layout);

 // Add all the labels
 JLabel label = new JLabel("Manual");
 constraints.gridx = 0;
 constraints.gridy = 0;
 constraints.gridwidth = 1;
 constraints.gridheight = 1;
 constraints.weightx = 0;
 constraints.weighty = 0;
 constraints.fill = GridBagConstraints.NONE;
 constraints.anchor = GridBagConstraints.NORTHWEST;
 constraints.insets = new Insets(5, 5, 0, 0);
 layout.setConstraints(label, constraints);
 add(label);

 label = new JLabel("Action");
 constraints.gridx = 1;
 layout.setConstraints(label, constraints);
 add(label);

 label = new JLabel("Advance");
 constraints.gridx = 2;
 layout.setConstraints(label, constraints);
 add(label);

 label = new JLabel("Timer Progress");
 constraints.gridx = 0;
 constraints.gridy = 4;
 layout.setConstraints(label, constraints);
 add(label);

 // Add the Radio Buttons
 ButtonGroup lights = new ButtonGroup();
 JPanel aPanel = new JPanel();
 aPanel.setLayout(new BoxLayout(aPanel, BoxLayout.Y_AXIS));
 aPanel.setBackground(Color.black);
 for (int i=0; i<3; i++) {
 buttons[i] = new JRadioButton("", false);
 buttons[i].setBackground(Color.black);
 lights.add(buttons[i]);
 aPanel.add(buttons[i]);
 }
 buttons[0].setText("Red");
 buttons[1].setText("Yellow");
 buttons[2].setText("Green");
 buttons[0].setForeground(Color.red);
 buttons[1].setForeground(Color.yellow);
 buttons[2].setForeground(Color.green);
 constraints.gridx = 0;
 constraints.gridy = 1;
 constraints.gridheight = 3;
 constraints.fill = GridBagConstraints.BOTH;
 layout.setConstraints(aPanel, constraints);
 add(aPanel);

 // Make the Actions List
 String[] actions = {"Stop", "Yield", "Go"};
 actionList = new JComboBox(actions);
 constraints.gridx = 1;
 constraints.gridy = 1;
 constraints.gridheight = 1;
 constraints.weightx = 1;
 constraints.fill = GridBagConstraints.HORIZONTAL;
 layout.setConstraints(actionList, constraints);
 add(actionList);

 // Make the Slider
 slider = new JSlider(JSlider.HORIZONTAL, 0, 20, 1);
 slider.setMajorTickSpacing(5);
 slider.setMinorTickSpacing(1);
 slider.setPaintTicks(true);
 slider.setPaintLabels(true);
 constraints.gridx = 1;
 constraints.gridy = 3;
 layout.setConstraints(slider, constraints);
 add(slider);

 // Add the auto checkbox button
 autoButton = new JCheckBox("Auto Advance");
 constraints.gridx = 1;
 constraints.gridy = 2;
 constraints.fill = GridBagConstraints.BOTH;
 layout.setConstraints(autoButton, constraints);
 add(autoButton);

 // Add the Advance Picture button
 advButton = new JButton(new ImageIcon("RedLight.jpg"));
 constraints.gridx = 2;
 constraints.gridy = 1;
 constraints.gridheight = 3;
 constraints.weightx = 0;
 constraints.weighty = 1;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.insets = new Insets(5, 5, 0, 5);
 layout.setConstraints(advButton, constraints);
 add(advButton);

 // Add the progress bar
 progressBar = new JProgressBar(JProgressBar.HORIZONTAL, 0,
TrafficLight.MAX_TIME_COUNT);
 constraints.gridx = 0;
 constraints.gridy = 5;
 constraints.gridwidth = 3;
 constraints.gridheight = 1;
 constraints.weightx = 1;
 constraints.weighty = 2;
 constraints.fill = GridBagConstraints.BOTH;
 constraints.insets = new Insets(5, 5, 5, 5);
 layout.setConstraints(progressBar, constraints);
 add(progressBar);

 }
}

Notice the following:

• This "view" code has no listener stuff, nor event handlers nor update methods
• We do not need to import the event packages anymore
• All of the instance variables related to the Timer have been removed (since this is

behaviour related)
• There is no main method

The Controller:

What portion of code represents the controller ? All of the stuff related to adding listeners, event
handlers, update methods etc.. as well as any behaviour-related code such as the Timer code.
All of the stuff that we removed from the View must be added here. We will put it all in the
TrafficLightFrame class that will serve as a Mediator between the model and the view. It will
also contain the "main" method which will be responsible for coordinating the startup of the
application. The controller will keep hold of the model and the view (as instance variables) as
part of this coordination.

Here is the code:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class TrafficLightFrame extends JFrame implements
Observer {

 private TrafficLight aTrafficLight;
 private Timer aTimer;

 // This is the view
 private TrafficLightPanel
aView;

 private ActionListener comboBoxListener;

 public TrafficLightFrame(String title, TrafficLight
model, TrafficLightPanel view) {
 super(title);

 aTrafficLight = model;

 aView = view;
 setContentPane(aView);
//Replace old panel with ours

 // Add the Listeners
 for (int i=0; i<3; i++)
 aView.getButton(i).addActionListener(new
ActionListener() {
 public void actionPerformed(ActionEvent e) {

handleRadioButtonPress((JRadioButton)e.getSource());
 }
 });

aView.getActionList().addActionListener(comboBoxListener =
new ActionListener() {
 public void actionPerformed(ActionEvent e) {

handleComboBoxSelection((JComboBox)e.getSource());
 }
 });
 aView.getSlider().addChangeListener(new
ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 handleSlider((JSlider)e.getSource());
 }
 });
 aView.getAutoButton().addActionListener(new
ActionListener() {
 public void actionPerformed(ActionEvent e) {

handleAutoButtonPress((JCheckBox)e.getSource());
 }
 });
 aView.getAdvanceButton().addActionListener(new
ActionListener() {
 public void actionPerformed(ActionEvent e) {
 handleAdvanceButtonPress();
 }
 });

 // Add a timer for automode. Set it to go off every
500 milliseconds
 aTimer = new Timer(500, new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 handleTimerTick();
 }
 });

 // !!! IMPORTANT !!!
 // Register with the model so that when it
changes, we get informed
 aTrafficLight.registerObserver(this);

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(400, 250);
 }

 // This is the Timer event handler
 private void handleTimerTick() {
 aTrafficLight.advanceTime();
 // update() has been removed now
 }

 // This is the Advance button event handler
 private void handleAdvanceButtonPress() {
 aTrafficLight.advanceState();
 // update() has been removed now
 }

 // This is the Auto button event handler
 private void handleAutoButtonPress(JCheckBox source) {
 if (source.isSelected())
 aTimer.start();
 else
 aTimer.stop();
 // update() has been removed now
 }

 // This is the radio button event handler
 private void handleRadioButtonPress(JRadioButton source)
{
 for (int i=0; i<3; i++) {
 if (source == aView.getButton(i))
 aTrafficLight.setState(i+1);
 }
 // update() has been removed now
 }

 // The ComboBox Selection event handler

 private void handleComboBoxSelection(JComboBox source) {
 aTrafficLight.setState(source.getSelectedIndex() +
1);
 // update() has been removed now
 }

 // This is the Slider event handler
 private void handleSlider(JSlider source) {
 if (!source.getValueIsAdjusting()) {
 int delay = source.getValue();
 if (delay > 0) {
 aTimer.setDelay(1000/delay);
 if (aTimer.isRunning())
 aTimer.restart();
 }
 else {
 aTimer.setDelay(Integer.MAX_VALUE);
 }
 // update() has been removed now
 }
 }

 // Update the radio buttons according to the traffic
light state
 private void updateRadioButtons() {
 for (int i=0; i<3; i++) {

aView.getButton(i).setSelected(aTrafficLight.getState() ==
(i+1));
 }
 }

 // Update the status pane according to the traffic light
state
 private void updateAdvanceButton() {
 String[] iconNames =
{"RedLight.jpg","YellowLight.jpg","GreenLight.jpg"};
 aView.getAdvanceButton().setIcon(new
ImageIcon(iconNames[aTrafficLight.getState()-1]));
 }

 // Update the combo box according to the traffic light
state
 private void updateComboBox() {

aView.getActionList().setSelectedIndex(aTrafficLight.getStat

e() - 1);
 }

 // Update the progress bar
 private void updateProgressBar() {

aView.getProgressBar().setValue(aTrafficLight.getStateCount(
));
 }

 // Update all relevant components according to the
traffic light state
 public void update() {

aView.getActionList().removeActionListener(comboBoxListener)
;
 updateRadioButtons();
 updateComboBox();
 updateAdvanceButton();
 updateProgressBar();

aView.getActionList().addActionListener(comboBoxListener);
 }

 public static void main(String args[]) {
 TrafficLight aModel = new TrafficLight();

 // Instantiate three controllers each with their own
views
 // Two controllers (A and B) will share the same
model while
 // the 3rd will be alone with its own model.
 new TrafficLightFrame("Traffic Light A (tied with
B)", aModel,
 new
TrafficLightPanel()).setVisible(true);
 new TrafficLightFrame("Traffic Light B (tied with
A)", aModel,
 new
TrafficLightPanel()).setVisible(true);
 new TrafficLightFrame("Traffic Light C (alone)", new
TrafficLight(),
 new
TrafficLightPanel()).setVisible(true);
 }
}

	 4 A Traffic Light Application
	What's in This Set of Notes?

