

COMP1406/1006 - Design and Implementation of Computer Applications Winter 2006

 7 More Collections: Sets and HashMaps

What's in This Set of Notes ?
In computer science, we are often concerned about issues pertaining to efficiency. That is, we
always want to write code that is fast and efficient. In terms of collections, we want to make
sure that when we put stuff in there, we can find it quickly. Think about how you unpack your
groceries. Don't you place things in your cupboards in an organized way ? It helps you find
what you are looking for quickly. Also, how will you find the items at the grocery store if they
are not organized by sections ? HashMaps are collections in JAVA which store objects like
ArrayLists. However, the items are stored in a HashMap in a way that the items can be
retrieved quickly, when compared to an ArrayList. We will discuss the Set, TreeSet, HashSet,
Map, HashMap/Hashtable, TreeMap collections in JAVA and also give a larger example
using HashMaps to store data in a MovieStore.

Here are the individual topics found in this set of notes (click on one to go there):

• 7.1 Collections Re-Visited
• 7.2 The Set Classes
• 7.3 The Map Interface and Its Classes
• 7.4 HashMaps
• 7.5 The MovieStore Example

 7.1 Collections Re-Visited

In COMP1405/1005, we examined some Collection classes and worked quite a bit with
ArrayLists. We also briefly looked at the List interface. Recall that there were other
Collection classes as well that implemented the Set and Map interfaces:

Recall that an interface merely specifies a list of method signatures ... not actual code. Recall
as well that the Collection interface defined many messages. Below is a list of a few of these
grouped as querying methods and modifying methods.

Querying methods (returns some kind of value):

• size() - returns the number of elements in the collection
• isEmpty() - returns whether or not there are any elements in the collection
• contains(Object obj) - returns whether or not the given object is in the collection (uses

.equals() method for comparison)
• containsAll(Collection c) - same as above but looks for ALL elements specified in the

given collection parameter.

Modifying methods (changes the collection in some way):

• add(Object obj) - adds the given object as an element to the collection (location is not
specified)

• addAll(Collection c) - same as above but adds ALL elements specified in the given
collection parameter.

• remove(Object obj) - removes the given object from the collection (uses .equals()
method for comparison)

• removeAll(Collection c) - same as above but removes ALL elements specified in the
given collection parameter.

• retainAll(Collection c) - same as above but removes all elements EXCEPT THOSE
specified in the given collection parameter.

• clear() - empties out the collection by removing all elements.

Do you remember the hierarchy of classes implementing the Collection interface ?

 7.2 The Set Classes

Let us continue where we left off from COMP1405/1005 and discuss the Set interface as well as
the subclasses that implement it: HashSet and TreeSet.

The Set classes are much like Lists, except that they do not allow duplicates.

• there cannot be two elements e1 and e2 such that e1.equals(e2)
• any modifications to the elements that affect the equality results in unspecified behaviour
• attempts to add duplicates are not satisfied

There are 2 main Set implementations:

HashSet
• elements are not kept in order
• fast adding/removing operations
• searching is slow for a particular element

• elements MUST implement .equals() and .hashCode()
TreeSet

• elements are kept in sorted order, but not indexable
• order is user-defined (default is ascending)
• adding is slow since it takes longer to find the proper

location

• searching is fast now since items are in order

Hashing is a high speed scheme for converting sparse (i.e., quite spread apart) keys into unique
array subscripts. Hashing essentially generates for each item, a number (called the hashcode)
which is used as the

key (or index). The generated number has no significant meaning other than
to allow efficient storage and retrieval of data.

e
the same postal code, so it is easier for the post office to locate, gather and deliver your mail.

nd HashMaps which we will see later) store their objects

according to a hash function

It is used as a way of getting quickly to the "vicinity" of the object you are looking for. For
example, this is exactly what post offices do when they sort mail. They use the postal code to
determine "roughly" where in the city your mail should go. People living in the same area hav

So HashSets (as well as Hashtables a
 which:

 hashcode).
tics.

• equal objects should return the same hashcode.

Let us now look at an example that helps us understand the differences between these two sets.

Consider this code that adds some BankAccounts to an ArrayList:

ck",

ArrayList<String> aCollection = new ArrayList<String>();

)
 aCollection.add(names[i]);

• returns an integer representation of the object (i.e., its
• the integer should reflect the object’s characteris

String[] names = {"Al", "Zack", "Sally", "Al", "Mel", "Za
"Zack", "Sally"};

// Fill up the collection
for(int i=0; i<names.length; i++

// Now print out the elements
for(String s: aCollection)
 System.out.println(s);

Here is the output, as expected:

Al
Zack
Sally
Al
Mel
Zack
Zack
Sally

Consider what happens when we replace the line:

ArrayList<String> aCollection = new ArrayList<String>();

with:

HashSet<String> aCollection = new HashSet<String>();

When we run the code, we obtain the following output:

Mel
Al
Sally
Zack

What happened to the duplicates ? They were removed. We only see the unique names coming
out on the console window. But hold on! This is not the order that we added the names into the
collection!! Well ... recall that the elements are not kept in any kind of order, and in fact, JAVA
has its own pre-determined order based on hashcode values of the elements in which we added.

Now what about a TreeSet ? Shouldn't that keep them in order ?

Consider what happens when we replace:

HashSet<String> aCollection = new HashSet<String>();

with:

TreeSet<String> aCollection = new TreeSet<String>();

Now we obtain this output:

Al
Mel

Sally
Zack

Notice that the items are now sorted alphabetically. If we wanted to sort in a different order, we
would need to make our own objects, instead of using Strings so that we could implement the
Comparable interface.

What if we want to store Customer objects in the sets instead of simply strings:

public class Customer {
 private String name;

 public Customer(String n) { name = n; }
 public String getName() { return name; }
 public String toString() { return "Customer: " + name; }
}

Here is some code that makes a HashSet of Customer objects and prints them:

String[] names = {"Al", "Zack", "Sally", "Al", "Mel", "Zack",
"Zack", "Sally"};
HashSet<Customer> aCollection = new HashSet<Customer>();
for(int i=0; i<names.length; i++) {
 Customer c = new Customer(names[i]);
 aCollection.add(c);
}
for(Customer c: aCollection)
 System.out.println(c);

Here is the output:

Customer: Sally
Customer: Zack
Customer: Zack
Customer: Mel
Customer: Al
Customer: Sally
Customer: Al
Customer: Zack

Hey! There are duplicates! What's up with that ?

A unique Customer object is actually created for each customer and so they are all unique by
default regardless of their name. How can we fix it so that only Customers with unique names
can be added ? Recall that in a set, there cannot be two elements e1 and e2 such that
e1.equals(e2). But we don't have an equals() method in our Customer class! So in fact, we
inherit a default one that checks identity, not equality. So ... we have to create our own equals()
method for the Customer class:

public boolean equals(Object obj) {
 if (!(obj instanceof Customer))
 return false;
 return getName().equals(((Customer)obj).getName());
}
In addition, since objects are "hashed" in order to find their position in the HashSet, we must
also implement a hashCode() method. The hashCode() method should return an integer that
attempts to represent the object uniquely. Usually, it simply returns the combined hashcodes of
its instance variables:
public int hashCode() {
 return name.hashCode();
}
Now when we run the code, we see that the duplicates are gone:

Customer: Mel
Customer: Al
Customer: Sally
Customer: Zack

We could change HashSet to TreeSet to get the items in sorted order. However, we would then
need to make sure that our Customer objects are Comparable. We could add the following to
our Customer class:

public class Customer implements Comparable {
 ...

 public int compareTo(Object obj) {
 if (obj instanceof Customer)
 return getName().compareTo(((Customer)obj).getName());
 else
 throw new ClassCastException();
 }
}

Then when we run the code, we see that the duplicates are gone and that the items are in sorted
order:

Customer: Al
Customer: Mel
Customer: Sally
Customer: Zac

So remember ... we can use a HashSet or TreeSet to eliminate duplicates from a collection.

 7.3 The Map Interface and Its Classes

It is often necessary to store objects in collections in such a way that they can be retrieved
quickly later on. That is, there is a need for a collection which allows quick searching. For
example, consider a video store. Isn't it a nice idea to have the movies arranged by category so
that you don't waste time looking over movies that are not of an interesting nature (such as
musicals or perhaps drama) ?

Like the Collection interface, the Map interface stores objects as well. So what is different ?
Well, a Map stores things in a particular way such that the objects can be easily located later
on. A Map really means a "Mapping" of one object to another. Maps are used when it is
necessary to access the elements quickly by particular keys. Examples are:

• storing many items by category (e.g., a video store is organized by sections
(comedy/action/drama)).

• phone books where a value (e.g., number) is associated with a particular key (e.g., name).
• dictionaries where a value (e.g., definition) is associated with a particular key (e.g.,

word).

All Maps store a group of object pairs called entries.
Each map entry has:

• key - identifies values uniquely (maps cannot have duplicate
keys)

• value - accessed by their keys (each key maps to at most one
value)

So, the key MUST be used to obtain a particular value from the Map.

The Map interface defines many messages:

Querying methods (returns some kind of value):

• size() - returns the number of elements in the map.
• isEmpty() - returns whether or not there are any elements in the map.
• containsKey(Object key) - returns whether or not the given object is a key of the map

(uses .equals() method for comparison).
• containsValue(Object val) - returns whether or not the given object is a value in the map

(uses .equals() method for comparison).
• getKey(Object key) - returns the Object in the map that is associated with the given key.
• values(Object key) - returns a Collection containing all the values in the map.
• keySet(Object key) - returns a Set of all the keys in the map.
• entrySet(Object key) - returns a Set of all the key/value pairs in the map (i.e.,

Map.Entry objects represent key/value pairs).

Modifying methods (changes the collection in some way):

• put(Object key, Object val) - adds a new entry in the map with the given key and value.
The key MUST be unique, otherwise this method replaces the value that was previously
there by the given value.

• putAll(Map m) - adds all entries that are in the given map to the receiver map.
• remove(Object key) - removes the given key/value entry from the map based on the key

only.
• clear() - empties out the map by removing all elements.

Here is the hierarchy showing most of the Map classes:

Notice that there are 4 main Map implementations:

Hashtable
• elements not kept in order
• fast adding/removing
• fast searching for a particular element
• elements MUST implement .equals() and .hashCode()
• cannot have null key
• synchronized

HashMap

• works similar to Hashtables
• can have one null key
• unsynchronized

TreeMap

• works similar to HashMap
• elements are kept in sorted order, but not indexable
• slow adding since it takes longer to find the proper location
• efficient access and modification methods

WeakHashMap

• works similar to HashMap

• keys removed more efficiently by the garbage collector.

 7.4 HashMaps

HashMaps are not fixed-size, so they can grow as needed (just like ArrayLists). Items are
added to the HashMap by specifying the key AND the value. The key is used as a unique
identifier that distinguishes its associated value from any other value. Both the keys and values
can be arbitrary objects (but no null key for Hashtables). We will look at HashMaps here, but
the Hashtable class works the same way, but is synchronized (slower than HashMap).

To create a general HashMap that can store arbitrary keys and values we can use this
constructor:

HashMap table = new HashMap();

However, typically we will use a HashMap that has all the same type of keys and the same type
of values. In this case, we can specify the keys and values when declaring our variables. For
example, if we want a HashMap where the keys are peoples names and the values for each
person is a collection of Items, we could declare our HashMap something like this:

HashMap<String,ArrayList<Item>> table = new
HashMap<String,ArrayList<Item>>();

Of course, this will prevent us from making non-String keys and non-ArrayList values ... but it
will simplify the usage of the class by eliminating the need for typecasting in many places where
we access/modify the HashMap.

Remember, if you want to use your own created objects within Hashtables, HashMaps,
HashSets or TreeSets, you MUST implement a hashCode() method. All objects inherit a
default hashCode() from Object, but it may not be efficient. The hashcode() method should
look similar to an equals() method in what it checks.
Here are some of the standard HashMap methods along with a simple example of how they
work:

Method Description and Example

Object put(Object key,
 Object value)

Add the given value to the HashMap with the given key. If
there is no value there for that key then null is returned,
otherwise the original value in the HashMap is returned.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();

aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
aPhoneBook.put("Norm", "555-3789");
System.out.println(aPhoneBook); // displays
{Norm=555-3789, Mark=555-2238, Arthur=555-8813}

Object get(Object key)

Return the value associated with the given key. If there is no
value, null is returned.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
aPhoneBook.put("Norm", "555-3789");
aPhoneBook.get("Mark"); // returns "555-2238"
aPhoneBook.get("Betty"); // returns null
aPhoneBook.get("555-3789"); // returns null
(must specify key, not value)

Object remove(Object
key)

Remove the key/value pair from the HashMap and return the
value that was removed. If it is not there, return null.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
aPhoneBook.put("Norm", "555-3789");
aPhoneBook.remove("555-8813"); // No error but
returns null
aPhoneBook.remove("Arthur"); // returns "555-
8813"
System.out.println(aPhoneBook);
// displays {Norm=555-3789, Mark=555-2238}

boolean isEmpty()

Return whether or not there are any values in the HashMap.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.isEmpty(); // returns true
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.isEmpty(); // returns false

boolean
containsKey(Object key)

Return whether or not the given key is in the HashMap.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
aPhoneBook.put("Norm", "555-3789");
aPhoneBook.containsKey("555-8813"); // returns false
aPhoneBook.containsKey("Mark"); // returns true
aPhoneBook.remove("Mark");

aPhoneBook.containsKey("Mark"); // returns false

boolean
containsValue(Object
value)

Return whether or not the given value is in the HashMap.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
aPhoneBook.put("Norm", "555-3789");
aPhoneBook.containsValue("Mark"); // returns
false
aPhoneBook.containsValue("555-3789"); // returns
true
aPhoneBook.remove("Norm");
aPhoneBook.containsValue("555-3789"); // returns
false

void clear()

Empty the HashMap.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
System.out.println(aPhoneBook); // displays
{Mark=555-2238, Arthur=555-8813}
aPhoneBook.clear();
System.out.println(aPhoneBook); // displays {}

Collection values()

Return a Collection of the values in the HashMap.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
aPhoneBook.put("Norm", "555-3789");
aPhoneBook.values(); // returns Collection [555-
3789, 555-2238, 555-8813]

Set keySet()

Return a Set of the keys in the HashMap.
HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
aPhoneBook.put("Norm", "555-3789");
aPhoneBook.keySet(); // returns Set [Norm, Mark,
Arthur]

Set entrySet()

Return a Set of the key/value pairs (i.e., as Map.Entry objects)
in the HashMap.

HashMap<String,String> aPhoneBook = new
HashMap<String,String>();
aPhoneBook.put("Arthur", "555-8813");
aPhoneBook.put("Mark", "555-2238");
aPhoneBook.put("Norm", "555-3789");
aPhoneBook.entrySet(); // returns Set
[Norm=555-3789, Mark=555-2238, Arthur=555-8813]

What is the difference between a HashMap and a TreeMap ? As with HashSets and TreeSets,
TreeMaps maintain the keys in sorted order, whereas HashMaps do not maintain the keys in
sorted order.

Consider this code:

String[] names = {"Al", "Zack", "Sally", "Al", "Mel", "Zack",
"Zack", "Sally"};
HashMap<String,Customer> aMap = new HashMap<String,Customer>();

// Fill up the collection
for (int i=0; i<names.length; i++)
 aMap.put(names[i], new Customer(names[i]));

System.out.println("Here are the keys:");
for (String key: aMap.keySet())
 System.out.println(" " + key);

System.out.println("Here are the values:");
for (Customer val: aMap.values())
 System.out.println(" " + val);

System.out.println("Here are the key/value pairs:");
for (Map.Entry pair: aMap.entrySet())
 System.out.println(" " + pair);

Here we see that a HashMap is formed with keys being the names of the Customer and values
being the Customers themselves. This is the output:

Here are the keys:
 Mel
 Al
 Sally
 Zack
Here are the values:
 Customer: Mel
 Customer: Al
 Customer: Sally
 Customer: Zack

Here are the key/value pairs:
 Mel=Customer: Mel
 Al=Customer: Al
 Sally=Customer: Sally
 Zack=Customer: Zack

Notice that there are only 4 keys, even though we added many items ... this is because one key
overwrites another when we call the put() method more than once with the same key.

If we replace the HashMap with a TreeMap in the above code, the code still works, we just get
the items in sorted order according to the keys:

Here are the keys:
 Al
 Mel
 Sally
 Zack
Here are the values:
 Customer: Al
 Customer: Mel
 Customer: Sally
 Customer: Zack
Here are the key/value pairs:
 Al=Customer: Al
 Mel=Customer: Mel
 Sally=Customer: Sally
 Zack=Customer: Zack

Using WeakHashMap, you won't notice a difference. We will not talk about this class in this
course.

 7.5 The MovieStore Example

Consider an application which represents a movie store that maintains
movies to be rented out. Assume that we have a collection of movies.
When renting, we would like to be able to find movies quickly. For
example, we may want to:

• ask for a movie by title and have it found right away
• search for movies in a certain category (e.g., new release, comedy,

action)
• find movies containing a specific actor/actress (e.g., Jackie Chan,

Peter Sellers, Jude Law etc...)

Obviously, we could simply store all moves in one big ArrayList. But
how long would we waste finding our movies ? Imagine a video store in
which the movies are not sorted in any particular order ... just randomly
placed on the shelves !! We would have to go through them one by one !!!

We will use HashMaps to store our movies efficiently so that we can quickly get access to the
movies that we want.

Let us start out with the representation of a Movie object. Each movie will maintain a title, list
of actors and a type (category). Obviously, in a real system, we would need to keep much more
information such as ID, rental history, new releases vs. oldies, etc... Here is the diagram
representing the Movie object:

Let us now define this Movie class.

import java.util.*;
public class Movie {
 private String title, type;
 private ArrayList<String> actors;

 public String getTitle() { return title; }
 public String getType() { return type; }
 public ArrayList<String> getActors() { return actors; }
 public void setTitle(String aTitle) { title = aTitle; }
 public void setType(String aType) { type = aType; }

 public Movie() { this("???", "???"); }

 public Movie(String aTitle, String aType) {
 title = aTitle;
 type = aType;
 actors = new ArrayList<String>();
 }

 public String toString() { return("Movie: " + "\"" + title + "\"");
}

 public void addActor(String anActor) { actors.add(anActor); }
}

Notice that there is no "set" method for the actors. We do not need it (just like in the autoshow
example). Now lets look at the addActor() method. It merely adds the given actor (just a
name) to the actors arrayList. We can make some example methods to represent some movies.
Add the following methods to the Movie class:

 public static Movie example1() {
 Movie aMovie = new Movie("The Matrix","SciFic");
 aMovie.addActor("Keanu Reeves");
 aMovie.addActor("Laurence Fishburne");
 aMovie.addActor("Carrie-Anne Moss");
 return aMovie;
 }

 public static Movie example2() {
 Movie aMovie = new Movie("Blazing Saddles","Comedy");
 aMovie.addActor("Cleavon Little");
 aMovie.addActor("Gene Wilder");
 return aMovie;
 }

 public static Movie example3() {
 Movie aMovie = new Movie("The Matrix Reloaded","SciFic");
 aMovie.addActor("Keanu Reeves");
 aMovie.addActor("Laurence Fishburne");
 aMovie.addActor("Carrie-Anne Moss");
 return aMovie;
 }

 public static Movie example4() {
 Movie aMovie = new Movie("The Adventure of Sherlock Holmes' Smarter
Brother","Comedy");
 aMovie.addActor("Gene Wilder");
 aMovie.addActor("Madeline Kahn");
 aMovie.addActor("Marty Feldman");
 aMovie.addActor("Dom DeLuise");
 return aMovie;
 }

 public static Movie example5() {
 Movie aMovie = new Movie("The Matrix Revolutions","SciFic"));
 aMovie.addActor("Keanu Reeves");
 aMovie.addActor("Laurence Fishburne");
 aMovie.addActor("Carrie-Anne Moss");
 return aMovie;
 }

 public static Movie example6() {
 Movie aMovie = new Movie("Meet the Fockers","Comedy");
 aMovie.addActor("Robert De Niro");
 aMovie.addActor("Ben Stiller");
 aMovie.addActor("Dustin Hoffman");
 return aMovie;
 }

 public static Movie example7() {
 Movie aMovie = new Movie("Runaway Jury","Drama");
 aMovie.addActor("John Cusack");
 aMovie.addActor("Gene Hackman");
 aMovie.addActor("Dustin Hoffman");
 return aMovie;
 }

 public static Movie example8() {
 Movie aMovie = new Movie("Meet the Parents","Comedy");
 aMovie.addActor("Robert De Niro");
 aMovie.addActor("Ben Stiller");
 aMovie.addActor("Teri Polo");
 aMovie.addActor("Blythe Danner");
 return aMovie;
 }

 public static Movie example9() {
 Movie aMovie = new Movie("The Aviator","Drama");
 aMovie.addActor("Leonardo DiCaprio");
 aMovie.addActor("Cate Blanchett");
 return aMovie;
 }

 public static Movie example10() {
 Movie aMovie = new Movie("Envy","Comedy");
 aMovie.addActor("Ben Stiller");
 aMovie.addActor("Jack Black");
 aMovie.addActor("Rachel Weisz");
 aMovie.addActor("Amy Poehler");
 aMovie.addActor("Christopher");
 return aMovie;
 }

Of course, we should test our class:

public class MovieTester {
 public static void main(String args[]) {
 Movie aMovie, anotherMovie;

 aMovie = Movie.example1();
 anotherMovie = Movie.example2();
 System.out.println(aMovie);
 System.out.println("is a " + aMovie.getType() +
 " with actors " + aMovie.getActors());
 System.out.println(anotherMovie);
 System.out.println("is a " + anotherMovie.getType() +
 " with actors " + anotherMovie.getActors());
 }
}

Here is the output:

Movie: "The Matrix"
is a SciFic with actors [Keanu Reeves, Laurence Fishburne, Carrie-Anne Moss]

Movie: "Blazing Saddles"
is a Comedy with actors [Cleavon Little, Gene Wilder]

Now we need to consider the making a MovieStore object. Recall, that we want to store movies
efficiently using HashMaps.

For the MovieStore, we will maintain three HashMaps. One will be the movieList where the
keys are titles and the values are the movie objects with that title. The second will be the
actorList which will keep actor/actress names as keys and the values will be ArrayLists of all
movies that the actor/actress stars in. The last one will be the typeList in which the keys will be
the "types" (or categories) of movies and the values will be ArrayLists of all movies belonging to
that type.

Notice that one of the movies is "blue" in the picture. Why ?
This represents the same exact movie. So in fact, the reference to this movie is stored in 4
different places.

Isn't this wasteful ? Keep in mind that we are not duplicating all the movie's data ... we are only
duplicating the pointer to the movie. So in fact, each time we duplicate a movie in our
HashMaps, we are simply duplicating its reference (or pointer) which takes 4 bytes.

So, yes, we are taking slightly more space, but at the benefit of allowing quick access to the
data. You will learn more about efficiency when you do your second-year course on data
structures.

The basic MovieStore definition is as follows:

import java.util.*
public class MovieStore {
 //These are the instance variables
 private HashMap<String,Movie> movieList;
 private HashMap<String,ArrayList<Movie>> actorList;
 private HashMap<String,ArrayList<Movie>> typeList;

 //These are the get methods, not set methods are needed
 public HashMap<String,Movie> getMovieList() { return movieList; }
 public HashMap<String,ArrayList<Movie>> getActorList() { return
actorList; }
 public HashMap<String,ArrayList<Movie>> getTypeList() { return
typeList; }

 //This is the constructor
 public MovieStore() {
 movieList = new HashMap<String,Movie>();
 actorList = new HashMap<String,ArrayList<Movie>>();
 typeList = new HashMap<String,ArrayList<Movie>>();
 }

 //This method returns a String representation of the Movie
 public String toString() {
 return ("MovieStore with " + movieList.size() + " movies.");
 }
}

Why do not we need "set" methods for the HashMaps ? You should be able to reason on that
;).

Now, how do we add a movie to the store ? Well ... how do the instance variables change ?

• the movie must be added to the movieList
• the movie must be added to the typeList. What if it is the first/last movie from this

category ?
• the movie must be added to the actorList. What if it is the first/last movie for this actor ?

Here is the code:
//This method adds a movie to the movieStore.
public void addMovie(Movie aMovie) {
 //Add to the movieList
 movieList.put(aMovie.getTitle(), aMovie);

 //If there is no category yet matching this movie's type, make a
new category

 if (!typeList.containsKey(aMovie.getType()))
 typeList.put(aMovie.getType(), new ArrayList<Movie>());

 //Add the movie to the proper category.
 typeList.get(aMovie.getType()).add(aMovie);

 //Now add all of the actors
 for (String anActor: aMovie.getActors()) {
 //If there is no actor yet matching this actor, make a new
actor key
 if (!actorList.containsKey(anActor))
 actorList.put(anActor, new ArrayList<Movie>());

 //Add the movie for this actor
 actorList.get(anActor).add(aMovie);
 }
}

In fact, removing a movie is just as easy:
//This private method removes a movie from the movie store
private void removeMovie(Movie aMovie) {
 //Remove from the movieList
 movieList.remove(aMovie.getTitle());

 //Remove from the type list vector. If last one, remove the type.
 typeList.get(aMovie.getType()).remove(aMovie);
 if (typeList.get(aMovie.getType()).isEmpty())
 typeList.remove(aMovie.getType());

 //Now Remove from the actors list. If actor has no more, remove
him.
 for(String anActor: aMovie.getActors()) {
 actorList.get(anActor).remove(aMovie);
 if (actorList.get(anActor).isEmpty())
 actorList.remove(anActor);
 }
}

However, what if we do not have a hold of the Movie object that we want to delete ? Perhaps we
just know the title of the movie that needs to be removed. We can write a method which asks to
remove a movie with a certain title. All it needs to do is grab a hold of the movie and then call
the remove method that we just wrote.

//This method removes a movie (given its title) from the movie store
public void removeMovieWithTitle(String aTitle) {
 if (movieList.get(aTitle) == null)
 System.out.println("No movie with that title");
 else
 removeMovie(movieList.get(aTitle));
}

Well, perhaps the final thing we need to do is list the movies (or print them out). How do we do
this ? What if we want them in some kind of order ? Perhaps any order, by actor/actress, or by
type. Here's how to display them in the order that they were added to the MovieStore:

//This method lists all movie titles that are in the store
public void listMovies() {
 for (String s: movieList.keySet())
 System.out.println(s);
}

As you can see, with the automatic type-casting due to the generics of JAVA 1.5, everything is
easy. What about listing movies that star a certain actor/actress ? Well it just requires an
additional search. Can you guess what HashMap is needed ?

//This method lists all movies that star the given actor
public void listMoviesWithActor(String anActor) {
 for (Movie m: actorList.get(anActor))
 System.out.println(m);
}

Lastly, let us list all of the movies that belong to a certain category (type). For example,
someone may wish to have a list of all comedy movies in the store. It is actually very similar to
the actor version.

//This method lists all movies that have the given type
public void listMoviesOfType(String aType) {
 for (Movie m: typeList.get(aType))
 System.out.println(m);
}

Ok, now we better test everything:
public class MovieStoreTester

public static void main(String args[]) {
 MovieStore aStore = new MovieStore();
 aStore.addMovie(Movie.example1());
 aStore.addMovie(Movie.example2());
 aStore.addMovie(Movie.example3());
 aStore.addMovie(Movie.example4());
 aStore.addMovie(Movie.example5());
 aStore.addMovie(Movie.example6());
 aStore.addMovie(Movie.example7());
 aStore.addMovie(Movie.example8());
 aStore.addMovie(Movie.example9());
 aStore.addMovie(Movie.example10());

{

 System.out.println("Here are the movies in: " + aStore);
 aStore.listMovies();
 System.out.println();

 //Try some removing now
 System.out.println("Removing The Matrix");
 aStore.removeMovieWithTitle("The Matrix");
 System.out.println("Trying to remove Mark's Movie");
 aStore.removeMovieWithTitle("Mark's Movie");

 //Do some listing of movies
 System.out.println("\nHere are the Comedy movies in: " +
aStore);
 aStore.listMoviesOfType("Comedy");
 System.out.println("\nHere are the Science Fiction movies in:
" + aStore);
 aStore.listMoviesOfType("SciFic");
 System.out.println("\nHere are the movies with Ben

Stiller:");
 aStore.listMoviesWithActor("Ben Stiller");
 System.out.println("\nHere are the movies with Keanu
Reeves:");
 aStore.listMoviesWithActor("Keanu Reeves");
}

}
Here is the output:

Here are the movies in: MovieStore with 10 movies.
Envy
Blazing Saddles
The Matrix
The Matrix Reloaded
Meet the Fockers
Meet the Parents
Runaway Jury
The Matrix Revolutions
The Adventure of Sherlock Holmes' Smarter Brother
The Aviator

Removing The Matrix
Trying to remove Mark's Movie
No movie with that title

Here are the Comedy movies in: MovieStore with 9 movies.
Movie: "Blazing Saddles"
Movie: "The Adventure of Sherlock Holmes' Smarter Brother"
Movie: "Meet the Fockers"
Movie: "Meet the Parents"
Movie: "Envy"

Here are the Science Fiction movies in: MovieStore with 9 movies.
Movie: "The Matrix Reloaded"
Movie: "The Matrix Revolutions"

Here are the movies with Ben Stiller:
Movie: "Meet the Fockers"
Movie: "Meet the Parents"
Movie: "Envy"

Here are the movies with Keanu Reeves:
Movie: "The Matrix Reloaded"
Movie: "The Matrix Revolutions"

	 7 More Collections: Sets and HashMaps
	What's in This Set of Notes ?

