

COMP1406/1006 - Design and Implementation of
Computer Applications Winter 2006

 8 Graphics

What's in This Set of Notes?
As programmers, we will likely all eventually come across a situation in which we need to
display graphics. Graphics may be pictures or perhaps drawings consisting of lines, circles,
rectangles etc... For example, if we want to have an application that displays a bar graph, there
is no "magical" component in JAVA that does this for us. We will learn here the basics of
displaying and manipulating graphics in our JAVA applications.

Here are the individual topics found in this set of notes (click on one to go there):

• 8.1 Doing Simple Graphics
• 8.2 Repainting Components
• 8.3 Displaying Images
• 8.4 Creating a Simple Graph Editor
• 8.5 Adding Features to the Graph Editor

 8.1 Doing Simple Graphics

Graphics are used in many applications to display graphs, statistics, diagrams, pictures etc...
Some applications are even completely based on graphics such as games, paint programs, MS
PowerPoint etc... We have already seen that ImageIcons can be used to display images on your
application window inside labels, buttons etc... Now we will see how to actually draw our own
graphics, as when drawing graphs or diagrams.

The java.awt package has a class called Graphics that permits the drawing of various shapes.
The class is abstract and so there is no constructor. Instead, JAVA provides a getGraphics()
method that can be sent to any window component which returns an instance of this Graphics
class (i.e., each component keeps an instance of that class by default). Think of each component
having its own "pen" that can only be used to draw in that component's "space", just like the pens
attached to kiosks at the bank.

There are a set of drawing functions that allow you to draw onto a component's area. Since a
particular graphics object belongs to one specific component, you can only draw on that
component with it. Most drawing functions allow you to specify x and y coordinates. The
coordinate (x,y)=(0,0) is at the top left corner of the component's area. So all coordinates are
with respect to the component's area.

Here are just some of the methods available in the Graphics class (look in the JDK API for more
info):

// Draw a line from (x1, y1) to (x2,y2)
public abstract void drawLine(int x1, int
y1, int x2, int y2);

// Draw a rectangle with its top left at (x,
y) having the given width and height
public abstract void drawRect(int x, int y,
int width, int height);

// Draw a filled rectangle with its top left
at (x, y) having the given width and height
public abstract void fillRect(int x, int y,
int width, int height);

// Erase a rectangular area by filling it in
with the background color
public abstract void clearRect(int x, int y,
int width, int height);

// Draw an oval with its top left at (x, y)
having the given width and height
public abstract void drawOval(int x, int y,
int width, int height);

// Draw a filled oval with its top left at
(x, y) having the given width and height
public abstract void fillOval(int x, int y,
int width, int height);

// Draw the given String with its bottom
left at (x, y)
public abstract void drawString(String str,
int x, int y);

// Draw a polygon with the given coordinates
public abstract void drawPolygon(int[] x,
int[] y, int numEdges);

// Draw a filled polygon with the given
coordinates
public abstract void fillPolygon(int[] x,
int[] y, int numEdges);

// Set the foreground and fill color of the
Graphics object
public abstract void setColor(Color c);

ABCDEFG
// Set the Font for use with drawString
public abstract void setFont(Font font);

Example:

This code makes a simple JFrame and then
draws some text on it wherever the user clicks
the mouse. As it turns out, we can draw directly
to the frame of a window. We don't need to add
any components for this example. To the right is
a snapshot of the running program.

You will notice three things about this example:

1. The text is drawn such that the bottom
left corner of the text appears at the
location which the mouse is clicked.

2. The text is erased whenever we alter the
size of the window.

3. We can ask a mouseEvent for the x and y
position of the mouse.

Below is the code.

import java.awt.event.*;
import javax.swing.*;
public class TextDrawingExample extends JFrame {

public TextDrawingExample (String title) {
 super(title);

 addMouseListener {new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 getGraphics().drawString("Hello", e.getX(),
e.getY());
 }});

 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300, 300);
}
public static void main(String args[]) {
 new TextDrawingExample("Text Drawing
Example").setVisible(true);
}

}

Example:

In this example, we will set up six JLabels, each
one allowing a different shape to be drawn onto it.
We will set up a single event handler for all mouse
presses and within that method we will ask which
label has been clicked on and then draw the
corresponding shape onto the label. The shapes
will be drawn with different colors each time. We
use Math.random() to get a random number for
creating a random color. To the right is a
snapshot of the working program. You will
notice that:

e.

ible.

1. The getGraphics() message is sent to
the component, not to the fram

2. The labels have neat little borders which
were created as
BorderFactory.createRaisedBevelBor
der(). You can take a look at the Java
API to find out more about the different
kinds of borders that are poss

Here is the code:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class ShapeDrawingExample extends JFrame {

 private JLabel labels[];

 public ShapeDrawingExample(String title) {
 super(title);

 setLayout(new GridLayout(3,2,5,5));
 labels = new JLabel[6];
 for (int i=0; i<6; i++) {
 getContentPane().add(labels[i] = new JLabel());
 labels[i].setBorder(BorderFactory.createRaisedBevelBorder());
 }
 addListeners();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300, 300);
 }

 // Add listener for a mouse press
 private void addListeners() {
 MouseAdapter anAdapter = new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 JLabel area = (JLabel)e.getSource();
 Graphics g = area.getGraphics();

 // Get a random color
 g.setColor(new Color((float)Math.random(),
 (float)Math.random(),
 (float)Math.random()));

 // Find the label that caused this event
 int labelNumber;
 for (labelNumber=0; labelNumber<6; labelNumber++) {
 if (area == labels[labelNumber]) break;
 }
 int x = e.getX();
 int y = e.getY();

 // Now decide what to draw
 switch (labelNumber) {
 case 0: g.drawString("(" + String.valueOf(x) + "," +
 String.valueOf(y) + ")", x, y);
break;
 case 1: g.drawLine(x, y, x+20, y+20); break;
 case 2: g.drawOval(x, y, 10, 20); break;
 case 3: g.drawRect(x, y, 40, 20); break;
 case 4: g.fillOval(x, y, 10, 20); break;
 case 5: g.fillRect(x, y, 40, 20); break;
 }
 }};

 // Add mouse listeners to all labels (for doing something upon mouse
presses)
 for (int i=0; i<6; i++)
 labels[i].addMouseListener(anAdapter);
 }

 public static void main(String args[]) {
 new ShapeDrawingExample("Shape Drawing Example").setVisible(true);
 }
}

 8.2 Repainting Components

You may have noticed in our examples so far that all the drawings we do are erased when the
window is resized. When a window is resized, each of the components needs to be redrawn.
Every JComponent has (or inherits) a repaint() method which is called by JAVA
automatically when the window is resized in order to redraw the component. JAVA redraws
these components as it already knows how to do, but it will not automatically redraw anything
that we may have drawn manually, unless we tell it to. In fact, we too can call this repaint()
method any time we want our component to be redrawn.

The repaint() method actually calls a method called paintComponent(Graphics g),
which is also inherited from the JComponent class. However, the default inherited
paintComponent() method does not know what you want to be painted. In order to tell it what
to actually redraw, you need to override this method by writing your own paintComponent()
method which will specify exactly how to draw your graphics.

To add this functionality to our previous two examples, we would have to "keep track of" all the
graphical shapes that we have been drawing (as well as their attributes, such as location,
dimension and colour) so that in our paintComponent() method, we can redraw all of them
properly each time.

The previous two examples showed how simple graphics can be drawn effortlessly on a frame or
on a label. In fact, you can draw on any component. The component that is intended for general
purpose drawing is a JPanel.

Note in the older AWT framework of JAVA, a special class called a Canvas was used for drawing
using a paint() method, not the paintComponent() method. JPanels in the newer Swing library
have all the capabilities of the old Canvas class built-in and should be used instead. In fact if the
older paint() method is used you can expect bugs, so use the JPanels and paintComponent()
method instead.

The common strategy in JAVA for drawing on a blank area is to make your own class which is a
subclass of JPanel. This class should implement, or override, the paintComponent()
method. When we override this method however, we will be sure to call the super method so
that the default drawing of the component still occurs.

Example:

In this example, we create a subclass of JPanel
on which we will keep track of mouse click
locations and draw 40x40 pixel squares centered
at each of these locations. We will override the
paintComponent() method so that the squares
will be properly redrawn whenever we (or
JAVA) call repaint() or when the window is
resized. The application itself is not so exciting
to look at, but rather the underlying concept of
painting on the panel is what is important.

In this example, you may notice a couple of
things:

• The getPoint() method is sent to a
MouseEvent object to obtain the Point
object representing the location that was
clicked.

• Since all squares will be the same size,
we don't store the size, just their center
locations.

Here is the SquareCanvas class that does all the hard work:

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

// This class represents a panel on which 40x40 pixel squares can be drawn.
// The squares are centered around where the user clicks.
public class SquareCanvas extends JPanel implements MouseListener {

 // Keep track of all square center positions
 private ArrayList<Point> squares;

 // Default constructor
 public SquareCanvas() {
 squares = new ArrayList<Point>();
 setBackground(Color.white);
 addMouseListener(this);
 }

 // This is the method that is responsible for displaying the contents of
the canvas

 public void paintComponent(Graphics graphics) {
 // Draw the component as before (i.e., default look)
 super.paintComponent(graphics);

 // Now draw all of our squares
 graphics.setColor(Color.black);
 for (Point center: squares)
 graphics.drawRect(center.x - 20, center.y - 20, 40, 40);
 }

 // These are unused MouseEventHandlers. Note that we could have
 // used an Adapter class here. However, a typical drawing
 // application would make use of these other events as well.
 public void mouseClicked(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}

 // Store the mouse location when it is pressed
 public void mousePressed(MouseEvent event) {
 squares.add(event.getPoint());
 repaint(); // this will call paintComponent()
 }

 public static void main(String args[]) {
 JFrame frame = new JFrame("Square Drawing Example");
 frame.add(new SquareCanvas());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
}

Notice how we are redrawing the panel by first making a call to super.paintComponent().
This ensures that the panel's background is redrawn (i.e., erased) before we start drawing again.
If we did not do this call, our squares would still be drawn, but the background color for the
window (i.e., white in this case) would not be shown. We would end up with the light gray
default background coloring of the JFrame.

 8.3 Displaying Images

We have seen how to draw shapes of different colors onto components, now we will find out
how to draw an image on the screen. JAVA lets you load and display both ".gif" files as well as
".jpg" files. We have seen the use of ImageIcons with components so that we can display an
icon along with text or as a label of a button. Icons, however, are meant to be small images and
are not meant for large images. When larger pictures are to be shown, you should use Image
objects. In fact, the Image class is abstract, but there are two useful subclasses. In JAVA,
there is much to learn about Image objects. There are many classes relating to the manipulation
of images and a thorough investigation into these classes is well beyond the scope of this course.

 Here, we will look simply at the basic displaying of images in our applications.

A typical scenario is to load and display an image (such as a .gif or .jpg) from a file.
Unfortunately, the way images are obtained from files is a platform-specific issue. This means
that it is not always done the same way, depending on what machine you run your code.
Fortunately, JAVA supplies a Toolkit class that has common "special" methods for doing
various platform-specific things such as loading images.

We can load an image from the disk by asking the Toolkit class for an instance of Toolkit (i.e.,
default will do fine) and then get the image as follows:

 Image myImage = Toolkit.getDefaultToolkit().createImage("picture.gif");

The code loads and returns an Image object from the file entitled picture.gif but it does not
display the image. We can then display the image by asking a Graphics object to draw the
image:

 g.drawImage(anImage, x, y, null);

The image is drawn with its top-left corner at (x, y) in this graphics context's coordinate space.
The 4th parameter can be any class that implements the ImageObserver interface. This
interface is used as a means of informing a class when an image is done being loaded or drawn
(since images in general may take a while to load or draw ... especially if being loaded from a
network). This strategy of informing interested classes of image completion, allows more
efficient use of process cycles so that the program does not sit idly by doing nothing while the
image is being loaded/drawn. We will keep things simple in our example and set this value to
null so that nobody is informed when the image is loaded or drawn.

One final issue that we are interested in is with respect to the image size. We may want to
create a JPanel that has the exact same size of the image (e.g., for use as a background image for
the panel). In this case, we can ask an image for its width and height before choosing the size of
our panel. There are getWidth() and getHeight() methods that we can send to our Image object
to obtain these values. However, there is one minor issue. While the image is being loaded
(which may take a while), the value returned from getWidth() and getHeight() is -1. So, we
have to introduce a delay in our program by waiting until these methods return valid results:

while ((anImage.getWidth(null) == -1) && (anImage.getHeight(null)
== -1));

Notice as well that these methods take an ImageObserver as a parameter (which we set to null).
By using a proper ImageObserver, we would not have to put in this delay, but could perform
other application-specific tasks while we wait for the image to be loaded.

Now we may set the "preferred size" of the panel. Note that setting the "size" of the panel is not
useful since when placed on a frame, the frame's layout manager will automatically resize all of
its components.

 setPreferredSize(new Dimension(anImage.getWidth(null),
anImage.getHeight(null)));

So here is the code we can use to test:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

// This application displays an image
public class ImagePanel extends JPanel {
 private Image anImage;

 public ImagePanel() {
 anImage =
Toolkit.getDefaultToolkit().createImage("altree.gif");

 while ((anImage.getWidth(null) == -1) &&
(anImage.getHeight(null) == -1));
 setPreferredSize(new Dimension(anImage.getWidth(null),
anImage.getHeight(null)));

 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawImage(anImage, 0, 0, null);
 }

 public static void main(String args[]) {
 JFrame frame = new JFrame("Image Display Test");
 frame.add(new ImagePanel());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack(); // Makes size according to panel's
preference
 frame.setVisible(true);
 }
}

Here is the result:

Note that aince we used the panel's paintComponent() method to draw the image, the image is
drawn as a background and so any components we add to the panel will appear on top of the
image. So you can see that it is quite easy to create a window as shown below simply by adding
components to the panel as usual:

There are many more things that you can do with images:

• Shrink/Grow them
• Fade them
• Warp them
• other filters ...

We do not have time to fully investigate these other features of the API library. Feel free to
experiment on your own.

 8.4 Creating a Simple Graph Editor

This section of the notes describes a step-by-step approach for creating a simple graph editor. It
introduces the notion of "drag and drop" as well as selecting objects.

What is a graph ? There are many types of graphs. We are interested in graphs that form
topological and/or spatial information. Our graphs will consist of nodes and edges. The nodes
may represent cities in a map while the edges may represent roads between cities:

We would like to make a graph editor with the ability to:

• add/remove nodes
• add/remove edges
• move nodes around (edges between them will remain connected)
• "select" groups of nodes and edges for removal or moving
• do some other useful graph-manipulation features

The Graph Model:

We will begin our application as usual by developing the model. We know that our graph itself
is going to be the model, but we must first think about what components make up the graph.
These are the nodes and edges. We will first implement some basic node and edge classes.

Let us create a Node class. What state should each node maintain ? Well, it depends on the
application that will be using it. Since we know that the graph will be displayed, each node will
need to keep track of its location. Also, we may wish to label nodes (e.g., a city's name). Here
is a basic model for the nodes:

import java.awt.Point;
public class Node {
 private String label;
 private Point location;

 public Node() { this("",new Point(0,0)); }
 public Node(String aLabel) { this(aLabel, new Point(0,0)); }
 public Node(Point aPoint) { this("", aPoint); }
 public Node(String aLabel, Point aPoint) {
 label = aLabel;
 location = aPoint;
 }

 public String getLabel() { return label; }
 public Point getLocation() { return location; }

 public void setLabel(String newLabel) { label = newLabel; }
 public void setLocation(Point aPoint) { location = aPoint; }
 public void setLocation(int x, int y) { location = new
Point(x, y); }

 // Nodes look like this: label(12,43)
 public String toString() {
 return(label + "(" + location.x + "," + location.y +
")");
 }
}

Notice that we don't have much in terms of behaviour ... simply some get/set methods and a
toString() method. Notice the two different set methods for location. This gives us flexibility
in cases where we the coordinates are either Point objects or ints.

What state do we need for a graph edge ? Well ... they must start at some node and end at
another so we may want to know which nodes these are. Does it make sense for a graph edge
to exist when one or both of its endpoints are not nodes ? Probably not. So an edge should
keep track of the node from which it starts and the node at which it ends. We will call them
startNode and endNode. What about a label ? Sure ... roads have names (as well as lengths).
Here is a basic Edge class:

public class Edge {
 private String label;
 private Node startNode, endNode;

 public Edge(Node start, Node end) { this("", start, end); }
 public Edge(String aLabel, Node start, Node end) {
 label = aLabel;
 startNode = start;

 endNode = end;
 }

 public String getLabel() { return label; }
 public Node getStartNode() { return startNode; }
 public Node getEndNode() { return endNode; }

 public void setLabel(String newLabel) { label = newLabel; }
 public void setStartNode(Node aNode) { startNode = aNode; }
 public void setEndNode(Node aNode) { endNode = aNode; }

 // Edges look like this: sNode(12,43) --> eNode(67,34)
 public String toString() {
 return(startNode.toString() + " --> " +
endNode.toString());
 }
}

Now what about the graph itself ? What do we need for the state of the graph ?
Well ... a graph is just a bunch of nodes and edges.

Still, we have a few choices for representing the Graph:

1. Keep a collection of all nodes AND another collection of all edges
2. Keep only a collection of all nodes
3. Keep only a collection of all edges
4. Keep only 1 node OR 1 edge (this seems weird doesn't it ?)

Let us examine each of these:

1. The 1st strategy would provide quick access for nodes and edges since they are readily
available. However, it does take more space than the other strategies.

2. The 2nd strategy allows quick access to nodes, but if we ever needed to get all the edges,
we would have to build up the collection, which takes time. This can be done by
iterating through all incident edges of all nodes and adding the edges (this is slower, but
more space efficient). So each node would have to keep track of the edges from/to it.

3. The 3rd strategy is similar to the 2nd except that the edges are efficiently accessible and
the nodes are not.

4. The 4th strategy is weird. If we keep one node, we would have to traverse along one of
its incident edges to the other end and continue in this manner throughout the graph in
order to collect all the nodes or edges. However, this will ONLY work if the graph is
connected (i.e., every node can be reached from every other node through a sequence of
graph edges).

We will choose the 2nd strategy for our implementation, although you should realize that all
three are possible.

Let us examine our Node and Edge classes a little further and try to imagine additional
behaviour that we may want to have.

Notice that each edge keeps track of the nodes that it connects to. But shouldn't a node also keep
track of the edges are connected to it ? Think of "real life". Wouldn't it be nice to know which
roads lead "into" and "out of" a city ? Obviously, we can always consult the graph itself and
check ALL edges to see if they connect to a given city. This is NOT what you would do if you
had a map though. You don't find this information out by looking at ALL roads on a map. You
find the city of interest, then look at the roads around that area (i.e., only the ones heading
into/out of the city).

The point is ... for time efficiency reasons, we will probably want each node to keep track of the
edges that it is connected to. Of course, we won't make copies of these edges, we will just keep
"pointers" to them so the additional memory usage is not too bad.

We should go back and add the following instance variable to the Node class:

 private ArrayList<Edge> incidentEdges;

We will also need the following get method and another for adding an edge:

 public ArrayList<Edge> incidentEdges() { return incidentEdges; }
 public void addIncidentEdge(Edge e) { incidentEdges.add(e); }

We will also have to add this line to the last of the Node constructors:

 incidentEdges = new ArrayList<Edge>();

While we are making changes to the Node class, we will also add another interesting method
called neighbours that returns the nodes that are connected to the receiver node by a graph
edge. That is, it will return an ArrayList of all nodes that share an edge with this receiver node.
It is very much like asking: "which cities can I reach from this one if I travel on only one
highway ?".

We can obtain these neighbours by iterating through the incidentEdges of the receiver and
extracting the node at the other end of the edge. We will have to determine if this other node is
the start or end node of the edge:

public ArrayList<Node> neighbours() {
 ArrayList<Node> result = new ArrayList<Node>();
 for (Edge e: incidentEdges) {
 if (e.getStartNode() == this)
 result.add(e.getEndNode());
 else
 result.add(e.getStartNode());
 }
 return result;
}

As we write this method, it seems that we are writing a portion of code that is potentially useful
for other situations. That code is the code responsible for finding the opposite node of an edge.
We should extract this code and make it a method for the Edge class:

public Node otherEndFrom(Node aNode) {
 if (startNode == aNode)
 return endNode;
 else
 return startNode;
}
Now, we can rewrite the neighbours() method to use the otherEndFrom() method:

public ArrayList<Node> neighbours() {
 ArrayList<Node> result = new ArrayList<Node>();
 for (Edge e: incidentEdges)
 result.add(e.otherEndFrom(this));
 return result;
}

Ok. Now we will look at the Graph class. We have decided that we were going to store just
the nodes, and not the edges. We will also store a label for the graph ... after all ... provinces
have names don't they ?
import java.util.*;
public class Graph {
 private String label;
 private ArrayList<Node> nodes;

 public Graph() { this("", new ArrayList<Node>()); }
 public Graph(String aLabel) { this(aLabel, new ArrayList<Node>()); }
 public Graph(String aLabel, ArrayList<Node> initialNodes) {
 label = aLabel;
 nodes = initialNodes;
 }
 public ArrayList<Node> getNodes() { return nodes; }
 public String getLabel() { return label; }
 public void setLabel(String newLabel) { label = newLabel; }

 // Graphs look like this: label(6 nodes, 15 edges)
 public String toString() {
 return(label + "(" + nodes.size() + " nodes, " +
 getEdges().size() + " edges)");
 }
}

Let us write a method to return all the edges of the graph. It will have to go and collect all the
Edge objects from the incident edges of the Node objects and return them as an ArrayList.
Can you foresee a small problem ?
// Get all the edges of the graph by asking the nodes for them
public ArrayList<Edge> getEdges() {
 ArrayList<Edge> edges = new ArrayList<Edge>();
 for (Node n: nodes) {
 for (Edge e: n.incidentEdges()) {
 if (!edges.contains(e)) //so that it is not added twice
 edges.add(e);
 }
 }
 return edges;
}

Now we need methods for adding/removing nodes/edges. Adding a node or edge is easy,
assuming that we already have the node or edge:
public void addNode(Node aNode) { nodes.add(aNode); }

public void addEdge(Edge anEdge) {
 // ?????? What ?????? ...
}

Wait a minute ! How do we add an edge if we do not store them explicitly ? Perhaps we don't
want an addEdge method that takes an "already created" edge. Instead, we should have an
addEdge method that takes the startNode and endNode as parameters, then it creates the edge:
public void addEdge(Node start, Node end) {
 // First make the edge
 Edge anEdge = new Edge(start, end);

 // Now tell the nodes about the edge
 start.addIncidentEdge(anEdge);
 end.addIncidentEdge(anEdge);
}

There ... that is better. What about removing/deleting a node or edge ? Deleting an Edge is
easy, we just ask the edge's start and end nodes to remove the edge from their lists. Removing a
Node is a little more involved since all of the incident edges must be removed as well. After all
... we cannot have edges dangling with one of its Nodes missing !
public void deleteEdge(Edge anEdge) {
 // Just ask the nodes to remove it
 anEdge.getStartNode().incidentEdges().remove(anEdge);
 anEdge.getEndNode().incidentEdges().remove(anEdge);
}

public void deleteNode(Node aNode) {
 // Remove the opposite node's incident edges
 for (Edge e: aNode.incidentEdges())
 e.otherEndFrom(aNode).incidentEdges().remove(e);
 nodes.remove(aNode); // Remove the node now
}

OK. Let us write some code that now tests the model classes. Here is static method for the
Graph class that creates and returns a graph:
public static Graph example() {
 Graph myMap = new Graph("Ontario and Quebec");
 Node ottawa, toronto, kingston, montreal;

 myMap.addNode(ottawa = new Node("Ottawa", new Point(250,100)));
 myMap.addNode(toronto = new Node("Toronto", new Point(100,170)));
 myMap.addNode(kingston = new Node("Kingston", new Point(180,110)));
 myMap.addNode(montreal = new Node("Montreal", new Point(300,90)));
 myMap.addEdge(ottawa, toronto);
 myMap.addEdge(ottawa, montreal);
 myMap.addEdge(ottawa, kingston);
 myMap.addEdge(kingston, toronto);

 return myMap;
}

We can test it by writing Graph.example() anywhere. This looks fine and peachy, but if we
have 100 nodes, we would need 100 local variables (or a big array) just for the purpose of adding
edges !! Maybe this would be a better way to write the code:
public static Graph example() {
 Graph myMap = new Graph("Ontario and Quebec");

 myMap.addNode(new Node("Ottawa", new Point(250,100)));
 myMap.addNode(new Node("Toronto", new Point(100,120)));
 myMap.addNode(new Node("Kingston", new Point(200,130)));
 myMap.addNode(new Node("Montreal", new Point(300,70)));
 myMap.addEdge("Ottawa", "Toronto");
 myMap.addEdge("Ottawa", "Montreal");
 myMap.addEdge("Ottawa", "Kingston");
 myMap.addEdge("Kingston", "Toronto");

 return myMap;
}

This way, we can access the nodes of the graph by their names (assuming that they are all unique
names). How can we make this happen ? We just need to make another addEdge() method
that takes two String arguments and finds the nodes that have those labels. Perhaps we could
make a nice little helper method in the Graph class that will find a node with a given name
(label):
public Node nodeNamed(String aLabel) {
 for (Node n: nodes)
 if (n.getLabel().equals(aLabel)) return n;
 return null; // If we don't find one
}
Now we can write another addEdge() method that takes String parameters representing Node
names:
public void addEdge(String startLabel, String endLabel) {
 Node start = nodeNamed(startLabel);
 Node end = nodeNamed(endLabel);

 if ((start != null) && (end != null))
 addEdge(start, end);
}

Notice the way we share code by making use of the "already existing" addEdge() method.
Also notice the careful checking for valid node labels. After this new addition, the 2nd main()
method that we created above will now work.

Displaying the Graph:

If we are going to be displaying the graph, we need to think about how we want to draw it. Here
is what we "may" want to see:

So where do we start ? Let us work on writing code that draws each of the graph components
separately. We will start by writing methods for drawing Nodes and Edges, then use these to
draw the Graph. We can pass around the Graphics object that corresponds to the "pen" that
belongs to the panel.

Here is a method for the Node class that will instruct a Node to draw itself using the given
Graphics object:

public void draw(Graphics aPen) {
 int radius = 15;

 // Draw a blue-filled circle around the center of the node
 aPen.setColor(Color.blue);
 aPen.fillOval(location.x - radius, location.y - radius,
radius * 2, radius * 2);

 // Draw a black border around the circle
 aPen.setColor(Color.black);
 aPen.drawOval(location.x - radius, location.y - radius,
radius * 2, radius * 2);

 // Draw a label at the top right corner of the node
 aPen.drawString(label, location.x + radius, location.y -
radius);
}

Notice that we draw the node twice ... once for the blue color ... once for the black border.
Here is now a similar method for the Edge class that draws an edge:
public void draw(Graphics aPen) {
 // Draw a black line from the center of he startNode to the center of the
endNode
 aPen.setColor(Color.black);
 aPen.drawLine(startNode.getLocation().x, startNode.getLocation().y,
 endNode.getLocation().x, endNode.getLocation().y);
}
When drawing the graph, we should draw edges first, then draw the nodes on top. Why not the
other way around ? Here is the corresponding draw method for the Graph class:
public void draw(Graphics aPen) {
 ArrayList<Edge> edges = getEdges();

 for (Edge e: edges) // Draw the edges first
 e.draw(aPen);
 for (Node n: nodes) // Draw the nodes second

 n.draw(aPen);
}

The User Interface:

Now we can start the creation of our GraphEditor user interface. We will begin by making a
panel on which we will display the graph:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class GraphEditor extends JPanel {
 private Graph aGraph; // The model (i.e. the graph)

 public GraphEditor() { this(new Graph()); }
 public GraphEditor(Graph g) {
 aGraph = g;
 setBackground(Color.white);
 }

 // This is the method that is responsible for displaying the graph
 public void paintComponent(Graphics aPen) {
 super.paintComponent(aPen);
 aGraph.draw(aPen);
 }
}

Now we will make a class called GraphEditorFrame that represents a simple view which holds
only our GraphEditor panel:

import javax.swing.*;
public class GraphEditorFrame extends JFrame {
 private GraphEditor editor;

 public GraphEditorFrame (String title) { this(title, new Graph()); }
 public GraphEditorFrame (String title, Graph g) {
 super(title);
 add(editor = new GraphEditor(g));
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(600, 400);
 }

 public static void main(String args[]) {
 new GraphEditorFrame("Graph Editor",
Graph.example()).setVisible(true);
 }
}

Notice that we can run the example by running the GraphEditorFrame class. Our example
Ontario/Quebec graph comes up right away ! This is because the paintComponent() method
of GraphEditor() class is called upon startup.

Manipulating Nodes:

What kind of action should the user perform to add a node to the graph ? There are many
possibilities (i.e., menu options, buttons, mouse clicks). We will allow nodes to be added to the
graph via double clicks of the mouse. When the user double-clicks on the panel, a new node will
be added at that click location. We must have the GraphEditor class implement the
MouseListener interface. When we receive a click count of 2 on a mouseClick event, we will
add the node at that location. For now, we will leave the other mouse listeners blank:

public void mouseClicked(MouseEvent event) {
 // If this was a double-click, then add a node at the mouse
location
 if (event.getClickCount() == 2) {
 aGraph.addNode(new Node(event.getPoint()));
 // We have changed the model, so now we update
 update();
 }
}
public void mousePressed(MouseEvent event) { }
public void mouseReleased(MouseEvent event) { }
public void mouseEntered(MouseEvent event) { }
public void mouseExited(MouseEvent event) { }

Of course, we will have to add the MouseListener in the constructor. We will do this by calling
addEventHandlers() which we will be adding to later on:
public void addEventHandlers() {
 addMouseListener(this);
}
public void removeEventHandlers() {
 removeMouseListener(this);
}
The update() method itself is quite simple since there is only one component on the window ! It
merely calls repaint() after temporarily disabling the event handlers:
public void update() {
 removeEventHandlers();
 repaint();
 addEventHandlers();
}

If we run our code, we will notice something that is not so pleasant. Our strategy of using the
double click allows us to add nodes on top of each other, making them possibly
indistinguishable:

Perhaps instead of having nodes lying on top of each other, we could check to determine whether
or not the user clicks within a node. Then we can decide to "not add" the node if there is already
one there. What do we do then ... ignore the click ? Maybe we should cause the node to be
somehow "selected" so that we can move it around. To do this, we will need to add functionality
that allows nodes to be selected and unselected.

If we attempt to re-select an "already selected" node, it should probably become unselected (i.e.,
toggle on/off). We should make the node appear different as well (perhaps red). We will need to
detect which node has been selected. This sounds like it could be a nice little helper method in
the Graph class.

We can just check the distance from the given point to the center of all nodes. If the distance is
<= the radius, then we are inside that node.

In fact, we are not really computing the distance, we are computing the square of the distance.
This is more efficient since we do not need to compute the root.
// Return the first node in which point p is contained, if none, return null
public Node nodeAt(Point p) {
 for (Node n: nodes) {
 Point c = n.getLocation();
 int d = (p.x - c.x) * (p.x - c.x) + (p.y - c.y) * (p.y - c.y);
 if (d <= (15*15)) return n;
 }

 return null;
}

The 15 looks like a "magic" number. It seems like this number may be used a lot. We should
define a static constant in the Node class. Go back and change the draw method as well to use
this new static value:

public static int RADIUS = 15;
Here is the better code:
// Return the first node in which point p is contained, if none, return null
public Node nodeAt(Point p) {
 for (Node n: nodes) {
 Point c = n.getLocation();
 d = (p.x - c.x) * (p.x - c.x) + (p.y - c.y) * (p.y - c.y);
 if (d <= (Node.RADIUS * Node.RADIUS)) return n;
 }
 return null;
}
We should go back into our drawing routines and adjust the code so that it uses this new
RADIUS constant.

Now since we are allowing Nodes to be selected, we will have to somehow keep track of all the
selected nodes. We have two choices:

• Let the graph keep track of the selected nodes separately
• Let each node keep track of whether or not it is selected

We will choose the second strategy (do you understand the tradeoffs of each ?).
Add the following instance variable and methods to the Node class:
private boolean selected;

public boolean isSelected() { return selected; }
public void setSelected(boolean state) { selected = state; }
public void toggleSelected() { selected = !selected; }

Now we should modify the draw method to allow nodes to be selected and unselected:
public void draw(Graphics aPen) {

 // Draw a blue or red-filled circle around the center of the node
 if (selected)
 aPen.setColor(Color.red);
 else
 aPen.setColor(Color.blue);
 aPen.fillOval(location.x-RADIUS, location.y-RADIUS, RADIUS*2, RADIUS*2);

 // Draw a black border around the circle
 aPen.setColor(Color.black);
 aPen.drawOval(location.x-RADIUS, location.y-RADIUS, RADIUS*2, RADIUS*2);

 // Draw a label at the top right corner of the node
 aPen.drawString(label, location.x + radius, location.y - radius);

}

Of course, now to make it all work, we must use it in the mouseClicked event handler:
public void mouseClicked(MouseEvent event) {
 // If this was a double-click, then add a node at the mouse location
 if (event.getClickCount() == 2) {
 Node aNode = aGraph.nodeAt(event.getPoint());
 if (aNode == null)
 aGraph.addNode(new Node(event.getPoint()));
 else
 aNode.toggleSelected();
 // We have changed the model, so now we update
 update();
 }
}
Now how do we allow nodes to be deleted ? Perhaps, the user must select the node(s) first and
then hit the delete key. Perhaps when the delete key is pressed, ALL of the currently selected
nodes should be deleted. So we will make a method that first returns all the selected nodes.
We will need to add this method to the Graph class which returns a vector of all the selected
nodes:
// Get all the nodes that are selected
public ArrayList<Node> selectedNodes() {
 ArrayList<Node> selected = new ArrayList<Node>();
 for (Node n: nodes)
 if (n.isSelected()) selected.add(n);
 return selected;
}
We already took care of the node selection, now we must handle the delete key. We should have
the GraphEditor implement the KeyListener interface.
public void addEventHandlers() {
 addMouseListener(this);
 addKeyListener(this);
}
public void removeEventHandlers() {
 removeMouseListener(this);
 removeKeyListener(this);
}

public void keyTyped(KeyEvent event) {}
public void keyReleased(KeyEvent event) {}

public void keyPressed(KeyEvent event) {
 if (event.getKeyCode() == KeyEvent.VK_DELETE) {
 for (Node n: aGraph.selectedNodes())
 aGraph.deleteNode(n);
 update();
 }
}

There is a SLIGHT problem. It seems that even though we have only one component in our
window (i.e., the JPanel which is the GraphEditor itself), this component does not have the
focus by default. In order for the keystrokes to be detectable, the component MUST have the
focus. So we will add the following line to the beginning of the update() method:

public void update() {
 requestFocus(); // Need this for handling KeyPress
 removeEventHandlers();
 repaint();
 addEventHandlers();
}
Now, how can we move nodes around once they are created ? Once again, we must decide how
we want the interface to work. It is most natural to allow the user to move nodes by pressing the
mouse down while on top of a node and holding it down while dragging the node to the new
location, then release the mouse button to cause the node to appear in the new location. We will
need the mousePressed and mouseDragged events of the MouseListener and
MouseMotionListener interfaces, respectively. Here is what we will have to do:

• When the user presses the mouse (i.e., a "press", not a "click"), then determine if he/she
pressed on top of a node.

• If yes, then remember this node as being the one selected, otherwise do nothing
• As the mouse moves (while button being held down), we must update the chosen node's

location

We will have to remember which node is being dragged so that we can keep changing its
location as the mouse is dragged. We will add an instance variable called dragNode to keep this
node.
 private Node dragNode;
Here are the mousePressed , mouseDragged and mouseReleased event handlers:
// Mouse press event handler
public void mousePressed(MouseEvent event) {
 // First check to see if we are about to drag a node
 Node aNode = aGraph.nodeAt(event.getPoint());
 if (aNode != null) {
 // If we pressed on a node, store it
 dragNode = aNode;
 }
}

// Mouse drag event handler
public void mouseDragged(MouseEvent event) {
 if (dragNode != null)
 dragNode.setLocation(event.getPoint());

 // We have changed the model, so now update
 update();
}

// Mouse release event handler (i.e. stop dragging process)
public void mouseReleased(MouseEvent event) {
 dragNode = null;
}

Notice that the pressing of the mouse merely stores the node to be moved. The releasing of the
mouse button merely resets this stored node to null. All of the moving occurs in the dragging
event handler. If we drag the mouse, we just make sure that we had first clicked on a node by

examining the stored node just mentioned. If this stored node is not null, we then update its
position and then update the rest of the graph.

Notice that all the edges connected to a node move along with the node itself. Can you explain
why ?

Manipulating Edges:

We have exhausted almost all the fun out of manipulating the graph nodes and we are now left
with the "fun" of adding/deleting/selecting and moving edges. First we will consider adding
edges. We must decide again on what action the user needs to perform in order to add the edge:

1. We can have the user double-click on the startNode, double click on the endNode and
then have the edge magically appear.

2. We can select any two nodes of the graph and then perform some magic action (menu
item, button press, triple click) to cause an edge to appear between the two selected
edges.

3. We can click on a node and then drag the mouse to the destination node while showing
the created edge as we go.

I hope you will agree that the 3rd approach is nicer in that it is more intuitive and provides the
user with a nice user-friendly interface. We will see that this strategy is called elastic banding.

To start, we will need to make the following assumptions:

• When the user presses and holds the mouse button down on a node, this node becomes
the startNode for the edge to be created.

• As the user moves the mouse (i.e., mouseDragged event) a line should be drawn from
this startNode to the current mouse position.

• When the user lets go of the mouse button on top of a different node, an edge is created
between the two.

• We should abort the process of adding an edge if the user releases the mouse button
while: a) not on a node or b) on the same node as he/she started.

We will have to modify the mousePressed , mouseDragged and mouseReleased methods.

As it turns out, the mousePressed event handler already stores the "start" node in the dragNode
variable. But now look at the mouseDragged event handler. Currently, if we press the mouse
on a node and then drag it, this will end up causing the node to be moved. But we need to allow
an elastic band edge to be drawn instead of moving the node. So, we now have two behaviours
that we want to do from the same action of pressing the mouse on a node. This presents a
conflict since we cannot do both behaviours. Let us modify our node-moving behaviour as
follows:

• If the node initially clicked on is a selected node, then we will move it, otherwise we will
assume that an edge is to be added.

The mousePressed event handler currently just stores the selected node. There is really nothing
more to do there.

But now during the mouseDragged event handler, we will have to make a decision so as to either
move the node (if it was a selectedNode) or to merely draw an edge from the pressed node to the
current mouse location. We cannot however, do the drawing within this method. Why ? Well,
our paintComponent() method does the drawing and will draw over any of our drawing done
here!! The drawing doesn't belong here. Drawing should happen in the paintComponent()
method ONLY. All we will do here is just store the current mouse location in an
elasticEndLocation variable and use it within the paintComponent() method. Here are the
new changes:

// Mouse drag event handler
public void mouseDragged(MouseEvent event) {
 if (dragNode != null) {
 if (dragNode.isSelected())
 dragNode.setLocation(event.getPoint());
 else
 elasticEndLocation = event.getPoint();
 }
 // We have changed the model, so now update
 update();
}

Here is the updated paintComponent() method for the GraphEditor class:
// This is the method that is responsible for displaying the graph
public void paintComponent(Graphics aPen) {
 super.paintComponent(aPen);
 aGraph.draw(aPen);
 if (dragNode != null)
 if (!dragNode.isSelected())
 aPen.drawLine(dragNode.getLocation().x, dragNode.getLocation().y,
 elasticEndLocation.x, elasticEndLocation.y);
}
Notice that this method makes use of the dragNode and elasticEndLocation variables but still
needs to decide whether or not to draw the elastic band line. We draw the elastic line ONLY if
we are adding an edge. How do we know we are adding an edge ? Well, we must have pressed
on a starting node, so the dragNode must not be null. Also, that dragNode must not be
selected, otherwise we are in the middle of a "node moving" operation, not an "edge adding" one.

Our last piece to this trilogy of event handler changes is to have the mouseReleased event
handler add the new edge ONLY if we let go of the mouse button on top of a node that is not the
same as the one we started with. If it is, or we let go somewhere off a node, then we must
repaint everything either way to erase the elastic band:

// Mouse released event handler (i.e., stop dragging process)
public void mouseReleased(MouseEvent event) {
 // Check to see if we have let go on a node

 Node aNode = aGraph.nodeAt(event.getPoint());
 if ((aNode != null) && (aNode != dragNode))
 aGraph.addEdge(dragNode, aNode);

 // Refresh the panel either way
 dragNode = null;
 update();
}

One of our last tasks is to allow edges to be selected and removed. We can similarly add an
instance variable and methods to the edge class:
private boolean selected;

public boolean isSelected() { return selected; }
public void setSelected(boolean state) { selected = state; }
public void toggleSelected() { selected = !selected; }

Of course ... again we must initialize the instance variable in the constructor. Now we make
selected edges appear different (i.e., red).
// Draw the edge using the given Graphics object
public void draw(Graphics aPen) {
 // Draw a black or red line from the center of the startNode to the
center of the endNode
 if (selected)
 aPen.setColor(Color.red);
 else
 aPen.setColor(Color.black);
 aPen.drawLine(startNode.getLocation().x, startNode.getLocation().y,
 endNode.getLocation().x, endNode.getLocation().y);
}
To see if an edge has been selected, we will have to decide on where we should click. Perhaps
near the midpoint of the edge. But how accurate must we be ? We should allow some
tolerance. Maybe a tolerance roughly equivalent to the node's radius is acceptable.

Add the following method to the Graph class:
// Return the first edge in which point p is near the midpoint; if none,
return null
public Edge edgeAt(Point p) {
 int midPointX, midPointY;

 for (Edge e: getEdges()) {
 mX = (e.getStartNode().getLocation().x +
 e.getEndNode().getLocation().x) / 2;
 mY = (e.getStartNode().getLocation().y +
 e.getEndNode().getLocation().y) / 2;
 int distance = (p.x - mX) * (p.x - mX) +
 (p.y - mY) * (p.y - mY);
 if (distance <= (Node.RADIUS * Node.RADIUS))

 return e;
 }
 return null;
}

Now, upon a double click, we must check for edges. We will first check to see if we clicked on a
Node, then if we find that we did not click on a Node, we will check to see if we clicked on an
Edge:
public void mouseClicked(MouseEvent event) {
 // If this was a double-click, then add/select a node or select an edge
 if (event.getClickCount() == 2) {
 Node aNode = aGraph.nodeAt(event.getPoint());
 if (aNode == null) {
 // We missed a node, now try for an edge midpoint
 Edge anEdge = aGraph.edgeAt(event.getPoint());
 if (anEdge == null)
 aGraph.addNode(new Node(event.getPoint()));
 else
 anEdge.toggleSelected();
 }
 else
 aNode.toggleSelected();

 // We have changed the model, so now we update
 update();
 }
}

We can change the keyPressed event handler to delete all selected Nodes AND Edges. Of
course, we will need a method to get the selectedEdges first:
// Get all the edges that are selected
public ArrayList<Edge> selectedEdges() {
 ArrayList<Edge> selected = new ArrayList<Edge>();
 for (Edge e: getEdges())
 if (e.isSelected()) selected.add(e);
 return selected;
}

public void keyPressed(KeyEvent event) {
 if (event.getKeyCode() == KeyEvent.VK_DELETE) {
 // First remove the selected edges
 for (Edge e: aGraph.selectedEdges())
 aGraph.deleteEdge(e);

 // Now remove the selected nodes
 for (Node n: aGraph.selectedNodes())
 aGraph.deleteNode(n);
 update();
 }
}

 8.5 Adding Features to the Graph Editor

We have implemented a basic graph editor. There are many features that can be added. Below
are solutions to some added features to the GraphEditor. You may want to try to add these
features yourself without looking at the solutions.

Dragging Edges

• Add the following two instance variables to the GraphEditor class:

private Edge dragEdge;
private Point dragPoint;

• Add code to the mousePressed event handler in the GraphEditor class to store the edge
to be dragged

 public void mousePressed(MouseEvent event) {
 // First check to see if we are about to drag a node
 Node aNode = aGraph.nodeAt(event.getPoint());
 if (aNode != null) {
 // If we pressed on a node, store it
 dragNode = aNode;
 }
 else
 dragEdge = aGraph.edgeAt(event.getPoint());
 dragPoint = event.getPoint();
 }

• Add code to the mousePressed event handler in the GraphEditor class to store the edge
to be dragged

 public void mouseDragged(MouseEvent event) {
 if (dragNode != null) {
 if (dragNode.isSelected())
 dragNode.setLocation(event.getPoint());
 else
 elasticEndLocation = event.getPoint();
 }
 if (dragEdge != null) {
 if (dragEdge.isSelected()) {
 dragEdge.getStartNode().getLocation().translate(
 event.getPoint().x - dragPoint.x,
 event.getPoint().y - dragPoint.y);
 dragEdge.getEndNode().getLocation().translate(
 event.getPoint().x - dragPoint.x,
 event.getPoint().y - dragPoint.y);
 dragPoint = event.getPoint();
 }
 }

 // We have changed the model, so now update
 update();
 }

Moving Groups of Vertices/Edges

• Add the following instance variable to the GraphEditor class:

private Point dragPoint;

• Add the following line at the bottom of the mousePressed event handler in the
GraphEditor class:

dragPoint = event.getPoint();

• In the mouseDragged event handler for the GraphEditor class, change

if (dragNode != null) {
 if (dragNode.isSelected())
 dragNode.setLocation(event.getPoint());
 else
 elasticEndLocation = event.getPoint();
}

to this:
if (dragNode != null) {
 if (dragNode.isSelected()) {
 for (Node n: aGraph.selectedNodes()) {
 n.getLocation().translate(
 event.getPoint().x - dragPoint.x,
 event.getPoint().y - dragPoint.y);
 }
 dragPoint = event.getPoint();
 }
 else
 elasticEndLocation = event.getPoint();
}

Drawing Selected Edges with Different Thicknesses

• Add the following instance variable to the Edge class:

public static final int WIDTH = 7;

• Modify the draw() method in the Edge class:

public void draw(Graphics aPen) {
 if (selected) {
 aPen.setColor(Color.RED);
 int xDiff =
Math.abs(startNode.getLocation().x -
endNode.getLocation().x);
 int yDiff =
Math.abs(startNode.getLocation().y -

endNode.getLocation().y);
 for (int i= -WIDTH/2; i<=WIDTH/2; i++) {
 if (yDiff > xDiff)

aPen.drawLine(startNode.getLocation().x+i,
startNode.getLocation().y,

endNode.getLocation().x+i, endNode.getLocation().y);
 else

aPen.drawLine(startNode.getLocation().x,
startNode.getLocation().y+i,
 endNode.getLocation().x,
endNode.getLocation().y+i);
 }
 }
 else {
 aPen.setColor(Color.black);
 aPen.drawLine(startNode.getLocation().x,
startNode.getLocation().y,
 endNode.getLocation().x,
endNode.getLocation().y);
 }

}

Loading and Saving Graphs

• Add the following methods to the Node class:

 // Save the node to the given file. Note that the incident
edges are not saved.
 public void saveTo(PrintWriter aFile) {
 aFile.println(label);
 aFile.println(location.x);
 aFile.println(location.y);
 aFile.println(selected);
 }

 // Load a node from the given file. Note that the incident
edges are not connected
 public static Node loadFrom(BufferedReader aFile) throws
IOException {
 Node aNode = new Node();

 aNode.setLabel(aFile.readLine());
 aNode.setLocation(Integer.parseInt(aFile.readLine()),
 Integer.parseInt(aFile.readLine()));

aNode.setSelected(Boolean.valueOf(aFile.readLine()).booleanValue(
));
 return aNode;
 }

• Add the following methods to the Edge class:

// Save the edge to the given file. Note that the
nodes themselves are not saved.
// We assume here that node locations are unique
identifiers for the nodes.
public void saveTo(PrintWriter aFile) {
 aFile.println(label);
 aFile.println(startNode.getLocation().x);
 aFile.println(startNode.getLocation().y);
 aFile.println(endNode.getLocation().x);
 aFile.println(endNode.getLocation().y);
 aFile.println(selected);
}

// Load an edge from the given file. Note that the
nodes themselves are not loaded.
// We are actually making temporary nodes here that
do not correspond to the actual
// graph nodes that this edge connects. We'll have
to throw out these TEMP nodes later
// and replace them with the actual graph nodes that
connect to this edge.
public static Edge loadFrom(BufferedReader aFile)
throws IOException {
 Edge anEdge;
 String aLabel = aFile.readLine();
 Node start = new Node("TEMP");
 Node end = new Node("TEMP");

start.setLocation(Integer.parseInt(aFile.readLine()),

Integer.parseInt(aFile.readLine()));

end.setLocation(Integer.parseInt(aFile.readLine()),

Integer.parseInt(aFile.readLine()));
 anEdge = new Edge(aLabel, start, end);

anEdge.setSelected(Boolean.valueOf(aFile.readLine()).
booleanValue());

 return anEdge;
}

• Add the following methods to the Graph class:

 // Save the graph to the given file.
 public void saveTo(PrintWriter aFile) {
 aFile.println(label);

 // Output the nodes
 aFile.println(nodes.size());
 for (Node n: nodes)
 n.saveTo(aFile);

 // Output the edges

 ArrayList<Edge> edges = getEdges();
 aFile.println(edges.size());
 for (Edge e: edges)
 e.saveTo(aFile);
 }

 // Load a Graph from the given file. After the nodes and
edges are loaded,
 // We'll have to go through and connect the nodes and edges
properly.
 public static Graph loadFrom(BufferedReader aFile) throws
IOException {
 // Read the label from the file and make the graph
 Graph aGraph = new Graph(aFile.readLine());

 // Get the nodes and edges
 int numNodes = Integer.parseInt(aFile.readLine());
 for (int i=0; i<numNodes; i++)
 aGraph.addNode(Node.loadFrom(aFile));

 // Now connect them with new edges
 int numEdges = Integer.parseInt(aFile.readLine());
 for (int i=0; i<numEdges; i++) {
 Edge tempEdge = Edge.loadFrom(aFile);
 Node start =
aGraph.nodeAt(tempEdge.getStartNode().getLocation());
 Node end =
aGraph.nodeAt(tempEdge.getEndNode().getLocation());
 aGraph.addEdge(start, end);
 }

 return aGraph;
 }

• Change the GraphEditorFrame class definition to implement the ActionListener
interface:

public class GraphEditorFrame extends JFrame
implements ActionListener

• Add the following methods to the GraphEditor class:

 public Graph getGraph() { return aGraph; }
 public void setGraph(Graph g) { aGraph = g; update(); }

• Add the following to the constructor of the GraphEditorFrame class:

 JMenuBar menubar = new JMenuBar();
 setJMenuBar(menubar);
 JMenu file = new JMenu("File");
 menubar.add(file);
 JMenuItem load = new JMenuItem("Load");
 JMenuItem save = new JMenuItem("Save");
 file.add(load);

 file.add(save);
 load.addActionListener(this);
 save.addActionListener(this);

• Add the following event handler to the GraphEditorFrame class:

 public void actionPerformed(ActionEvent e) {
 JFileChooser chooser = new JFileChooser();
 if (e.getActionCommand().equals("Load")) {
 int returnVal = chooser.showOpenDialog(this);

 if (returnVal == JFileChooser.APPROVE_OPTION) {
 try {
 editor.setGraph(Graph.loadFrom(new
java.io.BufferedReader(
 new
java.io.FileReader(chooser.getSelectedFile().getAbsoluteFile())))
);
 }
 catch (Exception ex) {
 JOptionPane.showMessageDialog(null,
 "Error Loading Graph From File !",
 "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 }
 else {
 int returnVal = chooser.showSaveDialog(null);

 if (returnVal == JFileChooser.APPROVE_OPTION) {
 try {
 editor.getGraph().saveTo(new
java.io.PrintWriter(
 new
java.io.FileWriter(chooser.getSelectedFile().getAbsoluteFile())))
;
 }
 catch (java.io.IOException ex) {}
 }
 }
 }

Other Features:

There are also other features we can add. Feel free to experiment with the graph editor:

• showing labels on edges
• adjusting labels so that they don't overlap
• scaling (growing or shrinking) of the graph
• repositioning and resizing the graph so that it always fits in the window, even when the

window is reduced.

	 8 Graphics
	What's in This Set of Notes?

