

COMP1406/1006 - Design and Implementation of Computer Applications Winter 2006

 9 Networking

What's in This Set of Notes ?
One of the more advanced topics in programming is that of networking and client/server
communications. This topic considers multiple applications communicating with one another
over a network (such as the internet). We will find out here that JAVA has some nice
communication packages that allow us to build programs that communicate with one another in a
fairly simply manner.

Here are the individual topics found in this set of notes (click on one to go there):

• 9.1 Networking Basics
• 9.2 URLs
• 9.3 Client/Server Communications
• 9.4 Client/Server Example
• 9.5 Datagram Sockets
• 9.6 Auction Example

9.1 Networking Basics

Networking allows you to create multiple JAVA applications and have them communicate with
one another. So, we can set up what is known as distributed applications in which there are
client/server relationships. A server is an application that provides a "service" to various clients
who request the service. There are many client/server scenarios in real life:

• Bank tellers (server) provides a service for the account owners (client)
• Waitresses (server) provides a service for customers (client)
• Travel agents (server) provide a service for people wishing to go on vacation (client)

In some cases, servers themselves may become clients at some times.

• For example, the travel agent will become a client when they phone the airline to make a
reservation or contact a hotel to book a room.

In the general networking scenario, everybody can either be a client or a server at any time.
This is known as peer-to-peer computing. In terms of writing java applications it is similar to
having many applications communicating among one another.

• For example, Napster worked this way. Thousands of people all act as clients (trying to
download songs from another person) as well as servers (in that they allow others to
download their songs).

There are many different strategies for allowing communication between applications. JAVA
technology allows:

• internet clients to connect to servlets or back-end business systems (or databases).
• applications to connect to one another using sockets.
• applications to connect to one another using RMI.
• some others

We will look at the simplest strategy of connecting applications using sockets.

A Protocol is:

• a standard pattern of exchanging information.
• like rules/steps for communication

The simplest example of a protocol is a phone
conversation:
JIM dials a phone number
MARY says "Hello..."
JIM says "Hello..."
 The conversation ensues ...
JIM says "Goodbye"
MARY says "Goodbye"
Perhaps another person gets involved:
JIM dials a phone number
MARY says "Hello..."
JIM says "Hello" and perhaps asks to speak to FRED
MARY says "Just a minute"
FRED says "Hello..."
JIM says "Hello..."
 The conversation ensues ...
JIM says "Goodbye"
FRED says "Goodbye"

Either way, there is an "expected" set of steps or responses involved during the initiation and
conclusion of the conversation. If these steps are not followed, confusion occurs (like when you
phone someone and they pick up the phone but do not say anything).

Computer protocols are similar in that a certain amount of "handshaking" goes on to establish a
valid connection between two machines. Just as we know that there are different ways to shake
hands, there are also different protocols. There are actually layered levels of protocols in that
some low level layers deal with how to transfer the data bits, others deal with more higher-level
issues such as "where to send the data to".

Computers running on the Internet typically use one of the following high-level Application
Layer protocols to allow applications to communicate:

o HyperText Transfer Protocol (HTTP)
o File Transfer Protocol (FTP)
o Telnet

This is analogous to having multiple strategies for communicating with someone (in person, by
phone, through electronic means, by post office mail etc...).

In a lower Transport Layer of communication, there is a separate protocol which is used to
determine how the data is to be transported from one machine to another:

o Transport Control Protocol (TCP)
o User Datagram Protocol (UDP)

This is analogous to having multiple ways of actually delivering a package to someone (Email,
Fax, UPS, Fed-Ex etc...)

Beneath that layer is a Network Layer for determining how to locate destinations for the data
(i.e., address). And at the lowest level (for computers) there is a Link Layer which actually
handles the transferring of bits/bytes.

So, internet communication is built of several layers:

When you write JAVA applications that communicate over a network, you are programming in
the Application Layer.

JAVA allows two types of communication via two main types of Transport Layer protocols:

TCP

• a connection-based protocol that provides
a reliable flow of data between two
computers.

• guarantees that data sent from one end of
the connection actually gets to the other
end and in the same order

o similar to a phone call. Your
words come out in the order that
you say them.

• provides a point-to-point channel for
applications that require reliable
communications.

• slow overhead time of setting up an end-
to-end connection.

UDP

• a protocol that sends independent packets
of data, called datagrams, from one
computer to another.

• no guarantees about arrival. UDP is not
connection-based like TCP.

• provides communication that is not
guaranteed between the two ends

o sending packets is like sending a
letter through the postal service

o the order of delivery is not
important and not guaranteed

o each message is independent of
any other.

• faster since no overhead of setting up end-
to-end connection

• many firewalls and routers have been
configured NOT TO allow UDP packets.

Why would anyone want to use UDP protocol if information may get lost ? Well, why do we
use email or the post office ? We are never guaranteed that our mail will make it to the person
that we send them to, yet we still rely on them. It may still be quicker than trying to contact a
person via phone (i.e., like a TCP protocol).

One more important definition we need to understand is that of a port. Although a computer
usually has a single physical connection to the network, data sent by different applications or
delivered to them do so through the use of ports configured on same physical connection. A port
is used as a gateway or "entry point" into an application.

Data transmitted over the internet to an application requires the address of the destination
computer and the application's port number. A computer's address is a 32-bit IP address. The
port number is a 16-bit number ranging from 0 to 65,535, with ports 0-1023 restricted by well-
known applications like HTTP and FTP.

9.2 URLs

URL is an acronym for Uniform Resource Locator and is a reference (an address) to a resource
on the Internet. So, it is used to represent the "location" of a webpage or web-based application.

URLs:

• are Strings that describe how to find a resource on the Internet
• represent names of resources which can be files, databases, applications, etc..
• resource names contain a host machine name, filename, port number, and other

information.
• may also specify a protocol identifier (e.g., http, ftp)

Here is an example of a full URL:
http://www.scs.carleton.ca/~courses/COMP1006/Notes/COMP1406_9/1406Notes9.html#UR
Ls

o http:// is the protocol identifier which indicates the protocol that will be used to
obtain the resource.

o the remaining part is the resource name, and its format depends on the protocol
used to access it.

The complete list of components that can be found in a URL resource name are as follows:

Host
Name

The name of the machine on which the resource lives:
http://www.scs.carleton.ca:80/~courses/COMP1006/Notes/COMP1406_9/1
406Notes9.html#URLs

Port #
(option
al)

The port number to which to connect:
http://www.scs.carleton.ca:80/~courses/COMP1006/Notes/COMP1406_9/1
406Notes9.html#URLs

Filena
me

The pathname to the file on the machine:
http://www.scs.carleton.ca:80/~courses/COMP1006/Notes/COMP1406_9/1
406Notes9.html#URLs

Refere
nce
(option
al)

A reference to a named anchor (a.k.a. target) within a resource that usually
identifies a specific location within a file:
http://www.scs.carleton.ca:80/~courses/COMP1006/Notes/COMP1406_9/1
406Notes9.html#URLs

In JAVA, there is a URL class defined in the java.net package. We can create our own URL
objects as follows:
URL carleton = new URL("http://www.scs.carleton.ca/~courses/COMP1006/");
JAVA will "dissect" the given String in order to obtain information about protocol, hostName,
file etc.... Due to this, JAVA may throw a MalformedURLException ... so we will need to do
this:
try {
 URL carleton = new URL("http://www.scs.carleton.ca/~courses/COMP1006/");
} catch(MalformedURLException e) {
 ...
}
Another way to create a URL is to break it into its various components:

try {
 URL theseNotes = new URL("http", "www.scs.carleton.ca", 80,

"/~courses/COMP1006/Notes/COMP1406_9/1406Notes9.html");

} catch(MalformedURLException e) {
 ...
}

If you take a look at the JAVA API, you will notice some other constructors as well.

The URL class also supplies methods for extracting the parts (protocol, host, file, port and
reference) of a URL object. Here is an example that demonstrates what can be accessed. Note
that this example only manipulates a URL object, it does not go off to grab any webpages :) :

import java.net.*;
public class URLExample {
public static void main(String[] args) {
URL theseNotes = null;
try {
 theseNotes = new URL("http", "www.scs.carleton.ca", 80,

"/~courses/COMP1006/Notes/COMP1406_9/1406Notes9.html#URLs");
} catch(MalformedURLException e) {
 e.printStackTrace();
}
System.out.println(theseNotes);
System.out.println("protocol = " + theseNotes.getProtocol());
System.out.println("host = " + theseNotes.getHost());
System.out.println("filename = " + theseNotes.getFile());
System.out.println("port = " + theseNotes.getPort());
System.out.println("ref = " + theseNotes.getRef());
 }
}

Here is the output:
http://www.scs.carleton.ca:80/~courses/COMP1006/Notes/COMP1406_9/1406No
tes9.html#URLs
protocol = http
host = www.scs.carleton.ca
filename = /~courses/COMP1006/Notes/COMP1406_9/1406Notes9.html
port = 80
ref = URLs

After creating a URL object, you can actually connect to that webpage and read the contents of
the URL by using its openStream() method which returns an InputStream. You actually read
from the webpage as if it were a simple text file. If an attempt is made to read from a URL that
does not exist, JAVA will throw an UnknownHostException

Here is an example that reads a URL directly. It actually reads the file representing this set of
notes and displays it line by line to the console. Notice that it reads the file as a text file, so we
simply get the HTML code. Also, you must be connected to the internet to run this code:

import java.net.*;
import java.io.*;
public class URLReaderExample {
 public static void main(String[] args) {
 URL theseNotes = null;
 try {
 theseNotes = new URL("http", "www.scs.carleton.ca",
80,

"/~courses/COMP1006/Notes/COMP1406_9/1406Notes9.html");
 BufferedReader in = new BufferedReader(
 new
InputStreamReader(theseNotes.openStream()));

 // Now read the webpage file
 String lineOfWebPage;
 while ((lineOfWebPage = in.readLine()) != null)
 System.out.println(lineOfWebPage);

 in.close(); // Close the connection to the net
 } catch(MalformedURLException e) {
 System.out.println("Cannot find webpage " +
theseNotes);
 } catch(IOException e) {
 System.out.println("Cannot read from webpage " +
theseNotes);
 }
 }
}

The output should look something like this, assuming you could connect to the webpage:
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 <meta name="Author" content="Mark Lanthier">
 <meta name="GENERATOR"
 content="Mozilla/4.7 [en]C-CCK-MCD EBM-Compaq1 (Win95; U) [Netscape]">
 <title>COMP1006/1406 Notes 9 - Networking</title>
</head>
<body>

<table width="100%">
 <tbody>
 <tr>
 <td><i>COMP1406/1006 - Design and
Implementation of Computer
Applications</i></td>
...

Example:

Here is a modification to the above example that reads the URL by making a URLConnection
first. Since the tasks of opening a connection to a webpage and reading the contents may both
generate an IOException, we cannot distinguish the kind of error that occured. By trying to
establish the connection first, if any IOExceptions occur, we know they are due to a connection
problem. Once the connection has been established, then any further IOException errors would
be due to the reading of the webpage data.

import java.net.*;
import java.io.*;
public class URLConnectionReaderExample {
 public static void main(String[] args) {
 URL theseNotes = null;
 BufferedReader in = null;
 try {
 theseNotes = new URL("http", "www.scs.carleton.ca",
80,

"/~courses/COMP1006/Notes/COMP1406_9/1406Notes9.html");
 } catch(MalformedURLException e) {
 System.out.println("Cannot find webpage " +
theseNotes);
 System.exit(-1);
 }
 try {
 URLConnection aConnection =
theseNotes.openConnection();
 in = new BufferedReader(
 new
InputStreamReader(aConnection.getInputStream()));
 }
 catch (IOException e) {
 System.out.println("Cannot connect to webpage " +
theseNotes);
 System.exit(-1);
 }
 try {
 // Now read the webpage file
 String lineOfWebPage;
 while ((lineOfWebPage = in.readLine()) != null)
 System.out.println(lineOfWebPage);
 in.close(); // Close the connection to the net
 } catch(IOException e) {
 System.out.println("Cannot read from webpage " +
theseNotes);
 }
 }
}

9.3 Client/Server Communications

Many companies today sell services or products. In addition, there are a large number of
companies turning towards E-business solutions and various kinds of webserver/database
technologies that allow them to conduct business over the internet as well as over other
networks.

Such applications usually represent a client/server scenario in which one or more servers serve
multiple clients.

Our definition of a server here will be: any application that provides
a service and allows clients to communicate with it. Such services
may provide:

• a recent stock quote
• transactions for bank accounts
• an ability to order products
• an ability to make reservations
• a way to allow multiple clients to interact (Auction)

The client, of course, will be: any application that requests a service from a
server. The client typically "uses" the service and then displays results to
the user. Normally, communication between the client and server must be
reliable (no data can be dropped or missing):

• stock quotes must be accurate and timely
• banking transactions must be accurate and stable
• reservations/orders must be acknowledged

The TCP protocol, mentioned earlier, provides reliable point-to-point communication. Using
TCP the client and server must establish a connection in order to communicate. To do this, each
program binds a socket to its end of the connection. A socket is one endpoint of a two-way
communication link between 2 programs running on the network. A socket is bound to a port
number so that the TCP layer can identify the application to which the data is to be sent. It is
similar to the idea of plugging the two together with a cable.

The port number is used as the server's location on the machine that the server application is
running. So if a computer is running many different server applications on the same physical
machine, the port number uniquely identifies the particular server that the client wishes to
communicate with:

The client and server may then each read and write to the socket bound to its end of the
connection.

In JAVA, the server application uses a ServerSocket object to wait for client connection
requests. When you create a ServerSocket, you must specify a port number (an int). It is
possible that the server cannot set up a socket and so we have to expect a possible IOException.
 Here is an example:
public static int SERVER_PORT = 5000;

ServerSocket serverSocket;
try {
 serverSocket = new ServerSocket(SERVER_PORT);
} catch(IOException e) {
 JOptionPane.showMessageDialog(null, "Cannot open connection to Server",
 "Error", JOptionPane.ERROR_MESSAGE);
}

The server can communicate with only one client at a time. The server waits for an incoming
client request through the use of the accept() message:
Socket aClientSocket;
try {
 aClientSocket = serverSocket.accept();
} catch(IOException e) {
 JOptionPane.showMessageDialog(null, "Cannot accept incoming client
connection",
 "Error", JOptionPane.ERROR_MESSAGE);
}

When the accept() method is called, the server program actually waits
(i.e., blocks) until a client becomes available (i.e., an incoming client
request arrives. Then it creates and returns a Socket object through
which communication takes place.

Once the client and server have completed their interaction, the socket is
then closed:

aClientSocket.close();

Only then may the next client open a socket connection to the server. So, remember ... if one
client has a connection, everybody else has to wait until they are done:

So how does the client connect to the server ? Well, the client must know the address of the
server as well as the PORT number. The server's address is stored as an InetAddress object
which represents any IP address (i.e., an internet address, an ftp site, local machine etc,...). If
the server and client are on the same machine, the static method getLocatHost() in the
InetAddress class may be used to get an address representing the local machine.

 public static int SERVER_PORT = 5000;

 try {
 InetAddress address = InetAddress.getLocalHost();
 Socket socket = new Socket(address, SERVER_PORT);
 } catch(UnknownHostException e) {
 JOptionPane.showMessageDialog(null, "Host Unknown",
 "Error", JOptionPane.ERROR_MESSAGE);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "Cannot connect to server",
 "Error", JOptionPane.ERROR_MESSAGE);
 }

Once again, a socket object is returned which can then be used for communication.
Here is an example of what a local host may look like:

cr850205-a/169.254.180.32
The getLocalHost() method may, however, generate an UnknownHostException.
You can also make an InetAddress object by specifying the network IP address directly or the
machine name directly as follows:

 InetAddress.getByName("169.254.1.61");
 InetAddress.getByName("www.scs.carleton.ca");

So how do we actually do communication between the client and the server ? Well, each socket
has an inputStream and an outputStream. So, once we have the sockets, we simply ask for
these streams and then reading and writing may occur.

try {
 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();
} catch(IOException e) {
 JOptionPane.showMessageDialog(null, "Cannot open I/O
Streams",
 "Error",
JOptionPane.ERROR_MESSAGE);
}

Normally, however, we actually wrap these input/output streams with text-based, datatype-based
or object-based wrappers:

 ObjectInputStream in = new ObjectInputStream(socket.getInputStream());
 ObjectOutputStream out = new
ObjectOutputStream(socket.getOutputStream());

 BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));
 PrintWriter out = new PrintWriter(socket.getOutputStream());

 DataInputStream in = new DataInputStream(socket.getInputStream());
 DataOutputStream out = new DataOutputStream(socket.getOutputStream());

You may look back at the notes on streams to see how to write to the streams. However, one
more point ... when data is sent through the output stream, the flush() method should be sent to
the output stream so that the data is not buffered, but actually sent right away.

Also, you must be careful when using ObjectInputStreams and ObjectOutputStreams. When
you create an ObjectInputStream, it blocks while it tries to read a header from the underlying
SocketInputStream. When you create the corresponding ObjectOutputStream at the far end, it
writes the header that the ObjectInputStream is waiting for, and both are able to continue. If
you try to create both ObjectInputStreams first, each end of the connection is waiting for the
other to complete before proceeding which results in a deadlock situation (i.e., the programs
seems to hang/halt). This behaviour is described in the API documentation for the
ObjectInputStream and ObjectOutoutStream constructors.

9.4 Client/Server Example

Lets now take a look at a real example. In this example, a client will attempt to:

1. connect to a server
2. ask the server for the current time
3. ask the server for the number of requests that the server has handled so far
4. ask the server for an invalid request (i.e., for a pizza)

Here is the client application:
import java.net.*;
import java.io.*;
import javax.swing.JOptionPane;
public class Client {
 private Socket socket;
 private BufferedReader in;
 private PrintWriter out;

 // Make a connection to the server
 private void connectToServer() {
 try {
 socket = new Socket(InetAddress.getLocalHost(),
Server.SERVER_PORT);

 in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));
 out = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Cannot connect to
server",
 "Error",
JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }
 }

 // Disconnect from the server
 private void disconnectFromServer() {
 try {
 socket.close();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Cannot disconnect
from server",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }
 }

 // Ask the server for the current time
 private void askForTime() {
 connectToServer();

 out.println("What Time is It ?");
 out.flush();
 try {
 String time = in.readLine();
 System.out.println("CLIENT: The time is " + time);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Cannot receive time
from server",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }
 disconnectFromServer();
 }

 // Ask the server for the number of requests obtained
 private void askForNumberOfRequests() {
 connectToServer();
 out.println("How many requests have you handled ?");
 out.flush();

 int count = 0;
 try {
 count = Integer.parseInt(in.readLine());
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Cannot receive num
requests from server",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }
 System.out.println("CLIENT: The number of requests are " + count);
 disconnectFromServer();
 }

 // Ask the server to order a pizza
 private void askForAPizza() {
 connectToServer();
 out.println("Give me a pizza");
 out.flush();
 disconnectFromServer();
 }

 public static void main (String args[]) {
 Client c = new Client();
 c.askForTime();
 c.askForNumberOfRequests();
 c.askForAPizza();
 c.askForTime();
 c.askForNumberOfRequests();
 }
}

Now the server application runs forever, continually waiting for incoming client requests:
import java.net.*; // all socket stuff is in here
import java.io.*;
import javax.swing.JOptionPane;

public class Server {
 public static int SERVER_PORT = 6000; // arbitrary, but above 1023
 private int counter = 0;

 // Helper method to get the ServerSocket started
 private ServerSocket goOnline() {
 ServerSocket serverSocket = null;
 try {
 serverSocket = new ServerSocket(SERVER_PORT);
 } catch (IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error creating
network connection",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }
 System.out.println("SERVER online");
 return serverSocket;
 }

 // Handle all requests
 private void handleRequests(ServerSocket serverSocket) {
 while(true) {
 Socket socket = null;
 BufferedReader in = null;
 PrintWriter out = null;
 try {
 // Wait for an incoming client request
 socket = serverSocket.accept();

 // At this point, a client connection has been made
 in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 out = new PrintWriter(socket.getOutputStream());
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error connecting
to client",
 "Error",
JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }
 // Read in the client's request
 try {
 String request = in.readLine();
 System.out.println("SERVER: Client Message Received: " +
request);
 if (request.equals("What Time is It ?")) {
 out.println(new java.util.Date());
 counter++;
 }
 else if (request.equals("How many requests have you handled
?"))
 out.println(counter++);
 else
 System.out.println("SERVER: Unknown request: " +
request);

 // Now make sure that the response is sent
 out.flush();

 // We are done with the client's request
 socket.close();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error
communicating with client",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }
 }
 }

 public static void main (String args[]) {
 Server s = new Server();
 ServerSocket ss = s.goOnline();
 if (s != null) s.handleRequests(ss);
 }
}

Note, to run this using JCreator, we will have to execute two different JCreator applications, one
for the server and one for the client.

9.5 Datagram Sockets

Recall that with datagrams there is no direct socket connection between the client and the
server. That is, packets are received "in seemingly random order" from different clients. It is
similar to the way email works. If the client requests or server responses are too big, they are
broken up into multiple packets and sent one packet at a time. The server is not guaranteed to
receive the packets all at once, nor in the same order, nor is it guaranteed to receive all the
packets !!

Let us look at the same client-server application, but by now using
DatagramSockets and DatagramPackets. Once again, the server
will be in a infinite loop accepting messages, although there will be
no direct socket connection to the client. We will be setting up a
buffer (i.e., an array of bytes) which will be used to receive
incoming requests. Each message is sent as a packet. Each packet
contains:

• the data of message (i.e., the message itself)
• the length of the message (i.e., the number of bytes)
• the address of the sender (as an InetAddress)
• the port of the sender

The code for packaging and sending an outgoing packet involves creating a DatagramSocket

and then constructing a DatagramPacket. The packet requires an array of bytes, as well as the
address and port in which to send to. The byte array can be obtained from most objects by
sending a getBytes() message to the object. Finally, a send() message is used to send the packet:

 DatagramSocket socket = new DatagramSocket();
 byte[] sendBuffer = "This is the data (which does
not have to be a String)".getBytes();
 DatagramPacket packetToSend = new
DatagramPacket(sendBuffer, sendBuffer.length, anInetAddress,
aPort);
 socket.send(packetToSend);

The server code for receiving an incoming packet involves allocating space (i.e., a byte array) for
the DatagramPacket and then receiving it. The code looks as follows:

 byte[] recieveBuffer = new byte[INPUT_BUFFER_LIMIT];
 DatagramPacket receivePacket = new DatagramPacket(recieveBuffer,
recieveBuffer.length);
 socket.receive(receivePacket);

We then need to extract the data from the packet. We can get the address and port of the sender
as well as the data itself from the packet as follows:

 InetAddress sendersAddress = receivePacket.getAddress();
 int sendersPort = receivePacket.getPort();
 String sendersData = new
String(receivePacket.getData(), 0, receivePacket.getLength());

In this case the data sent was a String, although it may in general be any object.

By using the sender's address and port, whoever receives the packet can send back a reply.

Here is the modified client/server code using the DatagramPackets:

import java.net.*;
import java.io.*;
import javax.swing.JOptionPane;
public class PacketServer {
public static int SERVER_PORT = 6000;
private static int INPUT_BUFFER_LIMIT = 500;

private int counter = 0;

// Handle all requests
private void handleRequests() {
 System.out.println("SERVER online");

 // Create a socket for communication
 DatagramSocket socket = null;
 try {

 socket = new DatagramSocket(SERVER_PORT);
 } catch (SocketException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Cannot connect to
network",
 "Error", JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }

 // Now handle incoming requests
 while(true) {
 try {
 // Wait for an incoming client request
 byte[] recieveBuffer = new byte[INPUT_BUFFER_LIMIT];
 DatagramPacket receivePacket = new DatagramPacket(
 recieveBuffer, recieveBuffer.length);
 socket.receive(receivePacket);

 // Extract the packet data that contains the request
 InetAddress address = receivePacket.getAddress();
 int clientPort = receivePacket.getPort();
 String request = new String(receivePacket.getData(), 0,
 receivePacket.getLength());
 System.out.println("SERVER: Packet received: \"" + request +
 "\" from " + address + ":" + clientPort);

 // Decide what should be sent back to the client
 byte[] sendBuffer;
 if (request.equals("What Time is It ?")) {
 System.out.println("SERVER: sending packet with time info");
 sendResponse(socket, address, clientPort,
 new java.util.Date().toString().getBytes());
 counter++;
 }
 else if (request.equals("How many requests have you handled ?")) {
 System.out.println("SERVER: sending packet with num
requests");
 sendResponse(socket, address, clientPort,
 ("" + ++counter).getBytes());
 }
 else
 System.out.println("SERVER: Unknown request: " + request);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error receiving
client requests",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }
}

// This helper method sends a given response back to the client
private void sendResponse(DatagramSocket socket, InetAddress address,
 int clientPort, byte[] response) {
 try {
 // Now create a packet to contain the response and send it
 DatagramPacket sendPacket = new DatagramPacket(response,
 response.length, address, clientPort);

 socket.send(sendPacket);
 } catch (IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error sending response
to client" +
 address + ":" + clientPort,
 "Error", JOptionPane.ERROR_MESSAGE);
 }
}

public static void main (String args[]) {
 new PacketServer().handleRequests();
}

}

Notice that only one DatagramSocket is used, but that a new DatagramPacket object is created
for each incoming message.

Now lets look at the client:

import java.net.*;
import java.io.*;
import javax.swing.JOptionPane;
public class PacketClient {
private static int INPUT_BUFFER_LIMIT = 500;
private InetAddress localHost;

public PacketClient() {
 try {
 localHost = InetAddress.getLocalHost();
 } catch(UnknownHostException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Error
connecting to network",
 "Error",
JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }
}

// Ask the server for the current time
private void askForTime() {
 DatagramSocket socket = null;
 try {
 socket = new DatagramSocket();
 byte[] sendBuffer = "What Time is It ?".getBytes();
 DatagramPacket sendPacket = new
DatagramPacket(sendBuffer,
 sendBuffer.length, localHost,
Server.SERVER_PORT);
 System.out.println("CLIENT: Sending time request to
server");
 socket.send(sendPacket);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Error

sending time request to server",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }

 try {
 byte[] receiveBuffer = new byte[INPUT_BUFFER_LIMIT];
 DatagramPacket receivePacket = new
DatagramPacket(receiveBuffer, receiveBuffer.length);
 socket.receive(receivePacket);
 System.out.println("CLIENT: The time is " +
 new String(receivePacket.getData(), 0,
receivePacket.getLength()));
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Cannot
receive time from server",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }
 socket.close();
}

// Ask the server for the number of requests obtained
private void askForNumberOfRequests() {
 DatagramSocket socket = null;
 try {
 socket = new DatagramSocket();
 byte[] sendBuffer = "How many requests have you handled
?".getBytes();
 DatagramPacket sendPacket = new
DatagramPacket(sendBuffer,
 sendBuffer.length, localHost,
Server.SERVER_PORT);
 System.out.println("CLIENT: Sending request count request
to server");
 socket.send(sendPacket);
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Error
sending request to server",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }

 try {
 byte[] receiveBuffer = new byte[INPUT_BUFFER_LIMIT];
 DatagramPacket receivePacket = new
DatagramPacket(receiveBuffer, receiveBuffer.length);
 socket.receive(receivePacket);
 System.out.println("CLIENT: The number of requests are "
+
 new String(receivePacket.getData(), 0,
receivePacket.getLength()));
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Cannot
receive num requests from server",
 "Error",

JOptionPane.ERROR_MESSAGE);
 }
 socket.close();
}

// Ask the server to order a pizza
private void askForAPizza() {
 try {
 byte[] sendBuffer = "Give me a pizza".getBytes();
 DatagramPacket sendPacket = new
DatagramPacket(sendBuffer,
 sendBuffer.length, localHost,
Server.SERVER_PORT);
 DatagramSocket socket = new DatagramSocket();
 System.out.println("CLIENT: Sending pizza request to
server");
 socket.send(sendPacket);
 socket.close();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "CLIENT: Error
sending request to server",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }
}

public static void main (String args[]) {
 PacketClient c = new PacketClient();
 c.askForTime();
 c.askForNumberOfRequests();
 c.askForAPizza();
 c.askForTime();
 c.askForNumberOfRequests();
}

}

9.6 Auction Example

Let us look at a large example now in which a server application represents an auction. Items
are put up for auction and clients bid over the network on the items. Clients must first register
with the auction server and then they may make bids on the items as they are placed up for
auction. The user at the server end, decides when the item is no longer up for auctioning.

The example involves 11 classes:

• Model classes:

o Customer - a customer who will be bidding at the auction:

• C

o Aucti

o Aucti
the cu
auctio

Commun
o Aucti

world
o Aucti

client

ionItem - an

ion - the auc
urrent item u
oning busine

nication
ionServer -
d.
ionClient - a
and the serv

n item which

tion itself, k
up for auction

ss logic:

classes:
allows comm

allows comm
ver.

h is up for Au

keeping track
n and the cu

munication b

munication (i

uctioning:

k of inventor
stomers (and

between the

i.e., bidding/

ry of items to
d their purch

o be auction
hases) and th

auction and

/responses) b

ed,
he

the outside

between the

• User Interface classes:

o AuctionServerApp - the server GUI (only 1 server runs this).
o AuctionClientApp - the client GUI (each client runs this).
o RegistrationDialog - the dialog box used for getting registration information.
o AuctionCatalogDialog - the dialog box used to display the auction's catalog of

items.
o AuctionItemDialog - the dialog box that allows a new AuctionItem to be

specified (at the server).
o DialogClientInterface - the interface that allows dialog boxes to inform their

owners upon closing.

Let us consider the basic model classes. First, we will examine the Customer ... it is quite
simple:
public class Customer implements java.io.Serializable {
 private String name;
 private String address;
 private String visa;
 private String expire;

 public Customer() { this("","","",""); }
 public Customer(String n, String a, String v, String e) {
 name = n; address = a; visa = v; expire = e;
 }
 public String getName() { return name; }
 public String getAddress() { return address; }
 public String getVisa() { return visa; }
 public String getExpire() { return expire; }

 public void setName(String n) { name = n; }
 public void setAddress(String a) { address = a; }
 public void setVisa(String v) { visa = v; }
 public void setExpire(String e) { expire = e; }

 public boolean hasMissingInformation() {
 return ((name == null) || (name.length()==0) ||
 (visa == null) || (visa.length()==0) ||
 (address == null) || (address.length()==0) ||

 (expire == null) || (expire.length()==0));
 }
}

The class is straight forward. The hasMissingInformation() method will be useful later when
we ask the user for the customer information. It checks to make sure that there are non-null,
non-zero-length strings for all the data. Of course, we are not validating the visa number
anywhere.

The AuctionItem class is similarily simple:
public class AuctionItem implements java.io.Serializable {
 private String name;
 private float bid;
 private Customer purchaser;
 private boolean sold;
 private String picture;

 public AuctionItem() { this("", 0, ""); }
 public AuctionItem(String n, float startingBid, String fileName) {
 name = n;
 bid = startingBid;
 purchaser = null;
 picture = fileName;
 sold = false;
 }
 public String getName() { return name; }
 public float getBid() { return bid; }
 public Customer getPurchaser() { return purchaser; }
 public String getPicture() { return picture; }
 public boolean isSold() { return sold; }

 public void setName(String n) { name = n; }
 public void setBid(float amount) { bid = amount; }
 public void setPicture(String imageName) { picture = imageName; }
 public void setPurchaser(Customer c) { purchaser = c; }
 public void setSold() { sold = true; }

 public String toString() {
 if (sold) return "[SOLD " + name + "]";
 else return name;
 }
}

Notice that the picture is actually just a filename. We use the following images for our auction
items:

Now what about the Auction itself ? It is more complicated since it must deal with all auction-
type behaviour such as placing items up for bid, handling/validating bids, registering clients,
handling purchases etc... So what kind of methods do we need to write ? Consider first the
Auction's state, and think about how it changes hen the users interact with it.

The auction will maintain an inventory of AuctionItem objects:
private ArrayList<AuctionItem> inventory;
We will need to know which item is currently up for bid (initially null):
private AuctionItem bidItem;
Finally, we will want to keep track of the Customers and their purchases. We can use a
HashMap where the keys are the Customer objects themselves and the corresponding value
will be an ArrayList of all AuctionItems purchased so far by that Customer:
private HashMap<Customer,ArrayList<AuctionItem>> customers;
Customers should interact this way with the auction:

• Register with the auction - note that we keep an ArrayList of purchases for each
Customer.

public void registerCustomer(Customer c) {
 customers.put(c, new ArrayList<AuctionItem>());
}

• Ask for a catalog (i.e., a list) of items that will be bidded on

public ArrayList<AuctionItem> getInventory() { return inventory;
}

• Ask if an item is currently up for bidding

public boolean hasItemUpForBid() { return bidItem != null; }

• Ask what item is currently up for bidding

public AuctionItem getBidItem() { return bidItem; }

• Ask what the latest bid is - return 0 if no item is up for bid

public float latestBid() {
 if (bidItem == null) return 0;
 return bidItem.getBid();
}

• Make a bid for the latest item

public boolean acceptBidFrom(String name, float amount) {
 // If nothing is up for bidding, don't accept the bid
 if (bidItem == null) return false;

 // First make sure the bid is actually valid
 if (amount <= latestBid()) return false;

 // Now make sure the customer is valid
 Customer c = customerWithName(name);
 if (c != null) {
 // Store the bid amount AND the bidder
 bidItem.setPurchaser(c);
 bidItem.setBid(amount);
 return true;
 }
 return false;
}

• Ask who made the latest bid (as confirmation when the customer makes a bid)

public Customer latestBidder() {
 if (bidItem == null) return null;
 return bidItem.getPurchaser();
}

What about the person running the auction ? What kind of behaviour does he/she need ?

• Add to the inventory of items to be auctioned

public void add(AuctionItem item) {
 inventory.add(item);
}

• Get a list of all customers and their purchases

public HashMap<Customer, ArrayList<AuctionItem>> getCustomers() {
return customers; }

• Place an item up for bidding - make sure it was not already sold :)

public void placeUpForBid(AuctionItem item) {
 if (item.isSold()) return;
 bidItem = item;
}

• Stop the bidding process for an item - call when the item is considered sold

public void stopBidding() {
 if (latestBidder() != null) {
 ArrayList<AuctionItem> purchases =
customers.get(latestBidder());
 purchases.add(bidItem);
 bidItem.setSold();
 inventory.remove(bidItem);
 }
 bidItem = null;
}

So, you can see that the methods are all quite simple. They are all public so that the
AuctionServer can communicate with this model class when either customer requests come in,
or when the server user interacts with his/her GUI.

Here is the combined code:

import java.util.ArrayList;
import java.util.HashMap;
public class Auction {
private ArrayList<AuctionItem> inventory;
private AuctionItem bidItem;
private HashMap<Customer,ArrayList<AuctionItem>> customers;

public Auction() { this(new ArrayList<AuctionItem>()); }
public Auction(ArrayList<AuctionItem> initInventory) {
 inventory = initInventory;
 bidItem = null;
 customers = new HashMap<Customer,ArrayList<AuctionItem>>();
}
public ArrayList<AuctionItem> getInventory() { return inventory;
}
public AuctionItem getBidItem() { return bidItem; }
public HashMap<Customer,ArrayList<AuctionItem>> getCustomers() {
return customers; }

// Return the latest bid
public float latestBid() {
 if (bidItem == null) return 0;
 return bidItem.getBid();
}

// Return the latest bidder
public Customer latestBidder() {
 if (bidItem == null) return null;
 return bidItem.getPurchaser();
}

// Return the name of the latest bidder
public String latestBidderName() {
 if ((bidItem == null) || (bidItem.getPurchaser() == null))
 return "";

 return bidItem.getPurchaser().getName();
}

// Add the given item to the inventory
public void add(AuctionItem item) {
 inventory.add(item);
}

// Register the Customer with the given information to Auction
public void registerCustomer(String name, String address,
 String visa, String expire) {
 registerCustomer(new Customer(name, address, visa, expire));
}

// Register the given Customer with the Auction
public void registerCustomer(Customer c) {
 customers.put(c, new ArrayList<AuctionItem>());
}

// Place the given item up for bidding, customers can now bid on
it
public void placeUpForBid(AuctionItem item) {
 if (item.isSold()) return;
 bidItem = item;
}

// Return whether or not there is currently an item up for
bidding
public boolean hasItemUpForBid() { return bidItem != null; }

// Find the Customer with the given name
public Customer customerWithName(String name) {
 for (Customer c: customers.keySet())
 if (c.getName().equals(name)) return c;
 return null;
}

// Accept an incoming bid for the item up for bid.
// If it is a valid bid, remember who made the bid
// and increase the latest bid amount.
public boolean acceptBidFrom(String name, float amount) {
 // If nothing is up for bidding, don't accept the bid
 if (bidItem == null) return false;

 // First make sure the bid is actually valid
 if (amount <= latestBid()) return false;

 // Now make sure the customer is valid
 Customer c = customerWithName(name);
 if (c != null) {
 bidItem.setPurchaser(c);
 bidItem.setBid(amount);
 return true;
 }

 return false;
}

// Once the bidding has stopped, the item is considered
// to be sold to the last bidder, if there was one.
public void stopBidding() {
 if (latestBidder() != null) {
 ArrayList<AuctionItem> purchases =
customers.get(latestBidder());
 purchases.add(bidItem);
 bidItem.setSold();
 inventory.remove(bidItem);
 }
 bidItem = null;
}

public static Auction example1() {
 Auction a = new Auction();
 AuctionItem first = new AuctionItem("Antique
Table",150.0f,"table.jpg");
 a.add(first);
 a.add(new AuctionItem("JVC VCR",65.0f,"vcr.jpg"));
 a.add(new AuctionItem("Antique
Cabinet",400.0f,"cabinet.jpg"));
 a.add(new AuctionItem("5-piece
Drumset",190.0f,"drumset.jpg"));
 a.add(new AuctionItem("Violin & Case",100.0f,"violin.jpg"));
 a.add(new AuctionItem("13\" TV/VCR
Combo",100.0f,"tvvcr.jpg"));
 a.add(new AuctionItem("486Dx2-66 Laptop",125.0f,
"486laptop.jpg"));
 a.add(new AuctionItem("Rocking Chair",80.0f,
"rockingchair.jpg"));
 a.add(new AuctionItem("1996 Mazda
Miata",6500.0f,"miata.jpg"));
 a.placeItemUpForBid(first);
 return a;
}

}

Now, what about the server itself ? Well, we have seen earlier how to make a simple server that
can accept() incoming messages from a client via a ServerSocket object. We use the same
approach. We will simply get the server started, and then dispatch any incoming messages to an
appropriate helper method.

What kinds of client messages should the server accept ?

• 'r': register a client
• 'b': handle an incoming bid;
• 'c': handle a catalog request
• 'u': handle an update request (i.e., latest bid info)

So, the server should wait in an infinite loop, accepting client messages forever. Here is the
basic framework, we will add the helper methods later:
import java.io.*;
import java.net.*;
import javax.swing.JOptionPane;
public class AuctionServer extends Thread {
// These variables are required for communication with clients
public static int SERVER_PORT = 6000;
private ServerSocket serverSocket;
private ObjectInputStream inputStreamFromClient;
private ObjectOutputStream outputStreamToClient;
private boolean online;

// This is the model on which we are auctioning
private Auction auction;

// Keep the appl. too so we can update it when we change info
private AuctionServerApp serverApplication;

public Auction getAuction() { return auction; }
public AuctionServer(Auction a) {
 auction = a; online = false;
}

// Allow a server application to register for updates to the model
public void registerForUpdates(AuctionServerApp app) {
 serverApplication = app;
}

// Attempt to bring the server online
public boolean goOnline() {
 online = false;
 try {
 serverSocket = new ServerSocket(SERVER_PORT);
 online = true;
 System.out.println("SERVER Auction Server Online");
 start(); // Starts the server by calling run()
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error Getting Server
Online",
 "Error", JOptionPane.ERROR_MESSAGE);
 System.exit(-1);
 }
 return online;
}

// Do what is necessary to shut down the server connection
public boolean goOffline() {
 try {
 if (online){
 serverSocket.close();
 online = false;
 System.out.println("SERVER Auction Server Offline");
 }
 } catch(IOException e) {

 JOptionPane.showMessageDialog(null, "SERVER: Error Going Offline",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 return online;
}

// Try disconnecting from the client
private boolean closeClientConnection(Socket s) {
 try {
 if (s != null) s.close();
 return true;
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error During Client
Disconnect",
 "Error", JOptionPane.ERROR_MESSAGE);
 return false;
 }
}

// Accept incoming messages from clients forever
public void run() {
 // Accept messages forever
 while (online) {
 Socket socket = null;
 try {
 // Wait for an incoming message
 socket = serverSocket.accept();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error Contacting
Client",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 try {
 // Make object streams for the socket
 inputStreamFromClient =
 new ObjectInputStream(socket.getInputStream());
 outputStreamToClient =
 new ObjectOutputStream(socket.getOutputStream());

 // Now handle the message
 try {
 String aLine; // Will hold initial command message
 aLine = (String)inputStreamFromClient.readObject();
 System.out.println("SERVER Received: " + aLine);

 if (aLine != null) {
 // Dispatch to the helper methods
 char command = aLine.charAt(0);
 switch(command) {
 case 'r': registerClient(); break;
 case 'b': handleIncomingBid(); break;
 case 'c': handleCatalogRequest(); break;
 case 'u': handleUpdateRequest(); break;
 default: System.out.println("SERVER Error:
 Invalid Message " + command);
 }

 }
 else
 System.out.println("SERVER Error: Invalid
 Client Message Command");
 } catch(ClassNotFoundException e) {
 System.out.println("SERVER Error in Client
 Message Data");
 }
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error Receiving
Client Message",
 "Error", JOptionPane.ERROR_MESSAGE);
 } finally {
 // Now close the connection to this client
 System.out.println("SERVER Closing Client Connection");
 closeClientConnection(socket);
 }
 }
}
// Test a simple AuctionServer
public static void main(String args[]) {
 AuctionServer server = new AuctionServer(Auction.example1());
 server.goOnline();
}

}
Notice that the code looks huge ... but its actually mostly error checking. For example, here is
the run() method without the clutter of the error checking and comments (although the code
below won't compile):

public void run() {
 while (online) {
 Socket socket = serverSocket.accept();
 inputStreamFromClient = new
ObjectInputStream(socket.getInputStream());
 outputStreamToClient = new
ObjectOutputStream(socket.getOutputStream());

 String aLine = (String)inputStreamFromClient.readObject();
 if (aLine != null) {
 char command = aLine.charAt(0);
 switch(command) {
 case 'r': registerClient(); break;
 case 'b': handleIncomingBid(); break;
 case 'c': handleCatalogRequest(); break;
 case 'u': handleUpdateRequest(); break;
 default: System.out.println("SERVER Error: Invalid Message " +
 command);
 }
 }
 closeClientConnection(socket);
 }
}

So what about handling the different messages ? Below are the helper methods.

When a registration message is received, we need to read in a Customer object (the client will
have to make a Customer object with his/her name, address, visa & expiry date. We will take
this object, make sure that no information is missing and then send a reply back to the client
customer. If the registration is successful, we will send back "Registration received"
otherwise we will send back "Registration Error: information is missing".

// Handle an incoming request for a client to be registered
private void registerClient() {
 Customer c = null;
 try {
 c = (Customer)inputStreamFromClient.readObject();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error
Receiving Client Registration Information",
 "Error",
JOptionPane.ERROR_MESSAGE);
 } catch(ClassNotFoundException e) {
 System.out.println("SERVER Error In Client Registration
Data");
 }
 try {
 if (c != null) {
 if (c.hasMissingInformation())
 outputStreamToClient.writeObject("Registration
Error: information is missing");
 else {
 auction.registerCustomer(c);
 outputStreamToClient.writeObject("Registration
received");
 }
 }
 outputStreamToClient.flush();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error
Sending Registration Response",
 "Error",
JOptionPane.ERROR_MESSAGE);
 }
}

Now what about when the customer wants to make a bid ? In this case, we will need to know
the name of the Customer as well as the amount being bid. We will need to verify that this
customer is indeed registered and also that his/her bid is valid. If he/she is not registered, we
will send back: "Error: You MUST register first". If the bid is invalid, we will send
back: "Error: Your bid is invalid" . Otherwise we will record the bid and send back:
"Bid received".
// Handle an incoming request for a client to make a bid
private void handleIncomingBid() {
 String name = "";
 float bid = 0;
 try {
 // Expect the client's name and bid
 name = (String)inputStreamFromClient.readObject();
 bid = ((Float)inputStreamFromClient.readObject()).floatValue();
 } catch(IOException e) {

 JOptionPane.showMessageDialog(null, "SERVER: Error Receiving Client
Bid Information",
 "Error", JOptionPane.ERROR_MESSAGE);
 } catch(ClassNotFoundException e) {
 System.out.println("SERVER Error In Client's Bid Data");
 }
 try {
 if (auction.customerWithName(name) == null)
 outputStreamToClient.writeObject("Error: You MUST register
first");
 else if (auction.acceptBidFrom(name, bid))
 outputStreamToClient.writeObject("Bid received");
 else
 outputStreamToClient.writeObject("Error: Your bid is invalid");
 outputStreamToClient.flush();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error Sending Bid
Response",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 // Update the server application to reflect the new bid information
 if (serverApplication != null)
 serverApplication.update();
}
Now what about requests for a client to have a catalog ? In this case, we simply send back the
inventory ArrayList:
// Handle an incoming request for a client to have a catalog
private void handleCatalogRequest() {
 try {
 outputStreamToClient.writeObject(auction.getInventory());
 outputStreamToClient.flush();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error Sending Catalog to
Client",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
}
That one was easy :). Our last message that we need to handle is an update(). The client
application will repeatedly ask for the latest bid information so that it's screen can be refreshed.
Each time the server receives this message, it should simply send back the AuctionItem that is
currently up for bid. Note that this item contains all necessary update information including the
name of the item, its latest bid value and its latest bidder. Note that if nothing is currently up for
bid when this message is received, we simply send back null.
// Handle an incoming request for the latest bid information
private void handleUpdateRequest() {
 try {
 outputStreamToClient.writeObject(auction.getBidItem());
 outputStreamToClient.flush();
 } catch(IOException e) {
 JOptionPane.showMessageDialog(null, "SERVER: Error Sending Update to
Client",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
}

Well, that is it for the Server. Now what about the Client ? Here is the framework
import java.io.*;
import java.net.*;
import javax.swing.JOptionPane;
import java.util.ArrayList;
public class AuctionClient {
// These variables hold the necessary socket information
// for communincating with the Auction Server
private Socket socket;
private ObjectInputStream inputStreamFromServer;
private ObjectOutputStream outputStreamToServer;
private Object serverReply;

// This is the Customer who is attached to this client as its model
private Customer customer;
private AuctionItem latestAuctionItem;

public AuctionClient(Customer c) { customer = c; }

// Return the server's latest reply, useful for GUI status pane
public Object getServerReply() { return serverReply; }

// Return the Customer information pertaining to this client
public Customer getCustomer() { return customer; }

// Return the AuctionItem being bid on
public AuctionItem getLatestAuctionItem() {
 return latestAuctionItem;
}

// Try connecting to the auction server
private boolean establishServerConnection() {
 try {
 socket = new
Socket(InetAddress.getLocalHost(),AuctionServer.SERVER_PORT);
 outputStreamToServer = new
ObjectOutputStream(socket.getOutputStream());
 inputStreamFromServer = new
ObjectInputStream(socket.getInputStream());
 return true;
 } catch(IOException e) {
 handleError("CLIENT: Error Connecting to Server");
 return false;
 }
}

// Try disconnecting from the auction server
private boolean closeServerConnection() {
 try {
 socket.close();
 return true;
 } catch(IOException e) {
 handleError("CLIENT: Error Disconnecting from Server");
 return false;

 }
}

// Use this to display errors and also to record them for the GUI
private void handleError(String s) {
 serverReply = s;
 JOptionPane.showMessageDialog(null, s, "Error",
JOptionPane.ERROR_MESSAGE);
}

// Test by registering, sending bid and requesting catalog
public static void main(String args[]) {
 AuctionServer server = new AuctionServer(Auction.example1());
 server.goOnline();
 AuctionClient client = new AuctionClient(
 new Customer("Mark", "23 Oak St.", "4256 4878 0439 2387",
"12/04"));
 System.out.println(client.register());
 System.out.println(client.getServerReply());
 System.out.println(client.sendBid("Mark", 120.23f));
 System.out.println(client.getServerReply());
 System.out.println(client.sendBid("Bob", 300));
 System.out.println(client.getServerReply());
 System.out.println(client.sendBid("Mark", 5000));
 System.out.println(client.getServerReply());
 System.out.println(client.sendForCatalog());
 System.out.println("\"" + client.sendForUpdate() + "\"");
 server.goOffline();
}

}
Notice in the main method that the interesting methods are missing. Let us create those now.

To register, the client must connect to the server, send a "register request" message and
then send the Customer information for this client. We will wait for the server's reply and store
it in the serverReply variable (which will be shown in the status pane of the GUI). Then, we
close the server connection.

// Send a request to be registered for the auction by the server
public boolean register() {
 if (!establishServerConnection()) return false;

 // Output the appropriate registration information
 try {
 outputStreamToServer.writeObject("register request");
 outputStreamToServer.writeObject(customer);
 outputStreamToServer.flush();
 } catch(IOException e) {
 handleError("CLIENT: Error sending Registration");
 }

 // Now wait to see if the registration went through
 boolean result = false;
 try {

 serverReply = (String)inputStreamFromServer.readObject();
 if (serverReply != null)
 result = serverReply.equals("Registration received");
 } catch(IOException e) {
 handleError("CLIENT: Error receiving registration
response");
 } catch(ClassNotFoundException e) {
 handleError("CLIENT: Error in Server reply data");
 } finally {
 closeServerConnection();
 return result;
 }
}

Now to bid on an item, we need to send a "bid request" message as well as the Customer
name and the bid value. We then need to wait for the reply to see if it worked and simply store
this reply in the serverReply for the GUI to display.
// Send a bid to the server
public boolean sendBid(String name, float bid) {
 if (!establishServerConnection()) return false;

 // Output the appropriate bid information
 try {
 outputStreamToServer.writeObject("bid request");
 outputStreamToServer.writeObject(name);
 outputStreamToServer.writeObject(new Float(bid));
 outputStreamToServer.flush();
 } catch(IOException e) {
 handleError("CLIENT: Error sending bid");
 }

 // Now wait to see if the bid went through
 boolean result = false;
 try {
 serverReply = (String)inputStreamFromServer.readObject();
 if (serverReply != null)
 result = serverReply.equals("Bid received");
 } catch(IOException e) {
 handleError("CLIENT: Error receiving bid response");
 } catch(ClassNotFoundException e) {
 handleError("CLIENT: Error in Server reply data");
 } finally {
 closeServerConnection();
 return result;
 }
 }

When a catalog is required, we simply send a simple "catalog request" message to the
server and get back the result (stored in serverReply). The method will also return the catalog
ArrayList ... but we will let the GUI figure out what to do with it :).
// Send a request for a catalog of auction items to the server
public ArrayList<AuctionItem> sendForCatalog() {
 if (!establishServerConnection())
 return new ArrayList<AuctionItem>();

 // Send the request
 try {
 outputStreamToServer.writeObject("catalog request");
 outputStreamToServer.flush();
 } catch(IOException e) {
 handleError("CLIENT: Error sending catalog request");
 }

 // Now wait to see if the request went through
 serverReply = new ArrayList<AuctionItem>();
 try {
 serverReply =
(ArrayList<AuctionItem>)inputStreamFromServer.readObject();
 if (serverReply == null)
 serverReply = new ArrayList<AuctionItem>();
 } catch(IOException e) {
 handleError("CLIENT: Error receiving catalog");
 } catch(ClassNotFoundException e) {
 handleError("CLIENT: Error in Server reply data");
 } finally {
 closeServerConnection();
 return (ArrayList<AuctionItem>)serverReply;
 }
}

OK ... Now for the update request. We will send "update request" to the server and then
wait for the latest AuctionItem to be returned. We will return it from this method.
// Send a request for the latest bid information to the server
public AuctionItem sendForUpdate() {
 if (!establishServerConnection()) return null;

 // Send the request
 try {
 outputStreamToServer.writeObject("update request");
 outputStreamToServer.flush();
 } catch(IOException e) {
 handleError("CLIENT: Error sending update request");
 return null;
 }
 // Now wait to see if the request went through
 serverReply = null;
 latestAuctionItem = null;
 try {
 serverReply = (AuctionItem)inputStreamFromServer.readObject();
 latestAuctionItem = (AuctionItem)serverReply;
 } catch(IOException e) {
 handleError("CLIENT: Error receiving update");
 } catch(ClassNotFoundException e) {
 handleError("CLIENT: Error in Server reply data");
 } finally {
 closeServerConnection();
 return latestAuctionItem;
 }
}

Wow! That sure was fun. Actually, we can run the main method shown above since it runs the
server and a client as well. It is a good idea to run these to make sure that everything works
fine. Here is our test case:

 AuctionServer server = new AuctionServer(Auction.example1());
 server.goOnline();
 AuctionClient client = new AuctionClient(
 new Customer("Mark", "23 Oak St.", "4256 4878 0439 2387",
"12/04"));
 System.out.println(client.register());
 System.out.println(client.getServerReply());
 System.out.println(client.sendBid("Mark", 120.23f));
 System.out.println(client.getServerReply());
 System.out.println(client.sendBid("Bob", 300));
 System.out.println(client.getServerReply());
 System.out.println(client.sendBid("Mark", 5000));
 System.out.println(client.getServerReply());
 System.out.println(client.sendForCatalog());
 System.out.println("\"" + client.sendForUpdate() + "\"");
 server.goOffline();

Here is the output which server output in blue, client output in red:
SERVER Auction Server Online
SERVER Received a Command: register request
SERVER Closing Client Connection
true
Registration received
SERVER Received a Command: bid request
SERVER Closing Client Connection
false
Error: Your bid is invalid
SERVER Received a Command: bid request
SERVER Closing Client Connection
false
Error: You MUST register first
SERVER Received a Command: bid request
SERVER Closing Client Connection
true
Bid received
SERVER Received a Command: catalog request
SERVER Closing Client Connection
[Antique Table, JVC VCR, Antique Cabinet, 5-piece Drumset,
Violin & Case, 13" TV/VCR Combo, 486Dx2-66 Laptop, Rocking
Chair, 1996 Mazda Miata]
SERVER Received a Command: update request
SERVER Closing Client Connection
"Antique Table"
SERVER Auction Server Offline
Notice that there are some errors when closing because the sockets are still set up when the client
quits :).

Now what about the GUI's ? Let us examine the dialog box that requests for a new item to be
added to the auction inventory. It should allow the user to specify the item name, starting bid
and picture file. Here is what it will look like, and its code is shown below:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class AuctionItemDialog extends JDialog {

// Store a pointer to the model for changes later
private AuctionItem item;

private JTextField nameTextField;
private JTextField bidTextField;
private JTextField pictureField;

// The buttons and main panel
private JButton okButton;
private JButton cancelButton;

public AuctionItemDialog(Frame owner, AuctionItem ai){

 super(owner,"New Auction Item", true);

 item = ai; // Store the model

 // Make a panel with two buttons (placed side by side)
 JPanel buttonPanel = new JPanel();
 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT, 5,
5));
 buttonPanel.add(okButton = new JButton("OK"));
 buttonPanel.add(cancelButton = new JButton("CANCEL"));

 // Make a panel with auction item information
 JPanel itemPanel = new JPanel();

 nameTextField = new JTextField(item.getName(), 15);
 bidTextField = new JTextField(""+item.getBid(), 15);
 bidTextField.setHorizontalAlignment(JTextField.RIGHT);
 pictureField = new JTextField(item.getPicture(), 15);

 // Set the layoutManager and add the components
 itemPanel.setLayout(new GridLayout(3,2,5,5));
 itemPanel.add(new JLabel("Item Name:"));
 itemPanel.add(nameTextField);
 itemPanel.add(new JLabel("Starting Bid ($):"));
 itemPanel.add(bidTextField);
 itemPanel.add(new JLabel("Picture file (gif/jpg):"));
 itemPanel.add(pictureField);

 // Make the dialog box by adding the two panels
 setLayout(new FlowLayout(FlowLayout.RIGHT, 5, 5));
 add(itemPanel);
 add(buttonPanel);

 // Prevent the window from being resized
 setSize(365, 150);
 setResizable(false);

 // Listen for ok button click
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event){
 okButtonClicked();
 }});

 // Listen for cancel button click
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event){
 cancelButtonClicked();
 }});

 // Listen for window closing: treat like cancel button
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent event) {
 cancelButtonClicked();
 }});
}

public AuctionItem getAuctionItem() { return item; }

private void okButtonClicked(){
 // Update model to show changed owner name
 item.setName(nameTextField.getText());
 item.setBid(Float.parseFloat(bidTextField.getText()));
 item.setPicture(pictureField.getText());

 // Tell the client that ok was clicked
 if (getOwner() != null)
 ((DialogClientInterface)getOwner()).dialogFinished(this);
 dispose();
}

private void cancelButtonClicked(){
 // Tell the client that cancel was clicked
 if (getOwner() != null)

((DialogClientInterface)getOwner()).dialogCancelled(this);
 dispose();
}

}

Notice how the item variable (i.e., the model) is updated when the OK is clicked. Other than
that, there is nothing new here.

OK, now let us look at the Server's
GUI code. The AuctionServerApp
class represents the application that is
used by the person who is running the
auction. It should be connected to an
Auction object and have the ability to
list/add/remove AuctionItems as well
as place one up for bidding. In
addition, the user will want to be able
to stop the bidding when no clients
have responded to the latest bid for a
while. The image to the right is what
the GUI will look like.

Below is the basic framework for the
code. To keep things simple, the
update methods and the event
handlers are discussed afterwards.

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.*;
import java.net.*;

public class AuctionServerApp extends JFrame implements
DialogClientInterface {

// This image gets shown when there is nothing up for
bid

private static ImageIcon BLANK_IMAGE = new
ImageIcon("blankItem.jpg");

private JTextField statusField;
private JTextField bidItemField;
private JTextField bidAmountField;
private JTextField bidderField;
private JList itemsList;
private JLabel pictureLabel;
private JButton bidButton, stopButton;
private JButton addButton, removeButton;

// This interface connects to an AuctionServer that
handles all the work
private AuctionServer auctionServer;
private int selectedItemIndex;
private AuctionItem newAuctionItem; // item
being added to auction

private ListSelectionListener
itemsListListener;

public AuctionServerApp() { this(new
AuctionServer(new Auction())); }
public AuctionServerApp(AuctionServer a) {
 super("The Auction Server");
 auctionServer = a;
 auctionServer.registerForUpdates(this);
 if
(auctionServer.getAuction().getInventory().size() >
0)
 selectedItemIndex = 0;
 else
 selectedItemIndex = -1;
 initializeComponents();
 addListeners();
 update();
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setSize(300,490);
 setVisible(true);
}

private void addListeners() {
 // When the window is first OPENED, go online
 addWindowListener(new WindowAdapter() {
 public void windowOpened(WindowEvent event) {
 goOnline(); }});

 // When the window is CLOSED, go offline
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent event)
{
 goOffline(); }});

 // Add a listener for the ADD button
 addButton.addActionListener(new ActionListener()
{
 public void actionPerformed(ActionEvent
theEvent) {
 handleAddAuctionItem(); }});

 // Add a listener for the REMOVE button
 removeButton.addActionListener(new
ActionListener() {
 public void actionPerformed(ActionEvent
theEvent) {
 handleRemoveAuctionItem(); }});

 // Add a listener for the PLACE UP FOR BIDDING
button
 bidButton.addActionListener(new ActionListener()
{
 public void actionPerformed(ActionEvent
theEvent) {
 handlePlaceForBid(); }});

 // Add a listener for the STOP BIDDING button
 stopButton.addActionListener(new ActionListener()
{
 public void actionPerformed(ActionEvent
theEvent) {
 handleStopBid(); }});

 // Add a selection listener for the inventory
list
 itemsList.addListSelectionListener(
 itemsListListener = new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent
theEvent) {
 handleSelectAuctionItem(); }});
}

// Cause the Auction Server to go online
private void goOnline() {
 if (auctionServer.goOnline()) {
 updateStatus("Auction Server Online");
 auctionServer.start(); // start the thread
 }
 else
 updateStatus("Error: Problem Getting Auction
Server Online");
}

// Cause the Auction Server to go offline
private void goOffline() {
 if (auctionServer.goOffline())
 updateStatus("Auction Server Offline");
 else

 updateStatus("Error: Problem Going Offline");
}

// Build the frame by adding all the components
private void initializeComponents() {
 GridBagLayout layout = new GridBagLayout();
 GridBagConstraints layoutConstraints = new
GridBagConstraints();

 JPanel panel = new JPanel();
 panel.setLayout(layout);
 setContentPane(panel);

 JLabel aLabel = new JLabel("Inventory");
 layoutConstraints.gridx = 0;
 layoutConstraints.gridy = 0;
 layoutConstraints.gridwidth = 2;
 layoutConstraints.gridheight = 1;
 layoutConstraints.fill = GridBagConstraints.NONE;
 layoutConstraints.insets = new Insets(5,5,5,5);
 layoutConstraints.anchor =
GridBagConstraints.NORTHWEST;
 layoutConstraints.weightx = 0.0;
 layoutConstraints.weighty = 0.0;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 aLabel = new JLabel("Item Up For Bidding");
 layoutConstraints.gridx = 2;
 layoutConstraints.gridwidth = 1;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 pictureLabel = new JLabel();
 layoutConstraints.gridy = 1;
 layoutConstraints.fill = GridBagConstraints.BOTH;
 layoutConstraints.weightx = 1.0;
 layoutConstraints.weighty = 1.0;
 layout.setConstraints(pictureLabel,
layoutConstraints);
 panel.add(pictureLabel);

 aLabel = new JLabel("Item Description");
 layoutConstraints.gridy = 2;
 layoutConstraints.fill = GridBagConstraints.NONE;
 layoutConstraints.weightx = 0.0;
 layoutConstraints.weighty = 0.0;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 aLabel = new JLabel("Last Bid Amount");
 layoutConstraints.gridy = 4;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 aLabel = new JLabel("Last Bidder");
 layoutConstraints.gridy = 6;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 bidItemField = new JTextField();
 bidItemField.setEditable(false);
 layoutConstraints.gridx = 2;
 layoutConstraints.gridy = 3;
 layoutConstraints.gridwidth = 1;
 layoutConstraints.gridheight = 1;
 layoutConstraints.fill =
GridBagConstraints.HORIZONTAL;
 layoutConstraints.anchor =
GridBagConstraints.NORTHWEST;
 layoutConstraints.weightx = 1.0;
 layoutConstraints.weighty = 0.0;
 layout.setConstraints(bidItemField,
layoutConstraints);
 panel.add(bidItemField);

 bidAmountField = new JTextField();
 bidAmountField.setEditable(false);
 layoutConstraints.gridy = 5;
 layout.setConstraints(bidAmountField,
layoutConstraints);
 panel.add(bidAmountField);

 bidderField = new JTextField();
 bidderField.setEditable(false);
 layoutConstraints.gridx = 2;
 layoutConstraints.gridy = 7;
 layout.setConstraints(bidderField,
layoutConstraints);
 panel.add(bidderField);

 addButton = new JButton("Add");
 addButton.setMnemonic('A');
 layoutConstraints.gridx = 0;
 layoutConstraints.gridy = 8;
 layoutConstraints.fill = GridBagConstraints.NONE;
 layoutConstraints.weightx = 0.0;
 layout.setConstraints(addButton,
layoutConstraints);
 panel.add(addButton);

 itemsList = new JList();
 JScrollPane scrollPane = new
JScrollPane(itemsList,

ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,

ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 layoutConstraints.gridx = 0;
 layoutConstraints.gridy = 1;
 layoutConstraints.gridwidth = 2;

 layoutConstraints.gridheight = 7;
 layoutConstraints.fill = GridBagConstraints.BOTH;
 layoutConstraints.anchor =
GridBagConstraints.CENTER;
 layoutConstraints.weighty = 1.0;
 layout.setConstraints(scrollPane,
layoutConstraints);
 panel.add(scrollPane);

 removeButton = new JButton("Remove");
 removeButton.setMnemonic('R');
 layoutConstraints.gridx = 1;
 layoutConstraints.gridy = 8;
 layoutConstraints.gridwidth = 1;
 layoutConstraints.gridheight = 1;
 layoutConstraints.fill = GridBagConstraints.NONE;
 layoutConstraints.ipadx = 10;
 layoutConstraints.ipady = 0;
 layoutConstraints.anchor =
GridBagConstraints.NORTHWEST;
 layoutConstraints.weighty = 0.0;
 layout.setConstraints(removeButton,
layoutConstraints);
 panel.add(removeButton);

 bidButton = new JButton("Place up for Bidding");
 layoutConstraints.gridx = 0;
 layoutConstraints.gridy = 9;
 layoutConstraints.gridwidth = 2;
 layout.setConstraints(bidButton,
layoutConstraints);
 panel.add(bidButton);

 stopButton = new JButton("Stop Bidding");
 layoutConstraints.gridx = 2;
 layoutConstraints.gridy = 8;
 layoutConstraints.gridwidth = 1;
 layout.setConstraints(stopButton,
layoutConstraints);
 panel.add(stopButton);

 statusField = new JTextField();
 statusField.setEditable(false);
 statusField.setBackground(new
Color(255,255,255));
 statusField.setForeground(new Color(160,0,0));
 layoutConstraints.gridx = 0;
 layoutConstraints.gridy = 10;
 layoutConstraints.gridwidth = 4;
 layoutConstraints.fill =
GridBagConstraints.HORIZONTAL;
 layoutConstraints.weightx = 1.0;
 layout.setConstraints(statusField,
layoutConstraints);
 panel.add(statusField);
}

// Update all the components
public void update() {

itemsList.removeListSelectionListener(itemsListListen
er);
 updateItemsList();
 updateRemoveButton();
 updatePlaceButton();
 updateStopButton();
 updateBidItemField();
 updateBidAmountField();
 updateBidderField();
 updatePictureLabel();

itemsList.addListSelectionListener(itemsListListener)
;
}

// Test it by bringing up the server and some clients
public static void main(String[] args) {
 new AuctionServerApp(new
AuctionServer(Auction.example1()));
 new AuctionClientApp();
 new AuctionClientApp();
 new AuctionClientApp();
}

}
What about writing all the update methods ?
The inventory list is updated simply by obtaining the inventory ArrayList from the auction
model:

 private void updateItemsList() {
 itemsList.setListData(new
Vector(auctionServer.getAuction().getInventory()));
 itemsList.setSelectedIndex(selectedItemIndex);
 }

The REMOVE button is disabled when nothing is selected from the list. The PLACE UP FOR
BIDDING button and the STOP BIDDING buttons are disabled when the auction does not have
anything up for bidding.

 private void updateRemoveButton() {
 removeButton.setEnabled(selectedItemIndex != -1);
 }
 private void updatePlaceButton() {
 bidButton.setEnabled(!auctionServer.getAuction().hasItemUpForBid());
 }
 private void updateStopButton() {
 stopButton.setEnabled(auctionServer.getAuction().hasItemUpForBid());
 }

The text fields are all updated according to the latest bid item information:

 private void updateBidItemField() {
 if (auctionServer.getAuction().hasItemUpForBid())

bidItemField.setText(auctionServer.getAuction().getBidItem().getName());
 else bidItemField.setText("");
 }

 private void updateBidAmountField() {
 if (auctionServer.getAuction().hasItemUpForBid()) {
 java.text.DecimalFormat formatter = new
java.text.DecimalFormat("$0.00");
 bidAmountField.setText(formatter.format(
 auctionServer.getAuction().latestBid()));
 }
 else bidAmountField.setText("");
 }

 private void updateBidderField() {
 if (auctionServer.getAuction().hasItemUpForBid())

bidderField.setText(auctionServer.getAuction().latestBidderName());
 else bidderField.setText("");
 }

 private void updatePictureLabel() {
 if (auctionServer.getAuction().hasItemUpForBid())
 pictureLabel.setIcon(new ImageIcon(
 auctionServer.getAuction().getBidItem().getPicture()));
 else
 pictureLabel.setIcon(BLANK_IMAGE);
 }

Finally, the status field shows whatever we pass it. Notice that this is not called from the
update() method. Instead, whenever there is an important message, we call it:

 private void updateStatus(String s) {
 statusField.setText(s);
 }

Now we look at the event handlers for the buttons.

When the ADD button is pressed, create a new AuctionItem and open the AuctionItemDialog
box to edit it. We will set up dialogFinished() and dialogCancelled() methods to add or ignore
the item as necessary.

 private void handleAddAuctionItem() {
 newAuctionItem = new AuctionItem();
 new AuctionItemDialog(this, newAuctionItem).setVisible(true);
 }

 public void dialogFinished() {
 auctionServer.getAuction().add(newAuctionItem);
 selectedItemIndex = auctionServer.getAuction().getInventory().size()-

1;
 update();
 }
 public void dialogCancelled() {} //do nothing

When the REMOVE button is pressed, remove the currently selected item:

 private void handleRemoveAuctionItem() {
 if (selectedItemIndex != -1) {

auctionServer.getAuction().getInventory().remove(selectedItemIndex);
 selectedItemIndex--;
 update();
 }
 }

When the PLACE UP FOR BIDDING button is pressed, make the currently selected item to be
the one that is placed up for bidding:

 private void handlePlaceForBid() {
 if (selectedItemIndex != -1) {
 auctionServer.getAuction().placeUpForBid(
 (AuctionItem)auctionServer.getAuction().
 getInventory().get(selectedItemIndex));
 update();
 }
 }

When the STOP BIDDING button is pressed, stop the current bid item from being bid on:

 private void handleStopBid() {
 auctionServer.getAuction().stopBidding();
 update();
 }

Lastly, when the item is selected from the list, simply store its index in a local variable:

 private void handleSelectAuctionItem() {
 selectedItemIndex = itemsList.getSelectedIndex();
 update();
 }

Well that is it for the server app!! Quite a lot of code, isn't it ? Now let us look at the Client-
side GUI. First, we will consider the registration dialog. Notice that this dialog box is fairly
straight forward. We pass in the Customer in the constructor and use this Customer's
information to fill in the initial textFields. Since in our application, customers will only register
once, this initial Customer object is probably filled with empty information. Nevertheless, we
may want to use this dialog box in the future for editing purposes and in this case, our code will
work fine. Notice also that when the OK button is clicked, the most recent data in the text fields
is used to fill in the Customer object.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class RegistrationDialog extends JDialog {
// Store a pointer to the model for changes later
private Customer customer;

private JTextField nameTextField;
private JTextField addressTextField;
private JTextField visaTextField;
private JTextField expireTextField;

// The buttons and main panel
private JButton okButton;
private JButton cancelButton;

// A constructor that takes the model and client as parameters
public RegistrationDialog(Frame owner, Customer c){

 // Call the super constructor that does all the work of
setting up the dialog
 super(owner,"Auction Registration",true);

 customer = c; // Store the model

 // Make a panel with two buttons (placed side by side)
 JPanel buttonPanel = new JPanel();
 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT, 5,
5));
 buttonPanel.add(okButton = new JButton("OK"));
 buttonPanel.add(cancelButton = new JButton("CANCEL"));

 // Make a panel with auction item information
 JPanel itemPanel = new JPanel();

 // Create the textfields initially with the model's contents
 nameTextField = new JTextField(c.getName(), 15);
 addressTextField = new JTextField(c.getAddress(),15);
 visaTextField = new JTextField(c.getVisa(),15);
 expireTextField = new JTextField(c.getExpire(),15);

 // Set the layoutManager and add the components
 itemPanel.setLayout(new GridLayout(4,2,5,5));

 itemPanel.add(new JLabel("Name:"));
 itemPanel.add(nameTextField);
 itemPanel.add(new JLabel("Address:"));
 itemPanel.add(addressTextField);
 itemPanel.add(new JLabel("VISA #:"));
 itemPanel.add(visaTextField);
 itemPanel.add(new JLabel("Expiry Date:"));
 itemPanel.add(expireTextField);

 // Make the dialog box by adding bank account panel and
button panel
 setLayout(new FlowLayout(FlowLayout.RIGHT, 5, 5));
 add(itemPanel);
 add(buttonPanel);

 // Prevent the window from being resized
 setSize(365, 170);
 setResizable(false);

 // Listen for ok button click
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event){
 okButtonClicked(); }});

 // Listen for cancel button click
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event){
 cancelButtonClicked(); }});

 // Listen for window closing: treat like cancel button
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent event) {
 cancelButtonClicked(); }});
}

private void okButtonClicked(){
 // Update model to show changed owner name
 customer.setName(nameTextField.getText());
 customer.setAddress(addressTextField.getText());
 customer.setVisa(visaTextField.getText());
 customer.setExpire(expireTextField.getText());

 // Tell the client that ok was clicked
 if (getOwner() != null)
 ((DialogClientInterface)getOwner()).dialogFinished();
 dispose();
}

private void cancelButtonClicked(){
 // Tell the client that cancel was clicked
 if (getOwner() != null)
 ((DialogClientInterface)getOwner()).dialogCancelled();
 dispose();
}

}

Now the AuctionCatalogDialog,
which displays the catalog returned
from the server, should display a list
of items and their pictures. The user
should be able to browse around the
list and see the pictures.

Notice that there is no client being
passed in. In fact, there is no
"response" that needs to be returned to
the application. The user simply
opens this window and does some
browsing. So, there is no
OK/CANCEL button combinations,
simply a CLOSE button to close the
window. Notice as well that the
dialog box is non-modal, so the user
can open a bunch of them.

A main method is provided to test out
the code as well.

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
public class AuctionCatalogDialog extends JDialog {
// Store a pointer to the model for changes later
private ArrayList<AuctionItem> inventory;

private JList itemsList;
private JLabel picture;
private JButton okButton;

// A constructor that takes the model and client as parameters
public AuctionCatalogDialog(Frame owner, ArrayList<AuctionItem>
items){

 // Call the super constructor that does all the work of
setting up the dialog
 super(owner,"Auction Inventory Catalog",false);

 // Store the model and client into instance variables
 inventory = items;

 itemsList = new JList(new Vector<AuctionItem>(items));
 itemsList.setPrototypeCellValue("xxxxxxxxxxxxxxxxxxxxxxxxx");
 JScrollPane scrollPane = new JScrollPane(itemsList,
 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 picture = new JLabel("");

 // Set the layoutManager and add the components
 setLayout(new BoxLayout(getContentPane(), BoxLayout.Y_AXIS));
 itemsList.setAlignmentX(FlowLayout.LEFT);
 add(new JLabel("Inventory"));
 add(itemsList);
 add(picture);
 add(okButton = new JButton("CLOSE"));

 // Prevent the window from being resized
 setSize(200, 450);
 setResizable(false);

 // Listen for CLOSE button click
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event){
 dispose(); }});

 // Add a selection listener for the inventory list
 itemsList.addListSelectionListener(new
ListSelectionListener() {
 public void valueChanged(ListSelectionEvent theEvent) {
 if (itemsList.getSelectedValue() != null)
 picture.setIcon(new
ImageIcon(((AuctionItem)itemsList.

getSelectedValue()).getPicture())); }});

 // Listen for window closing: treat like CLOSE button
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent event) {
 dispose(); }});

 // Now make the dialog box appear
 setVisible(true);
}

// This is used for testing only
public static void main(String args[]) {
 ArrayList<AuctionItem> v = new ArrayList<AuctionItem>();
 v.add(new AuctionItem("Antique Table",150.0f, "table.jpg"));
 v.add(new AuctionItem("JVC VCR",65.0f,"vcr.jpg"));
 v.add(new AuctionItem("Antique
Cabinet",400.0f,"cabinet.jpg"));
 v.add(new AuctionItem("5-piece
Drumset",190.0f,"drumset.jpg"));

 v.add(new AuctionItem("Violin & Case",100.0f,"violin.jpg"));
 v.add(new AuctionItem("13\" TV/VCR
Combo",100.0f,"tvvcr.jpg"));
 v.add(new AuctionItem("486Dx2-66
Laptop",125.0f,"486laptop.jpg"));
 v.add(new AuctionItem("Rocking
Chair",80.0f,"rockingchair.jpg"));
 v.add(new AuctionItem("1996 Mazda
Miata",6500.0f,"miata.jpg"));
 JDialog dialog = new AuctionCatalogDialog(null, v);
}

}

Finally, we will examine the
AuctionClientApp GUI application.
Client users will want to have the
ability to register for an auction. This
should bring up the
RegistrationDialog, and then use the
AuctionClient to send this
information to the server. Once
registered, the client can then make
bids.

The CATALOG button can be pressed
at any time, and it should get the
catalog from the sever, then bring up
the AuctionCatalogDialog box.

The frame itself should display the
information for the latest item which
is being bid on. The user should be
able to make a bid and press the
MAKE BID button to send the bid to
the server.

Notice as well that a Timer event is
set up in the code. Every second, this
timer event sends a request to the
server for the latest AuctionItem
information. This information is then
returned to this client application and
is shown in the window through an
update call.

Once again, the code framework is
given first, and then the update/event

handler methods are shown
afterwards.

import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.io.*;
import java.net.*;

public class AuctionClientApp extends JFrame implements
DialogClientInterface {

// This image gets shown when there is nothing up for
bid
private static ImageIcon BLANK_IMAGE = new
ImageIcon("blankItem.jpg");

private JTextField statusField;
private JTextField bidItemField;
private JTextField bidAmountField;
private JTextField bidderField;
private JTextField newBidField;
private JList itemsList;
private JLabel pictureLabel;
private JButton bidButton;
private JButton registerButton, catalogButton;

// This interface connects to an AuctionServer that
handles all the work
private AuctionClient auctionClient;
private float bidToMake;
private javax.swing.Timer updateTimer;

public AuctionClientApp() { this(new
AuctionClient(new Customer())); }
public AuctionClientApp(AuctionClient c) {
 super("UNREGISTERED Client");
 auctionClient = c;
 bidToMake = 0.0f;

 initializeComponents();
 addListeners();
 update();
 updateTimer.start(); // Start requesting for
updates
 setSize(200,460);
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 setVisible(true);
}

private void addListeners() {
 // Add a listener for the REGISTER button
 registerButton.addActionListener(new

ActionListener() {
 public void actionPerformed(ActionEvent
theEvent) {
 handleRegistration(); }});

 // Add a listener for the REMOVE button
 catalogButton.addActionListener(new
ActionListener() {
 public void actionPerformed(ActionEvent
theEvent) {
 handleCatalogRequest(); }});

 // Add a listener for the MAKE BID button
 bidButton.addActionListener(new ActionListener()
{
 public void actionPerformed(ActionEvent
theEvent) {
 handleMakeNewBid(); }});

 // Add a listener for key presses in the MAKE BID
textfield
 newBidField.getDocument().addDocumentListener(new
DocumentListener() {
 private void handleBidBeingMade() {
 if (newBidField.getText().length() == 0)
 bidToMake = 0;
 else try {
 bidToMake =
Float.parseFloat(newBidField.getText());
 } catch(NumberFormatException e) {
 bidToMake = 0;
 }
 updateMakeBidButton();
 }
 public void changedUpdate(DocumentEvent e) {
handleBidBeingMade(); }
 public void insertUpdate(DocumentEvent e) {
handleBidBeingMade(); }
 public void removeUpdate(DocumentEvent e) {
handleBidBeingMade(); }});

 //Add a Timer event handler for updates
 updateTimer = new javax.swing.Timer(1000, new
ActionListener() {
 public void actionPerformed(ActionEvent
theEvent) {
 handleRequestUpdate(); }});
}

// Build the frame by adding all the components
private void initializeComponents() {
 GridBagLayout layout = new GridBagLayout();
 GridBagConstraints layoutConstraints = new
GridBagConstraints();

 JPanel panel = new JPanel();
 panel.setLayout(layout);
 setContentPane(panel);

 registerButton = new JButton("Register");
 layoutConstraints.gridx = 0;
 layoutConstraints.gridy = 0;
 layoutConstraints.gridwidth = 1;
 layoutConstraints.gridheight = 1;
 layoutConstraints.fill = GridBagConstraints.NONE;
 layoutConstraints.anchor =
GridBagConstraints.NORTHWEST;
 layoutConstraints.weightx = 0.0;
 layoutConstraints.weighty = 0.0;
 layout.setConstraints(registerButton,
layoutConstraints);
 panel.add(registerButton);

 catalogButton = new JButton("Catalog");
 layoutConstraints.gridx = 1;
 layoutConstraints.ipadx = 10;
 layoutConstraints.ipady = 0;
 layoutConstraints.anchor =
GridBagConstraints.NORTHEAST;
 layout.setConstraints(catalogButton,
layoutConstraints);
 panel.add(catalogButton);

 JLabel aLabel = new JLabel("Item Up For
Bidding");
 layoutConstraints.gridx = 0;
 layoutConstraints.gridy = 1;
 layoutConstraints.gridwidth = 2;
 layoutConstraints.fill = GridBagConstraints.BOTH;
 layoutConstraints.insets = new Insets(5,5,5,5);
 layoutConstraints.anchor =
GridBagConstraints.NORTHWEST;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 pictureLabel = new JLabel();
 layoutConstraints.gridy = 2;
 layoutConstraints.fill = GridBagConstraints.NONE;
 layoutConstraints.weightx = 1.0;
 layoutConstraints.weighty = 1.0;
 layout.setConstraints(pictureLabel,
layoutConstraints);
 panel.add(pictureLabel);

 aLabel = new JLabel("Item Description");
 layoutConstraints.gridy = 3;
 layoutConstraints.weightx = 0.0;
 layoutConstraints.weighty = 0.0;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 aLabel = new JLabel("Last Bid Amount");
 layoutConstraints.gridy = 5;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 aLabel = new JLabel("Last Bidder");
 layoutConstraints.gridy = 7;
 layout.setConstraints(aLabel, layoutConstraints);
 panel.add(aLabel);

 bidItemField = new JTextField();
 bidItemField.setEditable(false);
 layoutConstraints.gridy = 4;
 layoutConstraints.fill =
GridBagConstraints.HORIZONTAL;
 layoutConstraints.weightx = 1.0;
 layout.setConstraints(bidItemField,
layoutConstraints);
 panel.add(bidItemField);

 bidAmountField = new JTextField();
 bidAmountField.setEditable(false);
 layoutConstraints.gridy = 6;
 layout.setConstraints(bidAmountField,
layoutConstraints);
 panel.add(bidAmountField);

 bidderField = new JTextField();
 bidderField.setEditable(false);
 layoutConstraints.gridy = 8;
 layout.setConstraints(bidderField,
layoutConstraints);
 panel.add(bidderField);

 bidButton = new JButton("Make Bid");
 layoutConstraints.gridx = 1;
 layoutConstraints.gridy = 9;
 layoutConstraints.gridwidth = 1;
 layoutConstraints.fill = GridBagConstraints.NONE;
 layoutConstraints.weightx = 0.0;
 layout.setConstraints(bidButton,
layoutConstraints);
 panel.add(bidButton);

 newBidField = new JTextField();
 layoutConstraints.gridx = 0;
 layoutConstraints.gridwidth = 2;
 layoutConstraints.fill =
GridBagConstraints.HORIZONTAL;
 layoutConstraints.anchor =
GridBagConstraints.NORTHEAST;
 layoutConstraints.weightx = 1.0;
 layout.setConstraints(newBidField,
layoutConstraints);
 panel.add(newBidField);

 statusField = new JTextField();
 statusField.setEditable(false);
 statusField.setBackground(new
Color(255,255,255));
 statusField.setForeground(new Color(160,0,0));
 layoutConstraints.gridy = 10;
 layoutConstraints.gridwidth = 2;
 layoutConstraints.weightx = 10.0;
 layout.setConstraints(statusField,
layoutConstraints);
 panel.add(statusField);
}

// Update all the components
private void update() {
 updateMakeBidButton();
 updateBidItemField();
 updateBidAmountField();
 updateBidderField();
 updateNewBidField();
 updatePictureLabel();
}

public static void main(String[] args) {
 JFrame frame = new AuctionClientApp();
}

}
Let us look now at the update methods. The MAKE BID button should be disabled when there
is nothing to bid on. We will see that the timer updates will eventually get something returned
which is the item that is being bid on:
private void updateMakeBidButton() {
 bidButton.setEnabled((auctionClient.getLatestAuctionItem() != null) &&
 (bidToMake != 0));
}
Each of the text fields are then updated according to the information from the latest bid item:
private void updateBidItemField() {
 AuctionItem item = auctionClient.getLatestAuctionItem();
 if (item == null) bidItemField.setText("");
 else bidItemField.setText(item.getName());
}

private void updateBidAmountField() {
 AuctionItem item = auctionClient.getLatestAuctionItem();
 if (item == null) bidAmountField.setText("");
 else bidAmountField.setText(String.valueOf(item.getBid()));
}

private void updateBidderField() {
 AuctionItem item = auctionClient.getLatestAuctionItem();
 if ((item == null) || (item.getPurchaser() == null))
 bidderField.setText("");
 else

 bidderField.setText(item.getPurchaser().getName());
}

When there is nothing to bid on, we erase the text inside the text field that is being used to make
a bid. This is not so important, but it allows us to clear the field in between bids, so that no
weird bid amounts will be accidentally submitted to the server:
private void updateNewBidField() {
 AuctionItem item = auctionClient.getLatestAuctionItem();
 if (item == null) newBidField.setText("");
}
The status field allows us to see what is going on. It displays error messages as well as server
replies. We allow any string to be passed in here and we display whatever is passed in:
private void updateStatus(String s) {
 statusField.setText(s);
}
Lastly, the picture for the item is displayed. The picture to be displayed depends on the item
which is currently up for bid. However, the AuctionItems only store the picture filename, not
the picture itself. In fact, we are "faking" something here. The server actually has all the
images on its machine, not the client. So, when AuctionItem objects are sent to the client, the
client only has the filename, not the files. So it is impossible to be able to display the image !!!
However, since our test program has everything running in the same directory, we simply read
the .gif files from there based on the name that was given to us by the server :). So ... we are
cheating. To implemet things properly in a real system, we would have to transfer the image
from the server to the client. However, in java, Images are not Serializable. Its a real pain!
We could however, read the .gif file, send its bytes one at a time to the client and have the client
save the bytes back to the file and then create an ImageIcon from it. That would work :).
private void updatePictureLabel() {
 AuctionItem item = auctionClient.getLatestAuctionItem();
 if (item != null)
 pictureLabel.setIcon(new ImageIcon(item.getPicture()));
 else
 pictureLabel.setIcon(BLANK_IMAGE);
}
Now for the event handlers. When the REGISTER button is pressed, we need to create a new
Customer object and bring up the RegistrationDialog box to get its information. Then send a
registration request to the AuctionServer:
private void handleRegistration() {
 new RegistrationDialog(this,
auctionClient.getCustomer()).setVisible(true);
}

public void dialogFinished() {
 if (auctionClient.register())
 setTitle("Client: " + auctionClient.getCustomer().getName());
 updateStatus(auctionClient.getServerReply().toString());
}
public void dialogCancelled() {} //do nothing

When the CATALOG button is pressed, send a request to the server for a catalog of items:
private void handleCatalogRequest() {
 auctionClient.sendForCatalog();
 new AuctionCatalogDialog(this,

(ArrayList<AuctionItem>)auctionClient.getServerReply());
}

When the MAKE BID button is pressed, send the bid to the Server:

private void handleMakeNewBid() {
 auctionClient.sendBid(auctionClient.getCustomer().getName(),
bidToMake);
 updateStatus(auctionClient.getServerReply().toString());
}

When the timer ticks, send an update request to the server, then update the screen. We also
detect changes in the AuctionItem so that we can display a nice message. For example, if there
was nothing being bid on, then suddenly a new AuctionItem comes up for bidding, we display
the message "New Item Up For Bidding". If the item was already being bid on, then
suddenly becomes null, we display a message stating "Item No Longer Up For Bidding".
Of course if this client made the last bid, then we should inform him/her that he/she now owns
the item with a message such as: ue T ble SOLD to you for $100.00" . "Antiq a
private void handleRequestUpdate() {
 AuctionItem prevItem = auctionClient.getLatestAuctionItem();
 AuctionItem newItem = auctionClient.sendForUpdate();
 if (prevItem == null) {
 if (newItem != null)
 updateStatus("New Item Up For Bidding");
 }
 else if (newItem == null) {
 if (prevItem.getPurchaser().getName().equals(
 auctionClient.getCustomer().getName()))
 updateStatus(prevItem.getName() + " SOLD to you for $" +
 prevItem.getBid());
 else
 updateStatus("Item No Longer Up For Bidding");
 }
 else if (!prevItem.getName().equals(newItem.getName())) {
 if (prevItem.getPurchaser().getName().equals(
 auctionClient.getCustomer().getName()))
 updateStatus(prevItem.getName() + " SOLD to you for $" +
 prevItem.getBid());
 else
 updateStatus("New Item Up For Bidding");
 }
 update();
}
Well that is it! There was a LOT of code for this AuctionSystem. You can always add to it if
you want to make a nice application.

	 9 Networking
	What's in This Set of Notes ?

