

Chapter 1

Programming Basics

What is in This Chapter ?
This first chapter explains very briefly the difference between Traditional vs. Object-Oriented
programming and how the JAVA programming language basically works. It then discusses
some of the basic concepts behind Object-Oriented programming and how to write a simple
"Hello World" program in JAVA. Also, since all programs should have some kind of input and
output, we look here at how to write programs that display information and get information
from the user. Lastly, since JAVA is NOT purely Object-Oriented (i.e., it contains basic data
types called primitives which form the basis for all data stored in objects), we will also look at
these primitives as basic building blocks in JAVA and how they are used to form Objects.

COMP1005/1405 – Programming Basics Fall 2009

 - 5 -

COMP 1406/1006
(Java)

COMP 2404/2004
(C++)

COMP 1402/1002
(C)

COMP 1405/1005
(Java)

COMP 2405/2005
(Perl, XML, HTML, JavaScript)

COMP 2003
(TASM)

1st Year

2nd Year

You are
Here.

 1.0 Programming-Related Courses In Computer Science

This is your first programming course here in the School of Computer Science at Carleton.
You have some more core programming courses coming up after this one. Here is a break
down of how this course fits in with your first 2 years of programming courses:

Of course, there are other computer science courses as well. These are just the core courses
that nearly everyone is required to take. After this course is over, you should understand how
to write computer programs. You will also understand what it means to do object-oriented
programming. In the winter term, you will take COMP1406/1006 which is like a continuation
of this course. Together, these two courses give you a solid programming background in
JAVA and you will be able to learn other computer languages easily afterwards … since they
all have common features. If you want to do well in this course, attend all lectures and
tutorials and do your assignments.

COMP1005/1405 – Programming Basics Fall 2009

 - 6 -

 1.1 Understanding Programming

What are Computers Used For ?

• Communications: Internet, e-mail, cell phones
• Word Processing: typing/printing documents
• Business Applications: accounting, spreadsheets
• Engineering Applications: scientific analysis, simulations
• Database Management: police records, stock market
• Entertainment: games, multimedia applications
• Manufacturing: CAD/CAM, robotics, assembly
• ... many more ...

Who is Involved With Computers ?

• System/Hardware Designers = people that design computers and related products.
• Manufacturers = people that actually build and assemble computers.
• Software Designers = people that design applications to be used with the computers.
• Programmers = people that write computer programs to achieve working applications,

games and other software packages.
• End User = people that buy and use the software when it is done.

We are going to play the role of the Programmer in this course. In a way, we will also be
playing the role of the End User when we test our programs. Testing is an important part of
programming to ensure that the user is happy with software that is not full of bugs (i.e.,
problems)!

What is a program ?
A program is traditionally known as:

a sequence of instructions that can be
executed by a computer to solve some
problem.

In this course, we will learn to write our own
programs to solve some very simple problems.
Writing programs is often called "writing code".
So the code is actually the program itself. We
also use the term "source code" to represent the
program logic.

COMP1005/1405 – Programming Basics Fall 2009

 - 7 -

How do we write good programs ?
There are some important standards which you should always adhere to if you want to write
"good" programs:

• C orrectness - Make sure that your program does what it is supposed to do.

• R obustness - Make sure the program does not crash. Testing helps prevent this.

• I nterface Usability - Make sure that the interface is easy to use and intuitive.

• S implicity - Keep the code as simple as possible, while still meeting requirements.

• P resentation and Documentation - Make sure that software is thoroughly
documented for maintenance purposes. (Don't forget about the TA's that need to mark
your assignments)

• E fficiency - Make sure that the software runs fast and does not use up too much
computer memory (i.e., that it is time and/or space efficient).

There are other issues that may need to be considered when writing programs:

• Portability – The ability to run your program on different kinds of machines (e.g.,
Windows PC, Mac, Sun Workstation, etc…)

• Security – The need to make sure that information entered by the user is not visible to
anyone who wants it (e.g., VISA or bank account info, passwords, personal data, etc…)

What is a programming language ?
To write a program, we need to use what is called a programming language which is:

• an artificial language designed to automate the task of organizing and manipulating
information, and to express algorithms (i.e., problem solutions) precisely.

A programming language “boils down to” a set of words, rules and tools that are used to
explain (or define) your program. There are many different programming languages just as
there are many different "spoken" languages.

Traditional programming languages were known as structural programming languages (e.g.,
C, Fortran, Pascal, Cobol, Basic).

Since the late 80's however, object-oriented programming languages have become more
popular (e.g., JAVA, C++, C#, Smalltalk)

There are also other types of programming languages such as functional programming
languages and logic programming languages. According to WikiPedia, as of 2008 the 12
most actively used programming languages are (in alphabetical order): C, C++, C#, Java,
JavaScript, Perl, PHP, Python, Ruby, Shell, SQL and VisualBasic.

COMP1005/1405 – Programming Basics Fall 2009

 - 8 -

What is Procedural programming ?
Procedural Programming involves writing code line-by-line in the order that
the code must be executed (i.e., run or evaluated) to solve some problem.
That is, the order of the set of steps is determined beforehand in a way that
solves the problem logically. All programming languages involve writing
"some" code in a procedural manner. This is because, to solve most
problems, there is usually a set of steps that must be followed in order. In
the real world, we also follow steps to accomplish a task. For example, to
withdraw some money from a bank machine we usually follow these steps:

1. insert your bank card
2. enter your PIN #
3. select "withdraw"
4. enter amount to withdraw … press "ok"
5. take your money and your card

Usually, the problem that is trying to be solved by the computer is broken down into smaller
sub-problems and these are solved in turn. For such simple structured programs, they often
follow these steps:

1. Get input data from the user (e.g., name, account#, deposit amount, etc.)
2. Perform some calculations, make some decisions, store/change some data (e.g., adjust

account balance)
3. Display some data output on the screen (e.g., tell user what happened)

What is Object-Oriented programming ?
Object-Oriented Programming (a.k.a., OOP) is similar to that of procedural
programming in that it involves executing a set of instructions in some specified
order. However, it differs from procedural programming in the way that your
code is organized. Programming using object-oriented style, involves organizing
your code in "chunks" that logically correspond to real-world objects. For
example, you may group all of your code related to a person into one file (called
a class) while code related to a car or a bank account would be grouped
together in separate files (i.e., classes).

When doing OOP, the programmer (i.e., you) spends much time defining (i.e., writing code
for) various objects by specifying small/simple behaviors that the object will need to respond to
(e.g., deposit, withdraw, compute interest, get age, save data etc...) Hence, OOP is all about
knowing:

• which objects to use,
• the kind of information we need to know about the objects,
• how objects behave, and
• how to use them with each other

COMP1005/1405 – Programming Basics Fall 2009

 - 9 -

There is nothing magical about OOP. Programmers have been coding for years in traditional
top/down structured programming languages. So what is so great about OO-Programming ?
Well, OOP uses 3 main powerful concepts:

Inheritance

• promotes code sharing and re-usability
• intuitive hierarchical code organization

Encapsulation

• provides notion of security for objects
• reduces maintenance headaches
• more robust code

Polymorphism

• simplifies code understanding
• standardizes method naming

We will discuss these concepts later in the course once we are familiar with the JAVA
language.

Through these powerful concepts, object-oriented code is typically:

• easier to understand (relates to real world objects)
• better organized and hence easier to work with
• simpler and smaller in size
• more modular (made up of plug-n’-play re-usable pieces)
• better quality

This leads to:

• high productivity and a shorter delivery cycle
• less manpower required
• reduced costs for maintenance
• more reliable and robust software
• pluggable systems (updated UI’s, less legacy code)

COMP1005/1405 – Programming Basics Fall 2009

 - 10 -

 1.2 The JAVA Programming Language

JAVA is a very popular object-oriented programming language from SUN Microsystems. It has
become a basis for new technologies such as: Enterprise Java Beans (EJB’s), Servlets and
Java Server Pages (JSPs) , etc. In addition, many packages have been added which extend
the language to provide special features:

• Java Media Framework (for video streaming, webcams, MP3 files, etc)
• Java 3D (for 3D graphics)
• J2ME (for wireless communications such as cell phones, PDAs)

JAVA is continually changing/growing. Each new release fixes bugs and adds features. New
technologies are continually being incorporated into JAVA. Many new packages are available.
Just take a look at the www.java.sun.com website for the latest updates.

There are many reasons to use JAVA:

• architecture independence
o ideal for internet applications
o code written once, runs anywhere
o reduces cost $$$

• distributed and multi-threaded
o useful for internet applications
o programs can communicate over network (e.g., web)
o uses RMI (Remote Method Invocation) API

• dynamic
o code loaded only when needed

• memory managed
o automatic memory allocation / de-allocation
o garbage collector releases memory for unused objects
o simpler code & less debugging

• robust
o strongly typed
o automatic bounds checking
o no “pointers” (you will understand this in COMP1402/1002)

COMP1005/1405 – Programming Basics Fall 2009

 - 11 -

The JAVA programming language itself (i.e., the SDK that you
download from SUN) actually consists of many program pieces
(or object class definitions) which are organized in groups called
packages (i.e., similar to the concept of libraries in other
languages) which we can use in our own programs.

When programming in JAVA, you will usually use:

• classes from the JAVA class libraries (used as tools)
• classes that you will create yourself
• classes that other people make available to you

Using the JAVA class libraries whenever possible is a good idea since:

• the classes are carefully written and are efficient.
• it would be silly to write code that is already available to you.

We can actually create our own packages as well, but this will not be discussed in this course.

How do you get started in JAVA?
We will be using the latest version of JAVA (see course outline) from Sun Microsystems which
you can download from the SUN website if you are working at home.

When you download and install the latest JAVA SDK (i.e., JAVA Software Development Kit),
you will not see any particular application that you can run which will bring up a window that
you can start to make programs in. That is because the SUN guys, only supply the JAVA
SDK which is simply the compiler and virtual machine. JAVA programs are just text files, they
can be written in any type of text editor. Using a most rudimentary approach, you can actually
open up windows NotePad and write your program ... then compile it using the windows
Command Prompt window. This can be tedious and annoying since JAVA programs usually
require you to write and compile multiple files.

A better approach is to use an additional piece of application software called an Integrated
Development Environment (IDE). Such applications allow you to:

• write your code with colored/formatted text
• compile and run your code
• browse java documentation
• create user interfaces visually
• and use other java technologies (e.g. Java Beans, EJB's, Servlet programming etc...)

We will be using the JCreatorLE IDE within this course (from www.jcreator.com). It is a
powerful, yet simple “Windows-based” IDE that fits all of our needs. As you become a more
skilled programmer, you may wish to switch over to the Eclipse IDE (from www.eclipse.org)
which has additional features... but is overly complex for beginning students. If you are using a
Mac computer, jGRASP (from www.jGRASP.org) is a nice simple IDE as well.

COMP1005/1405 – Programming Basics Fall 2009

 - 12 -

 1.3 Writing Your First JAVA Program

 The process of writing and using a JAVA program is as follows:

1. Writing: define your classes by writing what is called .java files (a.k.a. source code).
2. Compiling: send these .java files to the JAVA compiler, which will produce .class files
3. Running: send one of these .class files to the JAVA interpreter to run your program.

The java compiler:

• prepares your program for running
• produces a .class file containing byte-codes (which is a program that is ready to run).

If there were errors during compiling (i.e., called "compile-time" errors), you must then fix
these problems in your program and then try compiling it again.

The java interpreter (a.k.a. Java Virtual Machine (JVM)):

• is required to run any JAVA program
• reads in .class files (containing byte codes) and translates them into a language that

the computer can understand, possibly storing data values as the program executes.

Just before running a program, JAVA uses a class loader to put the byte codes in the
computer's memory for all the classes that will be used by the program. If the program
produces errors when run (i.e., called "run-time" errors), then you must make changes to the
program and re-compile again.

As mentioned, the JAVA language consists of various class libraries that you can make use of.
All of JAVA’s classes are arranged in packages. There are MANY standard packages in
JAVA, each with many classes.

COMP1005/1405 – Programming Basics Fall 2009

 - 13 -

Here are just some of the standard packages that you will likely use in this course:

java.lang Basic classes and interfaces required by many JAVA programs. It is
automatically imported into all programs.

java.util Utility classes and interfaces such as date/time manipulations, random numbers,
string manipulation, collections ...

java.io Classes that enable programs to input and output data.

java.text Classes and interfaces for manipulating numbers, dates, characters and strings.
Provides internationalization capabilities as well.

When you want to make use of some of these classes, you will use the import keyword to tell
JAVA that you want to use a class:

import <packageName>.*;

Basically, the import statement is used to tell the compiler which package (i.e., directory) the
class files are sitting in. You can always replace the * by a class name (where the class name
is in the package) so that the readers of your code are more clear on which classes you are
actually using. Keep in mind though that the import statement does not load any classes, it
merely instructs the compiler where to find them when you run your code.

Our First Program
The first step in using any new programming language is to understand how to write/compile
and run a simple program. By convention, the most common program to begin with is always
the "hello world" program which when run ... should output the words "Hello World" to the
computer screen. We will describe how to do this now.

All of your programs will consist of one or more files called classes. That is, each time you
want to make a program, you need to define a class.

Here is the program that we will write:

class HelloWorldProgram {
 public static void main(String args[]) {
 System.out.println("Hello World");
 }
}

Here are a few points of interest in regards to ALL of the programs that you will write in this
course:

COMP1005/1405 – Programming Basics Fall 2009

 - 14 -

• The program must be saved in a file with the same name as the class name (spelled the
same exactly with upper/lower case letters and with a .java file extension).

• The first line beings with word class and then is followed by the name of the program
(which must match the file name, except not including the .java extension).

• The entire class is defined within the first opening brace { at the end of the first line and
the last closing brace } on the last line.

• The 2nd line (i.e., public static void main(String args[]) {) defines the starting place
for your program and will ALWAYS look exactly as shown.

• The 2nd last line will be a closing brace }.

So … ignoring the necessary "template" lines, the actual program consists of only one line:
System.out.println("Hello World"); which actually prints out the characters Hello World to
the screen. The text between the double quotes is called a String. In fact, we could replace
the Hello World text with any characters that we want displayed. Notice also that there is a
semicolon character (;) at the end of the line. All JAVA statements (i.e., lines of code) will end
with a ; character.

So to summarize, EVERY java program that you will write will have the following basic format:

class {
 public static void main(String args[]) {
 ;
 ;
 ;
 }
}

Just remember that YOU get to pick the program name (e.g., MyProgram) which should
ALWAYS start with a capital letter. Also, your code MUST be stored in a file with the same
name (e.g., MyProgram.java). Then, you can add as many lines of code as you would like in
between the inner { } braces. You should ALWAYS line up ALL of your brackets using the
Tab key on the keyboard.

Where do we write this code ? In the JCreator IDE. JCreator has a main window area into
which we write the code and another area at the bottom where we view the results:

COMP1005/1405 – Programming Basics Fall 2009

 - 15 -

Supplemental Information (Capturing Screen Output)

If by default, your JCreator window opens up a black Command Prompt window when
compiling or running, you will need to configure JCreator to allow the compiled results and
the program output to appear at the bottom of your JCreator window. Do the following
steps (you only need to do this once):

1. Click on the Configure menu on the menu bar.
2. Select Options... and a dialog box will appear.
3. Select JDK Tools from the left list (2/3 of the way down the list).
4. Make sure that the Select Tool Type: is set to Compiler in the drop down list.
5. Select <Default> in the list below (even though it appears as grayed out).
6. Press the Edit... button.
7. Click "on" the Capture output checkbox (i.e., a check mark will appear).
8. Press OK.
9. Now choose from the Select Tool Type: drop down list the option of Run Application.
10. Select <Default> in the list below (even though it appears as grayed out).
11. Press the Edit... button.
12. Click "on" the Capture output checkbox (i.e., a check mark will appear).
13. Press OK.
14. Press OK again to close the dialog box.

(1) Write your
 program here

(2) Click here
 to compile(3) Click here

 to run

(4) Output is displayed here

COMP1005/1405 – Programming Basics Fall 2009

 - 16 -

 1.4 Displaying Information

We have seen in our first program how to use the System.out.println() statement to output a
simple line of text characters to the screen. However, this JAVA statement can do much
more. For example, it can also output results of computations. In this section we will look at a
few more examples of what can be displayed on the screen.

Here is another program which represents a calculator that can find the average of three
numbers (e.g., 34, 89 and 17) and display the answer on the console window:

class CalculatorProgram {
 public static void main(String args[]) {
 // This code computes a simple calculation
 System.out.print("The average of 34, 89 and 17 is ");
 System.out.println((34 + 89 + 17) / 3.0);
 }
}

There are some points of interest regarding the code:

• In addition to displaying text characters, the System.out.println can display the
"results" of mathematical computations.

• The code in green (i.e., following the // characters) is called a comment. JAVA

ignores this when compiling. You can place comments anywhere in your code to
provide an explanation of what your code is doing. This helps later on when you
look at your code at a future date ... because we all tend to forget what we did in the
past.

o Generally, you should use // when you have a single line to comment (i.e.,
everything after the // characters on that line is ignored).

o If you want to have a multiple line comment, you can alternatively begin the
comment with /* characters and end it with */ characters. For example:

/* This is a multiple line comment
 because it appears on more
 than one line in the program. */

Of course, you can still use the // characters instead 3 times if you want:

// This is a multiple line comment
// because it appears on more
// than one line in the program.

COMP1005/1405 – Programming Basics Fall 2009

 - 17 -

• The first line uses print while the second line uses println. When using just print,
the next text to be printed will be immediately to the right of this text. When using
println, a line feed and carriage return is printed, which means that the text to follow
will appear at the beginning of the next line of the console (i.e., output window).

Here is the output when the CalculatorProgram is run:

The average of 34, 89 and 17 is 46.666666666666664

Of course, this program always computes the same average using the same 3 numbers, but in
the section we will look at how to get different numbers from the user each time we run the
code. Notice as well that the calculations are not perfectly accurate … they are off a little after
15 decimal places.

Can you tell how the output of the following piece of code will be formatted ?

System.out.print("My name is ");
System.out.println("Mark.");
System.out.println("These strings " + "are" + " joined.");
System.out.print("Numbers can be appended ... see: " + 54.342);
System.out.println(" and even characters: " + 'A' + 'B' + 'C');
System.out.println();
System.out.println("The line above was left blank.");
System.out.println("Now leave 4 blank lines at the end. \n\n\n\n");
System.out.println("Count the blanks above.");

Here is the output:

My name is Mark.
These strings are joined.
Numbers can be appended ... see: 54.342 and even characters: ABC

The line above was left blank.
Now leave 4 blank lines at the end.

Count the blanks above.

Notice that we can use the + to join:

• two strings before display them
• numbers or characters (defined between single quotes ' ') to the end of a String.

COMP1005/1405 – Programming Basics Fall 2009

 - 18 -

Also notice that:

• when the brackets () are left empty on a println(), then a blank line is printed.
• we can use some \n characters at the end of the string to leave blank lines.

Displaying results in a window
The output of our programs above was displayed in the bottom part of the JCreator window
(called the console). However, we can also have our program results appear in a nice little
window that pops up on the screen. The code behind making a window can be a little
confusing at this point in the course, so we will not make our own. Instead, JAVA has some
pre-defined windows called JOptionPanes which will allow us to display some simple test
results.

The simplest way to do this is to use one of the standard dialog boxes in JAVA. We can use
something called a JOptionPane which is in the javax.swing package.

Consider for example, our CalculatorProgram that we wrote earlier. We can bring up a little
window with our answer in it as follows:

The window would come up, wait for us to press the OK button and then close. Here is the
code that does this:

import javax.swing.JOptionPane;

class WindowCalculatorProgram {
 public static void main(String args[]) {
 JOptionPane.showMessageDialog(null,
 "The average of 34, 89 and 17 is " + (34+89+17)/3.0);
 }
}

Basically, it is a one-line-program again. The JOptionPane.showMessageDialog(null, …);
"command" is a pre-defined JAVA function that brings up the window with the text that we
choose (just replace the … characters with your text). JOptionPane is actually the JAVA
class that does this for us. Remember that since we are using a pre-defined JAVA class, we
need to tell the JAVA compiler where to find it. That is why we write the following statement at
the top of our program:

COMP1005/1405 – Programming Basics Fall 2009

 - 19 -

import javax.swing.JOptionPane;

The JOptionPane class has a function (officially known as a method) called
showMessageDialog which contains code for displaying the window. This method requires
you to supply 2 pieces of information called parameters. Each of these parameters is
separated by a comma character and is shown on a separate line in the code to make things
clearer:

1. The 1st parameter is null. We will discuss this later.
2. The 2nd parameter is the information that you want to display in the middle of the

window. It can be any code, but is often a String.

Experiment with the example above by trying to display various things in the window.

Normally, JOptionPanes are meant to have a single line of text. However, if you want to have
multiple lines of text, you can do this by appending a \n character between the lines that you
want. This will tell JAVA to go to the next line before continuing. For example, if we add
some \n characters to our String as shown below, notice what the window will look like:

JOptionPane.showMessageDialog(null,
 "The average of \n34, 89 and 17\nis\n\n" + (34 + 89 + 17) / 3.0);

Here is the window that is produced:

Of course, the appearance is not as pleasant because everything is aligned to the left. As is,
there is no way to change this alignment. Nevertheless, it is sometimes nice to be able to
display text in our own windows as opposed to simply in the console window.

In the follow-up course to this one (COMP1406/1006), you will learn how to create your own
windows and arrange everything as you want.

COMP1005/1405 – Programming Basics Fall 2009

 - 20 -

Supplemental Information (Other MessageDialogs)

There are variations for the showMessageDialog method that allow 2 more parameters so that you can
change the title on the window as well as add a picture. The format is:

 JOptionPane.showMessageDialog(null,
 "The average of 34, 89 and 17 is " + (34 + 89 + 17) / 3.0,
 "Answer",
 JOptionPane.PLAIN_MESSAGE);

The 3rd parameter here is the title for the window, in this case "Answer". The 4th parameter is the type of
window to open. Here we say JOptionPane.PLAIN_MESSAGE, but there are other options which will
bring up the window but will also display a little picture (called an Icon) that allows you to distinguish
between different kinds of messages. Below is a table of the other options and their icons. In fact, you
can look at the JAVA documentation and see that you can also use your own pictures/icons.

JOptionPane.WARNING_MESSAGE
Use this when you want to warn the user
about something in the program.

JOptionPane.ERROR_MESSAGE
Use this when you want to tell the user that
an error has occurred in the program.

JOptionPane.PLAIN_MESSAGE
Use this when you do not want a picture.

JOptionPane.INFORMATION_MESSAGE
Use this when you want to tell the user something
in the program.

COMP1005/1405 – Programming Basics Fall 2009

 - 21 -

 1.5 Getting User Input

In addition to outputting information to the console window, JAVA has the capability to get
input from the user. Unfortunately, things are a little "messier/uglier" when getting input. For
many years, previous versions of JAVA did not have any nice clean way to read data from the
keyboard. Since version 1.5 however, a new class was created which allows simplified input
from the keyboard. The class is called Scanner and it is available in the java.util package.

So, to get input from the user, we need to create a new Scanner object for the System
console. We will talk much more at a later time about creating new objects, but for now, here
is the line of code that gets a line of text from the user:

new Scanner(System.in).nextLine();

This line of code will wait for the user (i.e., you) to enter some text characters using the
keyboard. It actually waits until you press the Enter key. Then, it returns to you the
characters that you typed (not including the Enter key). You can then do something with the
characters, such as print them out. Here is a simple program that asks the user for his name
and then says hello to him/her:

import java.util.Scanner;

class GreetingProgram {
 public static void main(String args[]) {
 System.out.println("What is your name ?");
 System.out.println("Hello, " + new Scanner(System.in).nextLine());
 }
}

Notice the output from this program if the letters Mark are entered by the user (Note that the
blue text (i.e., 2nd line) was entered by the user and was not printed out by the program):

What is your name ?
Mark
Hello, Mark

As you can see, the Scanner portion of the code gets the input from the user and then
combines the entered characters by preceding it with the "Hello, " string before printing to the
console on the second line.

Interestingly, we can also read in integers from the keyboard as well by using:

 new Scanner(System.in).nextInt();

COMP1005/1405 – Programming Basics Fall 2009

 - 22 -

For example, consider this modified calculator program that finds the average of three
numbers entered by the user:

import java.util.Scanner;

class BetterCalculatorProgram {
 public static void main(String args[]) {
 System.out.println("Enter three numbers:");
 System.out.println("The average of these numbers is " +
 (new Scanner(System.in).nextInt() +
 new Scanner(System.in).nextInt() +
 new Scanner(System.in).nextInt()) / 3.0);
 }
}

Here is the output when the BetterCalculatorProgram is run with the numbers 34, 89 and 17
entered:

Enter three numbers:
34
89
17
The average of these numbers is 46.666666666666664

Supplemental Information (Bug)

In some versions of JCreator, there was a bug when getting keyboard input from the
output window. The above code for example, when using the "Capture output"
feature in JCreator (under the RunApplication tool option) will give the value of
the first number entered (which is 34 here). If this happens to you, you can
avoid this problem by disabling (i.e., uncheck) the "Capture output" feature when
running programs that require keyboard input.

Of course, we can enter any numbers. Here is the output from entering 10, 20 and 50:

Enter three numbers:
10
20
50
The average of these numbers is 26.666666666666668

As we will see in the next section, we do not need to make 3 Scanner objects, we can actually
use the same Scanner each time. There is much more we can learn about the Scanner
class. It allows for quite a bit of flexibility in reading input.

COMP1005/1405 – Programming Basics Fall 2009

 - 23 -

For example, if we enter 10, 20 and then some junk characters ... an error will occur as follows:

Enter three numbers:
10
20
junk
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:819)
 at java.util.Scanner.next(Scanner.java:1431)
 at java.util.Scanner.nextInt(Scanner.java:2040)
 at java.util.Scanner.nextInt(Scanner.java:2000)
 at BetterCalculatorProgram.main(BetterCalculatorProgram.java:6)

Woops! That's not very nice. This is JAVA's way of telling us that something bad just
happened. It is called an Exception. We will discuss more about this later. For now, assume
that valid integers are entered.

Getting input from a window
Getting input directly from the keyboard into a console is an obsolete task these days. Most
software has some kind of user interface that allows the user to enter text using dialog boxes,
text fields, sliders, list boxes etc... In JAVA, we can use also JOptionPane to get input from
the user. If we would like to ask the user for a simple piece of text, such as his/her name, we
can use the following line: JOptionPane.showInputDialog("Please input your name");

This code will bring up the following window which will let us enter the name:

So, the pre-defined JOptionPane class has a showInputDialog(…) method that brings up a
window and waits for us to enter data. The one parameter to that method allows us to give
instructions to the user in the form of a sentence. Consider now changing our
GreetingProgram to use this new window instead:

import javax.swing.JOptionPane;

class WindowGreetingProgram {
 public static void main(String args[]) {
 System.out.println("Hello, " +
 JOptionPane.showInputDialog("What is your name ?"));
 }
}

COMP1005/1405 – Programming Basics Fall 2009

 - 24 -

Notice that the output from this program in the System.out console only displays the result
now:

Hello, Mark

We can actually combine this with the showMessageDialog method as follows:

import javax.swing.JOptionPane;

class WindowGreetingProgram2 {
 public static void main(String args[]) {
 JOptionPane.showMessageDialog(null, "Hello, " +
 JOptionPane.showInputDialog("What is your name ?"));
 }
}

Then we end up with windows for input and for output … with nothing printed to the console:

There are other types of input windows. For example, we can bring up a window that asks the
user a YES/NO question as follows:

JOptionPane.showConfirmDialog(null, "Are you sure you want to quit ?");

This method will bring up the following window:

We will see later that we can find out which of the buttons the user pressed (i.e., Yes, No or
Cancel) and then respond accordingly in our program. We will not discuss any other types of
input windows at this point because they require you to understand more about JAVA.

So, you should now have a solid understanding of how to display information as well as get
information from the user. We will now continue to get a better understanding of the JAVA
programming language.

COMP1005/1405 – Programming Basics Fall 2009

 - 25 -

 1.6 Types of Data: Primitives vs. Objects

Up until this point, we have done some simple programs that perform some simple
calculations. In general, a typical computer is only able to compute one piece of information
at a time. However, for big problems, there may be a lot of computations, number crunching,
data organization, etc… So, in order to write some more meaningful programs, we need to
understand how to store information.

For example, recall our example for averaging 3 numbers entered by the user. What if we
then wanted to find the maximum, the minimum and perhaps the sales tax on the total ? We
would need to store these numbers somewhere so that we can do multiple computations on
the same numbers without having to re-enter them again.

All information in the computer is actually stored in the electronics as voltages … high and low
voltages that can be thought of as billions of 1’s and 0’s that have some kind of meaning to
them. That is, all user information (whether it is a name, phone number, picture, email,
database, game, etc..) is stored as 1’s and 0’s. As humans, we have a hard time working at
such a low level. We do better working with things like numbers, characters and real-world
objects. Whenever we want to store any data whatsoever, we will always need to specify the
type of that data.

So, when programming, we will define all of our data as these higher level things which we call
data types. All data in JAVA is stored as one of the following two data types:

1. Primitive: represents a single piece of information
such as a number or character.

2. Object: represents multiple pieces of information

that are grouped together in a way similar to placing an
elastic around a bunch of primitives to hold them together.
So put simply, objects are bundles of data. As you will see
later, an object can actually be made up of other objects as
well.

In JAVA there are exactly 8 primitive types. Each differs with respects to:

• the kind of information being stored
• the amount of space they take up in the computer's memory.

You should use the data type that suits your needs but does not waste memory by using more
space than is necessary.

COMP1005/1405 – Programming Basics Fall 2009

 - 26 -

If you want to store a simple integer number (i.e., no decimal part), JAVA offers you 4
possibilities:

Type Space Used (bytes) Stores Integer Number in Range
byte 1 -128 to 127
short 2 -32,768 to 32,767
int 4 -2,147,483,648 to 2,147,483,647
long 8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

If you want to store a real number (i.e., with a decimal part), JAVA offers you 2 possibilities:

Type Space Used (bytes) Stores Real Number in Range
float 4 a real number over 1038
double 8 a real number over 10308

If you want to store a single character you have one choice:

Type Space Used (bytes) Stores Single Character
char 2 Represented by single quotes (e.g., 'a' 'B' 'c' '$' '>')

Finally, if you want to store a single true/false value, you also have one choice:

Type Space Used (bytes) Stores Boolean Value
boolean 1 a value of either true or false

So those are the 8 primitive data types that JAVA offers. You may have noticed that Strings
are not listed there. That is because Strings are actually objects which are made up of
multiple char primitives. That is, Strings are nothing more than a group of characters.

Notice in our code so far we have used numbers directly (e.g., 34, 89, 34.52) as well as
characters (e.g., 'a', 'M', ‘\n’). These are called literal values (a.k.a. literals or constants)
because the value is literally what you see when you read it in the program.

In JAVA, when you use a literal real number constant such as 34.685, JAVA assumes that you
want this number to be used as a double. If you just want it to be a float (which has half the
precision), then you must supply an f character after the number as follows: 34.685f …
otherwise … JAVA may give you a compile error. Similarly, long numbers must have an L
after them to distinguish them from ints.

There are some special pre-defined characters that have special meanings. They are actually
specified as 2 characters ... the backslash being the first. Here is a list of just a few of them:

COMP1005/1405 – Programming Basics Fall 2009

 - 27 -

• '\n' (newline)
• '\b' (backspace)
• '\'' (single quote)
• '\t' (tab)
• '\\' (backslash)
• '\"' (double quote)

It is likely that sooner or later you will need to use these special characters in a String.

Here is a simple test program that prints out some primitive values:

class PrimitiveTestProgram {
 public static void main(String args[]) {
 System.out.println(239); // an integer
 System.out.println(823100267876L); // a long
 System.out.println(3.141592653589793); // a double
 System.out.println(3.141592653589793f); // a float

 System.out.println('A'); // a letter character
 System.out.println('5'); // a digit character
 System.out.println(' '); // the space character
 System.out.println('\"'); // the double-quote character
 System.out.println('\n'); // the blank-line character

 System.out.println(true); // the boolean value true
 System.out.println(false); // the boolean value false
 }
}

Here is the resulting output:

239
823100267876
3.141592653589793
3.1415927
A
5

"

true
false

Do you remember doing new Scanner(System.in).nextLine() when getting user input ?
Well, in place of nextLine(), we could have used any one of the following to specify the kind of
primitive data value that we would like to get from the user:

COMP1005/1405 – Programming Basics Fall 2009

 - 28 -

nextInt(), nextShort(), nextLong(), nextByte(), nextFloat(),
nextDouble(), nextBoolean(), next()

Notice that there is no nextChar() method available. The next() method actually returns a
String of characters, just like nextLine(). If you wanted to read a single character from the
keyboard (but don't forget that we still need to also press the Enter key), you could use the
following: next().charAt(0). We will look more into this later when we discuss String
functions.

Now that we have taken a look at the most primitive forms of data, lets see how we can use
objects in our programs.

Objects
We have already seen how to make Strings of characters and how to display them to the
screen. Strings are objects. So we have already begun using objects in our programs.
What other kinds of objects are there ? Well, JAVA has a lot of pre-defined objects.

class ObjectTestProgram {
 public static void main(String args[]) {
 System.out.println(new java.lang.Object()); // general object
 System.out.println(new java.lang.String()); // blank string
 System.out.println(new java.util.Date()); // date object
 System.out.println(new java.awt.Point(50, 75)); // point object
 System.out.println(new java.awt.Rectangle(5,10,20,30)); // rectangle
 }
}

You may notice that for each object, we use the word new. This is required because objects
have to be constructed (i.e., built or created) before we can use them. In this case, we are
just creating the objects and then displaying them. Notice that the Point and Rectangle
objects required additional information (called parameters) to define them when they were
created. That is, it does not make sense to define a point without both x and y values. And a
rectangle cannot be created unless we know the top left corner (e.g., x=5,y=10) and the width
and height (e.g., Width=20, Height=30).

Notice how these objects are displayed in the output:

java.lang.Object@3e25a5

Mon Apr 06 11:40:51 EDT 2009
java.awt.Point[x=50,y=75]
java.awt.Rectangle[x=5,y=10,width=20,height=30]

Each object displays itself differently. Notice that the Date object that was created actually

COMP1005/1405 – Programming Basics Fall 2009

 - 29 -

corresponds to today’s date. Also, notice that the String object was actually an empty string
(i.e., no characters were displayed).

Please as well notice that after the word new, all of the objects have either java.lang.,
java.util. or java.awt. specified. That is because all of JAVA’s objects are logically organized
into subfolders (called packages). As it turns out, Object and String objects are in the
default folder called java.lang, Date objects are in the java.util folder and Point & Rectangle
objects are in the java.awt folder. If we do not specify where to find the objects, JAVA can
become confused when compiling our code and will generate compile errors.

Having to specify the folders each time we use an object is a little cumbersome and tedious.
We can actually simplify the code a little by using the import statement at the top of our
program. The import statement allows us to specify where to find each of the objects that we
are planning to use. In that way, the code becomes simpler. Notice the difference:

import java.lang.Object;
import java.lang.String;
import java.util.Date;
import java.awt.Point;
import java.awt.Rectangle;

class ObjectTestProgram2 {
 public static void main(String args[]) {
 System.out.println(new Object()); // general object
 System.out.println(new String()); // blank string
 System.out.println(new Date()); // date object
 System.out.println(new Point(50, 75)); // point object
 System.out.println(new Rectangle(5,10,20,30)); // rectangle object
 }
}

Notice now that the code is less cluttered. In fact, all classes in the java.lang package are
automatically imported so we do not need the first two import statements. Also, when we
have multiple classes being imported from the same package (e.g., Point, Rectangle), we can
use a single import statement with the * wildcard character to tell JAVA to import any needed
classes from that package. (Note that the import statement does not load any classes, it just
instructs the compiler where to find them). So here is the simplest form of the code:

import java.util.*;
import java.awt.*;

class ObjectTestProgram3 {
 public static void main(String args[]) {
 System.out.println(new Object()); // general object
 System.out.println(new String()); // blank string
 System.out.println(new Date()); // date object
 System.out.println(new Point(50, 75)); // point object
 System.out.println(new Rectangle(5,10,20,30)); // rectangle object
 }
}

COMP1005/1405 – Programming Basics Fall 2009

 - 30 -

 1.7 Making Your Own Objects

Now that we have looked at how to use some of JAVA’s pre-defined objects … lets see how
you can make your own. Lets try to make a Car object and a Person object as follows:

class MyObjectTestProgram {
 public static void main(String args[]) {
 System.out.println(new Car()); // car object
 System.out.println(new Person()); // person object
 }
}

If you were to compile the above code in JCreator, it would give you the following errors:

cannot find symbol class Car
cannot find symbol class Person

JAVA cannot find any libraries that define the Car and Person objects. That is because the
JAVA language does not have Car or Person classes defined anywhere. If we want to use
such objects, we must define them on our own.

How do we define our an object of our own ?

• Each object that we define must be defined as its own separate class
• Each of these classes must be saved as their own .java file

For example, we would define a Car object by making a Car.java file that defines the class as
follows:

class Car {

}

That’s it! You just need to create this file in JCreator as a new java file, then save it and
compile it. You must make sure that the file name is exactly the same (i.e., upper/lowercase
letters) as the name of the class … but with a .java file extension.

This file represents a class definition of the Car object (i.e., it specifies (or defines) exactly
what a Car object actually is). If we want to define a Person object, we can follow the same
process by making a Person.java file and writing/saving/compiling the following code:

COMP1005/1405 – Programming Basics Fall 2009

 - 31 -

class Person {

}

After doing this, our MyObjectTestProgram should then compile ok.

class MyObjectTestProgram {
 public static void main(String args[]) {
 System.out.println(new Car());
 System.out.println(new Person());
 }
}

Notice now the output from the program:

Car@19821f
Person@42e816

This is what objects look like by default. They show the
name of the class, then an @ symbol, and finally a
strange combination of numbers and letters.

This number/letter combination represents the location
(or address) of the object in the computer’s memory.
We call this the reference, because this memory
address “refers to” the object. The actual value of the
address is unimportant to us, however, it is important for
you to understand that each time we make an object, it
“uses up” a portion of the computer’s memory.

Later we will see how to change the appearance of our
objects so that they show more meaningful information
when displayed.

We can actually make a bunch of new Car and Person objects. Here is an example:

0000000000
0000000001
0000000002

 …

…
9999999997
9999999998
9999999999

1GB RAM
(memory)

a
Car
object

a
Person
object reference

reference

COMP1005/1405 – Programming Basics Fall 2009

 - 32 -

class MyObjectTestProgram2 {
 public static void main(String args[]) {
 System.out.println(new Car()); // car object
 System.out.println(new Car()); // a different car object
 System.out.println(new Person()); // a person object
 System.out.println(new Person()); // another person object
 System.out.println(new Person()); // yet another person object
 }
}

Notice in the output that each Car and Person has its own unique location in the computer’s
memory (shown by the uniqueness of the numbers/letters after the @):

Car@19821f
Car@addbf1
Person@9304b1
Person@190d11
Person@a90653

When we save and compile the file Car.java and Person.java, we are actually defining two
new types of objects. We are really defining new classes (or categories) of objects that
JAVA now understands, although no objects are actually created in memory.

Keep in mind that the Car, Person and MyObjectTestProgram classes are each defined in
their own files and should be keep in the same folder on your hard drive.

Also, remember that you cannot run the Car or Person class, because they are not programs
… they are just object definitions. You can only run classes that have the public static void
main(…) code in them.

Only when we write new Car() … are we actually making a new object of that class type. This
is called making an instance of the Car class. Hence, every time we write new Car() we are
getting back an instance of the Car class. So an instance is an object.

class Car {

}

class Person {

}

class MyObjectTestProgram {
 public static void main(String args[])
{
 ...
 }
}

COMP1005/1405 – Programming Basics Fall 2009

 - 33 -

You may want to think of the Car class as a factory that makes Car objects (i.e., makes
instances of the Car class). In general, every time we use new, JAVA goes to the factory for
that class and makes an instance of that class for us and then gives it back to us. So… the
class is the “factory”, and the instance is the particular “object” that we can start using now in
our programs.

The Car Class new Car() Instance of type Car

The Person Class new Person() Instance of type Person

The House Class new House() Instance of type House

At this point you need to understand that all data (i.e., information) in the program is
represented as either one of the 8 primitives or as an object.

You must also understand that objects are just “chunks of data” of a certain type, category or
class. You can use objects in your program just as easily as using simple numbers. In the
next section we will find out how to start using the data (or information) in more meaningful
ways.

