

Chapter 2

Variables and Objects

What is in This Chapter ?
In this chapter we will consider the notion of variables as a means of storing information.
Variables are fundamental building blocks of object-oriented programming since in order to
fully understand object-oriented programming, you must know where your data is at all times
as well as how to get it and how to change it. We will look at examples of how to use
variables to store primitive information as well as object information. You will learn how to
define your own objects that contain their own variables called instance variables. We will
then look at how to create constructors that allow us to provide initial values to all of our
object’s instance variables. Finally, we will examine shared data in the form of class/static
variables.

COMP1005/1405 – Variables and Objects Fall 2009

 - 35 -

 2.1 Variables

Consider a piece of code in which we are given some numbers and we would like to compute
some calculations with those numbers such as adding, multiplying and averaging. We could
write the following code:

System.out.println("Given numbers 34, 89 and 17: ");
System.out.println("The sum is " + (34 + 89 + 17));
System.out.println("The product is " + (34 * 89 * 17));
System.out.println("The average is " + ((34 + 89 + 17)/3));

The code is straight forward. JAVA will perform the calculation and then print the results. If
we wanted to change one of the numbers (e.g., change 34 to 15) then we would have to make
this change in 4 places:

System.out.println("Given numbers 15, 89 and 17: ");
System.out.println("The sum is " + (15 + 89 + 17));
System.out.println("The product is " + (15 * 89 * 17));
System.out.println("The average is " + ((15 + 89 + 17)/3));

This is not a desirable situation. In this particular code it is a simple change, however in larger
programs, this may require you to go through hundreds of lines of code to make the simple
change.

Another undesirable characteristic of the program is that the sum (15 + 89 + 17) is computed
twice:

System.out.println("Given numbers 15, 89 and 17: ");
System.out.println("The sum is " + (15 + 89 + 17));
System.out.println("The product is " + (15 * 89 * 17));
System.out.println("The average is " + ((15 + 89 + 17)/3));

Again, this is not so serious in a small program, but in a larger program we would not want to
duplicate portions of our code in many places because:

• it wastes space (i.e., computer memory)
• it requires more programming time to write the same code over and over again
• if a change needs to be made, we must remember every place that the duplicated code

appears and then go make the change multiple times.

In order to avoid these problems, we can use the notion of a variable.

COMP1005/1405 – Variables and Objects Fall 2009

 - 36 -

Simply put, a variable is a placeholder for a piece of information. That is,
a variable is used to “hold on to” or remember a data value for later use.

In real life, we often “jot down” something on a piece of
paper to remember it later (e.g., a phone number, an
address, a price etc…). That way, whenever we want to
recall the value that we wrote down, we just get that
piece of paper and read the value that we wrote there.

So when programming, we use a variable to store
information for later use (i.e., for reference later).

But what if you have written down a few phone numbers
? How do you tell which one is which ?

We need something that will let us distinguish between
the different phone numbers. It should be something
unique … shouldn’t it ?

In real life, we would probably also write the name of
each person along with the phone number. As long as
the names are unique, we will know exactly which
phone number belongs to each person.

When programming, variables also have a name. This
allows us to refer to the variable’s value at any time in
our program.

Thus, when we use the variable name in our program,
we are actually referring to the value stored in the
variable with that name.

We know that a phone number is a sequence of digit characters with a ‘-‘ character. We can
thus represent a phone number using a string as follows: “555-2678”. In this case, we
would say that phone numbers can be stored in variables that are of type String. Hence,
String would be the data type for our individual phone numbers.

So, in JAVA, to make a variable that holds (i.e., stores, keeps, remembers, etc.) a phone
number, we need to specify both the type and name (must be unique) of the variable. Here is
how we would do this for our 5 phone numbers above:

String mary;
String betty;
String jen;
String bob;
String jim;

Notice that we specify the type on the left and the name on the right (separated by one or
more spaces or tab characters) and then conclude with a ‘;’ character. It should be noted

COMP1005/1405 – Variables and Objects Fall 2009

 - 37 -

however, that the variable definitions above do not specify the value for the variables, it just
“reserves space” for the variable (i.e., it just makes the “sheet of paper” with the label on it, but
does not yet have a value).

Make sure to pick meaningful variable names that are not too long !! The name must be
unique and it is case-sensitive (i.e., Hello and hello would not be considered the same).

Variable names may contain only letters, digits and the ‘_’ character (i.e., no spaces in the
name). As standard convention, multiple word names should have every word capitalized
(except the first). Here are some good examples of variable names:

• count
• average
• insuranceRate
• timeOfDay

• poundsPerSquareInch
• aString
• latestAccountNumber
• weightInKilograms

Here are some more examples of how we can
declare some additional variables for various kinds of
objects:

Car myCar;
Date today;
Person mark;
Store aStore;
BankAccount account;

Note that we can also declare variables whose type is
one of the 8 data types. For example:

int days;
float age;
double weight;
char sex;
boolean hungry;

Now that we know how to declare (i.e., define) a variable, we need to know how to use them
in our programs. We use the term assign to represent the idea of “giving a value” to a
variable. In JAVA, the assignment operator is the = sign. So, we use = to put a value into a
variable. Here are a few examples of how we can do this with some of the variables that we
declared earlier:

mary = "555-2678";
bob = "782-3244";
myCar = new Car();
mark = new Person();

days = 15;
age = 21.3f;
weight = 165.23;
sex = 'M';
hungry = true;

COMP1005/1405 – Variables and Objects Fall 2009

 - 38 -

Something VERY important to remember when learning to program is that the value of the
variable must be the same type of object (or primitive) as the variable’s type that was
specified when you declared it earlier. So for example, in the following table, make sure that
you understand why the examples on the left are wrong, while the examples of the right are
correct:

String mary;
mary = 23;

String mary;
mary = "555-2678";

Car myCar;
myCar = "Porsche";

Car myCar;
myCar = new Car();

int days;
days = 10.2789;

int days;
days = 10;

boolean hungry;
hungry = 'y';

boolean hungry;
hungry = false;

char sex;
sex = "F";

char sex;
sex = 'F';

To help cut down the number of lines of code in our program, JAVA actually allows us to both
declare and assign a value to our variables all on one line. So, from our earlier examples,
we can do the following:

String mary = "555-2678";
String bob = "782-3244";
Car myCar = new Car();
Person mark = new Person();
int days = 15;
float age = 21.3f;
double weight = 165.23;
char sex = 'M';
boolean hungry = true;

It is interesting that we use the term variable to store our information. The word “variable” is
derived from the word “vary”, which means that the value may change (or vary) as time goes
on. For example, if our friend changes their phone number, we can simply erase the old
number from our piece of paper and write in the new number. Thus, the value of the variable
will have changed.

So, even though a variable may be declared only once in the program, we may assign a
value to it multiple times. Can you determine the output of this piece of code:

int days;

System.out.println(days);
days = 43;
System.out.println(days);
days = 15;
System.out.println(days);

COMP1005/1405 – Variables and Objects Fall 2009

 - 39 -

There are some interesting aspects to take note of in this code:

• the code prints out numbers 0, 43 and 15 (notice that days starts off with a value of 0)
• the code prints out the days variable simply by using the variable’s name
• even though the code displays the same days variable 3 times, its value is different

because it is re-assigned a value 2 times during the program.

Variables can be re-assigned a value, but cannot be declared again. Therefore, the
following code will not compile:

int days = 365;
System.out.println(days);
int days = 7; // cannot declare days again
System.out.println(days);

Here are some more pieces of code. Do you know what the output is ?

int x;
int y;
x = 34;
y = 23;
System.out.println(x + y);

Here is a similar example. Notice in JAVA that we are allowed to declare multiple variables of
the same type on the same line, each separated by a ',':

int x, y;
x = 34;
y = x;
System.out.println(x + y);

Here is another one:

int x, y, z;

x = 3*2*1;
y = x + x;
z = x;
System.out.println(z);

Note that even though we use x a few times, it does not change its value. Here is one that is
a little more interesting:

int total;
float average;

total = 12 + 25 + 36 + 15;
average = total / 4;
System.out.println("The average is " + average);

COMP1005/1405 – Variables and Objects Fall 2009

 - 40 -

Notice that we can append the variable to a String using the '+' before printing it. JAVA simply
takes the value of the variable and appends it to the end of the String.

The result is 22.0, not just 22. That is because average is declared as type float. If we
would have declared it as type int, the answer would have been 22.

Here is an example using char variables. Can you guess the output ?

char a='M', b='A', c='R', d='K';

System.out.println("My name is: " + a + b + c + d);
System.out.println("My name backwards is: " + d + c + b + a);

b = 'E';
c = 'I';

System.out.println("The mystery name is: " + a + c + d + b);

Here is the output:

My name is: MARK
My name backwards is: KRAM
The mystery name is: MIKE

Don’t forget … variables are used to hold whole objects and they too are used exactly the
same way as variables that hold primitives:

Date today = new java.util.Date();
System.out.println("Date of Birth = " + today);

Now let us consider a more complete example that uses the Scanner object to get three
numbers from the user and then computes the sum, product and average. You will notice that
code uses variables named a, b, c and sum which all hold integer values. Notice also how a
single Scanner object is used now since we can store it in a variable:

COMP1005/1405 – Variables and Objects Fall 2009

 - 41 -

import java.util.Scanner;

class SuperCalculatorProgram {
 public static void main(String args[]) {
 int a, b, c, sum;
 Scanner keyboard = new Scanner(System.in);

 System.out.println("Enter three numbers:");
 a = keyboard.nextInt();
 b = keyboard.nextInt();
 c = keyboard.nextInt();

 sum = a + b + c; //compute the sum and store it
 System.out.println("Given numbers " + a + ", " + b +
 " and " + c + ":");
 System.out.println("The sum is " + sum);
 System.out.println("The product is " + (a * b * c));
 System.out.println("The average is " + (sum / 3));
 }
}

Here is the output (making sure to disable the "Capture Output" option in JCreator):

Enter three numbers:
34
88
16
Given numbers 34, 88 and 16:
The sum is 138
The product is 47872
The average is 46

Notice now that by simply changing the first integer to 64, we get different output:

Enter three numbers:
64
88
16
Given numbers 64, 88 and 16:
The sum is 168
The product is 90112
The average is 56

At this point, you should have a good understanding of what a variable is and how to use them.
The only question you may have is “When do I need to use a variable ?”.

COMP1005/1405 – Variables and Objects Fall 2009

 - 42 -

In summary, we need to use a variable:

• to store intermediate results in an extensive computation
• whenever we need to use a value more than once in a computation
• to simplify steps in a piece of code.
• to reduce code duplication

Other than that, there is not much more to say about variables. You just need to start getting
practice using them.

 2.2 Instance Variables / Object Attributes

We have just discussed the use of simple variables in our programs. Recall that all variables
have a name and a type and that the type must either be one of the 8 primitives or an object
of our choosing.

Remember too that an object is really just a bunch of data grouped together. The
data (i.e., information) itself defines the particular attributes of the object. Just as
we use variables to “remember” data in our programs, an object must “remember” its
data at all times. These attributes define the state of the object as time goes on.

The state of the object is stored (i.e., remembered) by using variables. Therefore, at the most
basic level, an object is simply made up of a group of variables. Since an object is an
instance of some class, we call these particular kinds of variables instance variables.

Consider a variable that stores a person’s name:

String name; // declare a variable to hold the name

name = "Hank Urchif";
System.out.println(name);

The code above displays “Hank Urchif” to the console window. Very simple. Suppose that
we wanted the option of displaying the name as either “Hank Urchif” or “Urchif, Hank”. To
do this, we would need to distinguish between the first and last name by using two variables as
follows:

String firstName, lastName; // declare 2 variables to hold the name

firstName = "Hank";
lastName = "Urchif";
System.out.println(firstName + " " + lastName);
System.out.println(lastName + ", " + firstName);

COMP1005/1405 – Variables and Objects Fall 2009

 - 43 -

The code above displays both “Hank Urchif” and “Urchif, Hank” to the console window.
Here is a corresponding diagram showing that each of the two String variables are pointing to
(i.e., holding on to) their own unique String objects:

What would we do though if we had three person’s names ? Likely, we would do something
like this:

String firstName1, lastName1; // variables to hold the 1st person’s name
String firstName2, lastName2; // variables to hold the 2nd person’s name
String firstName3, lastName3; // variables to hold the 3rd person’s name

firstName1 = "Hank";
lastName1 = "Urchif";
firstName2 = "Holly";
lastName2 = "Day";
firstName3 = "Bobby";
lastName3 = "Socks";
System.out.println(lastName1 + ", " + firstName1);
System.out.println(lastName2 + ", " + firstName2);
System.out.println(lastName3 + ", " + firstName3);

This code would produce the following output:

Urchif, Hank
Day, Holly
Socks, Bobby

You can see however, that with just a few more people, the number of variables that you need
can increase quickly. A more convenient way of writing this code would be to group the
firstName and lastName into one object (since they always belong together anyway).

We can group these two variables together by defining a new object (i.e., remember that an
object is just variables with an elastic around them). What would be a good name for the
object ? It makes sense to call it something like Person. Here is how we do this …

“Urchif”

“Hank”

lastName

firstName String object

String object

COMP1005/1405 – Variables and Objects Fall 2009

 - 44 -

class Person {
 String firstName; // instance var to hold a person’s first name
 String lastName; // instance var to hold a person’s last name
}

Notice that the Person class defines one single person, not multiple people (that is why we
called the class Person and not Persons). Notice as well that all we did is move the two
variables inside this object. Once we do this and compile our Person class, JAVA now knows
that all Person objects are made up of a first name and a last name. That is, whenever we
make a new Person object, they will each have their own firstName and lastName as part of
them. Recall, that these two variables are now called the instance variables (or attributes)
of the Person class.

Assuming that we have defined, saved and compiled the Person class above, now we can
simplify our program to use the new Person object as shown below. Note that the original
code is included as a comment so that you can compare them side-by-side:

Person aPerson; // declare the variable that will hold the person

aPerson = new Person();
aPerson.firstName = "Hank";
aPerson.lastName = "Urchif";
System.out.println(aPerson.firstName + " " + aPerson.lastName);
System.out.println(aPerson.lastName + ", " + aPerson.firstName);

/* Here was the original code:
 String firstName, lastName;

 firstName = "Hank";
 lastName = "Urchif";
 System.out.println(firstName + " " + lastName);
 System.out.println(lastName + ", " + firstName);*/

Notice that we now have one variable (called aPerson) which is of type Person now instead of
type String. That is, the aPerson variable will now hold a whole Person object (which
includes the firstName and lastName within it.

Now although the type of the variable MUST be Person, the actual name of the variable is
unimportant. We could have used any variable name such as p, x, hank, friend, man,
customer, etc…

When we define the variable on the first line, it does not create any Person objects. It simply
declares that we will be using (and storing) a Person object in the program. So, we actually
need to create a new Person object on our own and store it in the variable (see the 2nd line).

COMP1005/1405 – Variables and Objects Fall 2009

 - 45 -

Here is a diagram showing what has now happened. Notice that the firstName and lastName
variables hold String objects. That is, the names themselves are unique objects (hence drawn
as separate objects here). We therefore draw the arrows to indicate that the firstName and
lastName variables are just pointing to (or referring to) the two String objects. Notice in the
diagram below, that the two String variables are still there, they are just inside the Person
object now:

Notice as well in our program that we use the dot . character after the aPerson variable name
in order to get inside of it. After the dot we specify which of the two variables we are trying to
refer to (i.e., either firstName or lastName). Otherwise, the code is the same as before.
That is, we use the instance variables inside the object just as if they were regular ordinary
String variables.

You should realize that all instance variables are allowed to be changed at any time (i.e., they
can vary). For example, assume that Hank watches a “Simpsons” episode on TV and then
decides to change his name to “Max Power”.

Person aPerson;

// Make Hank with his original name
aPerson = new Person();
aPerson.firstName = "Hank";
aPerson.lastName = "Urchif";

// Assume that Hank watches The Simpsons and decides to make the change

aPerson.firstName = "Max"; // Change the first name to "Max"
aPerson.lastName = "Power"; // Change the last name to "Power"
System.out.println(aPerson.firstName + " " + aPerson.lastName);

The output will show the new name “Max Power”. It is important that you do not forget that
instance variables are just regular variables … but they are inside the object now.

“Urchif”

“Hank”
lastName

firstName

aPerson variable

Person object
String object

String object

instance variable

instance variable

“Urchif”

“Hank”

lastName variable

firstName variable String object

String object

Variable definitions without
using the Person object.

Variable definitions when
using the Person object.

COMP1005/1405 – Variables and Objects Fall 2009

 - 46 -

Now what about our example that used 3 names ? We can make 3 separate Person objects
as follows:

Person p1, p2, p3; // declare the three variables

// Create the 3 people (i.e., make 3 instances of the Person class)
p1 = new Person();
p2 = new Person();
p3 = new Person();

// Set all of their names (i.e., give values to their instance variables)
p1.firstName = "Hank";
p1.lastName = "Urchif";
p2.firstName = "Holly";
p2.lastName = "Day";
p3.firstName = "Bobby";
p3.lastName = "Socks";

// Display the names to confirm that the names were set correctly
System.out.println(p1.lastName + ", " + p1.firstName);
System.out.println(p2.lastName + ", " + p2.firstName);
System.out.println(p3.lastName + ", " + p3.firstName);

Notice that the diagram would appear as follows:

“Urchif”

“Hank”
lastName

firstName

p1 variable
 Person object

String object

String object

instance variable

instance variable

“Day”

“Holly”
lastName

firstName

p2 variable
 Person object

String object

String object

instance variable

instance variable

“Socks”

“Bobby”
lastName

firstName

p3 variable
 Person object

String object

String object

instance variable

instance variable

COMP1005/1405 – Variables and Objects Fall 2009

 - 47 -

So as you can see, objects are used to hold a group of data together so that your program
code stays more organized and relates better to real world objects.

Suppose that we want to add some more interesting attributes to the Person object to keep
track of a person’s age, gender and whether or not they are retired. We can do this by adding
3 more instance variables as follows:

class Person {
 // These are the instance variables that define a Person object
 String firstName; // person’s first name
 String lastName; // person’s last name
 int age; // person’s age
 char gender; // person’s gender (i.e., 'M' or 'F')
 boolean retired; // person’s retirement status
}

Note that the order of the instance variables does not matter. It is wise though to keep them
all together like this. Here is how we can set them and then print them out to test if it works:

Person p1, p2; // declare the two variables

// Create the first person and set his instance variables
p1 = new Person();
p1.firstName = "Hank";
p1.lastName = "Urchif";
p1.age = 19;
p1.gender = 'M';
p1.retired = false;

// Create the second person and set her instance variables
p2 = new Person();
p2.firstName = "Holly";
p2.lastName = "Day";
p2.age = 67;
p2.gender = 'F';
p2.retired = true;

// Display the instance variables for these people
System.out.println(p1.lastName + "," + p1.firstName + "," +
 p1.age + "," + p1.gender + "," + p1.retired);
System.out.println(p2.lastName + "," + p2.firstName + "," +
 p2.age + "," + p2.gender + "," + p2.retired);

Here is the output that you should expect to see:

Urchif,Hank,19,M,false
Day,Holly,67,F,true

COMP1005/1405 – Variables and Objects Fall 2009

 - 48 -

Do you now understand why we use the term “instance variable” ? Recall that every time we
use new to get a new object (e.g., new Person()), we get back a new instance of that class.
Thus, the data that defines the object (e.g., first name, last name, age, etc..) will vary from
object to object, that is, from instance to instance.

Here is the diagram for the above example. Notice that the age, gender and retired are
primitive types and so they each store their literal value directly, whereas firstName and
lastName just stored “pointers” to the actual String objects that they store:

“Urchif”

“Hank”
lastName

firstName

p1 variable
 Person object

String object

String object

instance variable

instance variable

“Day”

“Holly”
lastName

firstName

p2 variable
 Person object

String object

String object

instance variable

instance variable

age 19

gender 'M'

retired false

age 67

gender 'F'

retired true

instance variable

instance variable

instance variable

instance variable

instance variable

instance variable

COMP1005/1405 – Variables and Objects Fall 2009

 - 49 -

 Supplemental Information (Choosing Instance Variables)
In the above example, we chose firstName, lastName, age, gender and retired as attributes
for our Person object. Why did we choose these ? We chose them as an example of how to
build an object. In reality however, the application that we are trying to develop may require us
to keep information for a Person that is different from the attributes we chose here. For
example, we might want to keep their emailAddress, weight, height, favoriteColor, etc.. The
choice depends on the application and on what we need to store for this object.

For example, consider defining a Car class. We should think of what characteristics we will
need to store for each car (e.g., make, model, color, mileage, etc..):

The choice will depend on the program/application you are making. Consider these possible
applications in which a Car object may be used:

• a program for a car repair shop
• a program for a car dealership
• a program for a car rental agency
• a program for an insurance company

So, now lets examine what kind of attributes (i.e., instance variables) that we would likely need
to define for a Car in each of these individual applications:

• repair shop
make, model, year, engine size, spark plug type, air/oil filter types, air hose
diameter, repair history, owner etc...

• car dealership
model, price, warranty, interior finish (leather/material), color, engine size, fuel
efficiency rating, etc...

• rental agency
sedan or coupe, make, model, license plate, price per hour, mileage, repair
history, etc...

• insurance company
year, make, model, owner, insurance type (fire/theft/collision/liability), color, license
plate, etc...

So you can see that it is not always straight forward to identify the state for an object. You
need to always understand how it fits into the application.

COMP1005/1405 – Variables and Objects Fall 2009

 - 50 -

So far, we have looked at storing just String and primitive values in the variables within our
object. We should realize however, that since variables can store any kind of object, then our
instance variables too can store arbitrary objects. That is, the objects that we make may
themselves be made up of other objects.

For example assume that we want to store an address as well for our person. We can define
the following Address object to maintain all the appropriate information for an address:

class Address {
 // These are the instance variables that define an Address object
 int streetNumber; // address’s street number
 char unitletter; // address’s unit letter (e.g., 'A');
 String streetName; // address’s street name
 String city; // address’s city
 String province; // address’s province
 String postalCode; // address’s postal code
}

Assume that this class was compiled and saved to a local directory, we could create a new
Address as follows:

Address addr; // declare the variable that will hold the address

// create an Address object and then set its values
addr = new Address();
addr.streetNumber = 1526;
addr.unitLetter = 'B';
addr.streetName = "Oak St.";
addr.city = "Ottawa";
addr.province = "Ontario";
addr.postalCode = "K1S 5B6";

Notice the diagram that would represent this object and its composite instance variable values:

“K1S 5B6”

postalCode

province

city

streetName

unitLetter 'B'

addr variable

“Ontario”

“Ottawa”

“Oak St.”

instance variable

instance variable

instance variable

instance variable

instance variable

Address object

streetNumber 1526
instance variable

COMP1005/1405 – Variables and Objects Fall 2009

 - 51 -

Now that the Address object has been defined, we can add an instance variable to our
Person class that keeps track of a person’s address by using this new Address object as
follows:

class Person {
 // These are the instance variables that define a Person object
 String firstName; // person’s first name
 String lastName; // person’s last name
 int age; // person’s age
 char gender; // person’s gender (i.e., 'M' or 'F')
 boolean retired; // person’s retirement status
 Address address; // person’s address
}

Here is how we can try this out to see if it all works:

Person p; // declare a Person variable

// Create the person and set his instance variables
p = new Person();
p.firstName = "Hank";
p.lastName = "Urchif";
p.age = 19;
p.gender = 'M';
p.retired = false;

p.address = new Address(); // we need to create an address object
p.address.streetNumber = 1526;
p.address.unitLetter = 'B';
p.address.streetName = "Oak St.";
p.address.city = "Ottawa";
p.address.province = "Ontario";
p.address.postalCode = "K1S 5B6";

// Display some instance variables from the address
System.out.println(p.address.streetNumber); // displays 1526
System.out.println(p.address.city); // displays Ottawa

You will notice that the person’s address variable stores a new Address object (which we had
to create). Then, we simply set the address attributes by using an extra dot . character to get
inside the address object to change its internal values. Here is a diagram of what is
happening …

COMP1005/1405 – Variables and Objects Fall 2009

 - 52 -

Lets go one more level of objects. Suppose that we have a BankAccount object that keeps
track of a person’s bank account information. We can define it as follows:

class BankAccount {
 // These are the instance variables that define a BankAccount object
 Person owner; // person who owns the account
 int accountNumber; // the account number
 float balance; // amount of money currently in the account
}

Notice that the owner is of type Person, which will contain all the owner’s information (i.e.,
name, address, phone number, age, etc…). We can test it as follows:

BankAccount account; // declare a BankAccount variable

// Create the bank account and set its instance variables
account = new BankAccount();
account.accountNumber = 178193; // arbitrarily chosen
account.balance = 100; // new account with $100.00

account.owner = new Person(); // must create a new Person object
account.owner.firstName = "Hank";
account.owner.lastName = "Urchif";
account.owner.age = 19;
account.owner.gender = 'M';
account.owner.retired = false;

“Urchif”

“Hank”
lastName

firstName

p variable
 Person object

instance variable

instance variable

age 19

gender 'M'

retired false

instance variable

instance variable

instance variable

“K1S 5B6”

postalCode

province

city

streetName

unitLetter 'B'

“Ontario”

“Ottawa”

“Oak St.”

instance variable

instance variable

instance variable

instance variable

instance variable

Address object

streetNumber 1526
instance variable

address
instance variable

COMP1005/1405 – Variables and Objects Fall 2009

 - 53 -

account.owner.address = new Address(); // must create an Address object too
account.owner.address.streetNumber = 1526;
account.owner.address.unitLetter = 'B';
account.owner.address.streetName = "Oak St.";
account.owner.address.city = "Ottawa";
account.owner.address.province = "Ontario";
account.owner.address.postalCode = "K1S 5B6";

Here is the diagram showing how all of the data is stored. Make sure that it makes sense to
you because a fundamental part of programming in an object-oriented language involves
“understanding where the data is” and “how to get to it”:

Also, in regards to this example, we can actually simplify things a little by using intermediate
variables. Note that the following code does the same thing, but seems a bit simpler:

“Urchif”

“Hank”
lastName

firstName

Person object

instance variable

instance variable

age 19

gender 'M'

retired false

instance variable

instance variable

instance variable

“K1S 5B6”

postalCode

province

city

streetName

unitLetter 'B'

“Ontario”

“Ottawa”

“Oak St.”

instance variable

instance variable

instance variable

instance variable

instance variable

Address object

streetNumber 15
instance variable

address
instance variable

 owner

account variable
 BankAccount object

instance variable

accountNumber 178193

balance 100
instance variable

instance variable

COMP1005/1405 – Variables and Objects Fall 2009

 - 54 -

BankAccount account; // declare a BankAccount variable
Person p; // temporary variable that refers to the Person
Address adr; // temporary variable that refers to the Address

// Create the bank account and set its instance variables
account = new BankAccount();
account.accountNumber = 178193;
account.balance = 100;

// Store the new Person object in a temporary variable so that we can refer
// to the person using just p in the code below instead of account.owner
p = new Person();
account.owner = p;
p.firstName = "Hank";
p.lastName = "Urchif";
p.age = 19;
p.gender = 'M';
p.retired = false;

// Store the new Address object in a temporary variable so that we can refer
// to the address using just adr in the code below instead of p.address
adr = new Address();
p.address = adr;
adr.streetNumber = 1526;
adr.unitLetter = 'B';
adr.streetName = "Oak St.";
adr.city = "Ottawa";
adr.province = "Ontario";
adr.postalCode = "K1S 5B6";

Variable Bindings
At this point, it would be good to mention something about variable bindings. A variable is
bound to (i.e., attached to) a value when we assign something to it using the = operator.

You need to understand that each time we make a new object, we get back a new instance of
that object which is stored in a separate location in memory.

Car myCar, yourCar, bobsCar;

myCar = new Car();
yourCar = new Car();
bobsCar = new Car();

So in the above code, all three variables point to different/unique objects.

It is often the case that one or more variables may point to (or refer to) the same object.

myCar

bobsCar

yourCar

COMP1005/1405 – Variables and Objects Fall 2009

 - 55 -

For example two people may share the same car as in this code:

Car myCar, yourCar;

myCar = new Car();
yourCar = myCar;

In this case, the two variables point to the exact same object.

What would happen if we re-assign a value to an object variable ?

Car myCar;

myCar = new Car();
// ...
myCar = new Car();

In this case, the previous Car
object that was assigned to the
myCar variable is discarded and
the variable simply points to the
new Car object.

There is one more thing that you should understand with respect to variables that store
objects. When we declare a variable of some object type, but do not assign it a value, the
JAVA compiler will usually complain. For example, consider the following code:

Car myCar;
System.out.println(myCar);

This code will generate a compile error saying:

variable myCar might not have been initialized

What does this mean ? Well, when we declare a variable, it simply reserves space, but no
object is actually created. Objects that have not been through the construction process are
considered to be "undefined". The construction process occurs only when we use the new
keyword (e.g., new Car()).

Sometimes we do not want to give a value right away to our variable. We are allowed to
assign the value of null to any reference variable. The following code will satisfy the compiler:

Car myCar = null;
System.out.println(myCar);

The above example does not generate an error, and prints out null to the console. Null
represents an undefined object and you should remember that if you declare a variable of
some type of object but do not give it a value, then its value will always be null.

myCar

yourCar

myCar myCar

Before After

COMP1005/1405 – Variables and Objects Fall 2009

 - 56 -

 Supplemental Information (The Garbage Collector)
Objects that have been created and are no longer being "pointed to" (or “referred to” from
anywhere in your code) are garbage collected. Garbage collection usually does not happen
immediately when you are finished with an object. It may happen at a later convenient time
(decided upon by the Java Virtual Machine). Note that in the example above, the old car may
not be garbage collected immediately, and so it may actually remain around for a while.

The garbage collector :

• is a low priority process running in the Java Virtual Machine
• is used to free up memory for unused objects
• is necessary to release resources
• runs automatically, programmer need not do anything
• can be forced to run by using System.gc()

Object Summary
So in summary:

• objects must be defined before we can use them

• objects are each defined as their own class

• objects contain instance variables (or attributes) which are just regular “run-of-the-

mill” variables that happen to store information about a particular object.

• objects may contain other objects

• we access the “insides” of an object by using the dot . operator followed by the name

of the information/attribute/variable that we are trying to get

• we can modify the “insides” of an object by setting its instance variables to new
values using the = operator.

COMP1005/1405 – Variables and Objects Fall 2009

 - 57 -

 2.3 Initializing Our Objects By Using Constructors

When testing our newly created object examples in the previous section (i.e., Person, Address,
BankAccount), we explicitly assigned values to each instance variable and then printed them
out to test whether or not it worked. Now, we will see an easier way to put some initial values
into our objects using the notion of a constructor.

A constructor is a special chunk of code that we can write in our object classes that will allow
us to hide the ugliness of setting all of the initial values for our objects each time we use
them. The main advantage of making a constructor is that it will allow us to reduce the
amount of code that we need to write each time we make a new object.

Consider the simple Person object that we defined previously:

class Person {
 String firstName;
 String lastName;
}

Recall the code that we wrote to try out our new object:

Person p1, p2;

// Create the first person and set his instance variables
p1 = new Person();
p1.firstName = "Hank";
p1.lastName = "Urchif";

// Create the second person and set her instance variables
p2 = new Person();
p2.firstName = "Holly";
p2.lastName = "Day";

Notice that for each Person, we must write out the names of the instance variables each time
so that we can assign them some initial values. This is tedious and annoying.

Recall that the code new Car() is responsible for making (or constructing) a Car object. The
Car() portion of the code is actually called a constructor. We explained this earlier as if we
were asking the Car factory to create (or construct) a Car object for us. Similarly, new
Person() calls the Person class constructor that creates a new Person object that we can use
in our program.

In real life however, when ordering something from a factory we usually specify some of the
features that we would like our object to have (e.g., the car’s make, model, color, other options,

COMP1005/1405 – Variables and Objects Fall 2009

 - 58 -

etc…). In JAVA, we can do the same thing. Whenever we use a constructor in our code, we
can supply some additional information pertaining to some of the features that we would like
our new object to have.

In JAVA, whenever we use round brackets (), we are often allowed to supply some additional
information in between the brackets. This additional information is known as parameters.

So, what we would like to do in our program is something like this:

Person p1, p2;

p1 = new Person("Hank", "Urchif");
p2 = new Person("Holly", "Day");

This would be “wonderful” because it greatly reduces the amount of code that we would need
to write. However, the code above will not compile because we first need to tell JAVA that we
will be passing all of this new information as parameters to the constructor. That is, we need
to specify exactly what information is being “passed in” (or supplied) as well as what to do with
the information.

To make this work, we therefore need to go back to our Person class and write our own
constructor. Normally we do this just below the list of instance variables. Below is the
constructor that we need for our Person class:

class Person {
 String firstName;
 String lastName;

 // This is a constructor

Person(String s1, String s2) {
 this.firstName = s1;
 this.lastName = s2;
 }
}

Notice that the constructor has the same name as the class itself (i.e., Person). Also notice
that when defining a constructor we DO NOT use the new word anywhere. That is, new is
only used to call (i.e., to use) a constructor.

Notice that some code appears between the round brackets (). We will look at this in a
moment. You should also notice that there is an opening brace character { and later …
aligned underneath the constructor name is the closing brace } character. These braces
define what is called the body of the constructor. The body represents all the code that is to
be evaluated by JAVA whenever we call the constructor.

COMP1005/1405 – Variables and Objects Fall 2009

 - 59 -

Notice the code inside the body. It is code that assigns values to the instance variables
firstName and lastName. This code looks similar in format to what we were doing in our test
code. Look at it side by side:

TEST CODE:

p1.firstName = "Hank";
p1.lastName = "Urchif";

CONSTRUCTOR CODE:

this.firstName = s1;
this.lastName = s2;

Let us examine this a bit more carefully. Notice that in both cases, we are setting the values
for the firstName and lastName instance variables. Take note of the object that appears in
front of the dot operator in each case. In the test code, p1 represents the person whose name
that we were trying to set. The word this in the constructor must therefore also represent that
same person, otherwise the code would not work.

In fact, the word this is a special word in JAVA that is used in constructors (and in other places
as we will see later) to represent the object that we are constructing. So, when we say:

p1 = new Person("Hank", "Urchif");

JAVA goes into our constructor to evaluate our code and at that time, the word this will
represent (or refer to) the person p1 that we constructed. Then when we say:

p2 = new Person("Holly", "Day");

JAVA goes into the constructor again, making a new object again and then the word this will
represent (or refer to) the second person p2 that we constructed.

So the word this is just a temporary “nickname” for the particular object that is being created
and used in the constructor.

Notice what else differed from the test case and our constructor. The firstName and
lastName are set to s1 and s2, respectively. That means, s1 must refer to “Hank” and s2
must refer to “Urchif” in order for our code to work. This is indeed what is happening. To
understand, we must look in-between the round brackets now.

Notice that the code between the brackets looks like two variable declarations separated by a
comma. These are called the parameters of the constructor. A parameter actually is a
variable … a temporary one … that can be used only within the constructor but not outside of
it.

Just as the word this referred to the particular person that we were trying to set the names for,
the strings s1 and s2 refer to the particular values that we want the firstName and lastName
instance variables to be set to. Hence, when we say:

p1 = new Person("Hank", "Urchif");

then s1 becomes a “nickname” for the incoming value “Hank” and s2 becomes a “nickname”
for the incoming value “Urchif”.

COMP1005/1405 – Variables and Objects Fall 2009

 - 60 -

That is, in our constructor, whenever we refer to s1, we are actually referring to the string
“Hank” that was passed in as a parameter. The actual name of these parameters is
unimportant. We could have chosen any names. For example, we could have written the
constructor in any of the following ways:

Person(String a, String b) {
 this.firstName = a;
 this.lastName = b;
}

Person(String name1, String name2) {
 this.firstName = name1;
 this.lastName = name2;
}

Person(String initialFirstName, String initialLastName) {
 this.firstName = initialFirstName;
 this.lastName = initialLastName;
}

It is important that the type of s1 matches the type of firstName and that the type of s2
matches the type of lastName. That is why we had to specify the type of s1 and s2 to be
String parameters within the round brackets. So the following constructors would NOT be
valid:

Person(int s1, int s2) { // WRONG TYPES!!!
 this.firstName = s1;
 this.lastName = s2;
}

Person(Address s1, Person s2) { // WRONG TYPES!!!
 this.firstName = s1;
 this.lastName = s2;
}

In general, a constructor should ALWAYS set ALL of the instance variables to some initial
value. For example, consider the Person class being defined as follows …

COMP1005/1405 – Variables and Objects Fall 2009

 - 61 -

class Person {
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;
}

We could thus write a constructor as follows:

Person(String fn, String ln, int a, char g, boolean r) {
 this.firstName = fn;
 this.lastName = ln;
 this.age = a;
 this.gender = g;
 this.retired = r;
}

And here is how we would call the constructor (as it pertains to an earlier example):

Person p1, p2;

p1 = new Person("Hank", "Urchif", 19, 'M', false);
p2 = new Person("Holly", "Day", 67, 'F', true);

Of course, we can create constructors for all of our classes. Consider the larger example that
used a Person object, an Address object and a BankAccount object:

BankAccount account;

account = new BankAccount();
account.accountNumber = 178193;
account.balance = 100;

account.owner = new Person();
account.owner.firstName = "Hank";
account.owner.lastName = "Urchif";
account.owner.age = 19;
account.owner.gender = 'M';
account.owner.retired = false;

account.owner.address = new Address();
account.owner.address.streetNumber = 1526;
account.owner.address.unitLetter = 'B';
account.owner.address.streetName = "Oak St.";
account.owner.address.city = "Ottawa";
account.owner.address.province = "Ontario";
account.owner.address.postalCode = "K1S 5B6";

COMP1005/1405 – Variables and Objects Fall 2009

 - 62 -

Here is what the simplified code would look like if we created constructors as well for Address
and BankAccount:

BankAccount account;
Person per;
Address adr;

adr = new Address(1526, 'B', "Oak St.", "Ottawa", "Ontario", "K1S 5B6");
per = new Person("Hank", "Urchif", 19, 'M', false, adr);
account = new BankAccount(178193, 100, per);

We could even simplify this into one big line … but this looks a little uglier:

BankAccount account;

account = new BankAccount(178193, 100,
 new Person("Hank", "Urchif", 19, 'M', false,
 new Address(1526, 'B', "Oak St.",
 "Ottawa", "Ontario",
 "K1S 5B6")));

Of course, for this to all work, we would need to define the following constructors in the
Person, Address and BankAccount classes, respectively:

Address(int n, char ul, String sn, String ci, String pr, String pc) {

this.streetNumber = n;
this.unitLetter = ul;
this.streetName = sn;
this.city = ci;
this.province = pr;
this.postalCode = pc;

}

Person(String fn, String ln, int a, char g, boolean r, Address adr) {
 this.firstName = fn;
 this.lastName = ln;
 this.age = a;
 this.gender = g;
 this.retired = r;
 this.address = adr;
}

COMP1005/1405 – Variables and Objects Fall 2009

 - 63 -

BankAccount(int acc, float bal, Person per) {
 this.accountNumber = acc;
 this.balance = bal;
 this.owner = per;
}

Certainly, you can see that the constructor allows us to greatly simplify our code when we
need to create objects in our program.

Suppose though, that we do not know the initial value to use. That is,
suppose that we want to create an object but are unsure as to what
parameters to use. This would be analogous to the situation in real
life where someone fills out a form but leaves some information blank.
What do we do when the person leaves out information ? We have
two possible choices. Either (1) do not let them leave out any
information, or (2) choose some kind of “default” values for the blank
parts (i.e., make some assumptions by filling in something
appropriate).

At this point in our program, we have chosen to force the user of our objects to supply
parameters for ALL of the instance variables when they use (i.e., call) our constructor. So, we
have taken approach number (1) above. However, in JAVA, we are allowed to create more
than one constructor as long as the constructors each have a unique list of parameter types.

Consider the constructor for the Person class that we just defined:

Person(String fn, String ln, int a, char g, boolean r, Address adr) {
 this.firstName = fn;
 this.lastName = ln;
 this.age = a;
 this.gender = g;
 this.retired = r;
 this.address = adr;
}

What if, for example, we did not know the person’s age, nor their address.

Person p1, p2;

p1 = new Person("Hank", "Urchif", , 'M', false,);

p2 = new Person("Holly", "Day", , 'F', true,);

In this situation, we are not allowed to pass in nothing as our parameters. But what we ARE
allowed to do is to make another constructor that leaves these two parameters out:

COMP1005/1405 – Variables and Objects Fall 2009

 - 64 -

Person(String fn, String ln, char g, boolean r) {
 this.firstName = fn;
 this.lastName = ln;
 this.gender = g;
 this.retired = r;
 this.age = 0; // No age given, choose default value
 this.address = null; // No address given, choose default value
}

Notice that there are two less parameters now (i.e., no age and no address). However, you
will notice that we still set the age and address to some default values of our choosing. What
is a good default age and address ? Well, we used 0 and null. The word null is a special
JAVA keyword that represents an undefined object. That is, since we do not have an
Address object to store in the address instance variable, we leave it undefined by setting it to
null. Alternatively, we could have created a “dummy” Address object with some kind of
values that would be recognizable as invalid such as:

 this.address = new Address(-1,'?',"Unknown","Unknown","Unknown","Unknown");

It is entirely up to you to decide what the default values should be. Make sure not to pick
something that may be mistaken for valid data. For example, some bad default values for
firstName and lastName would be “John” and “Doe” because there may indeed be a real
person called “John Doe”.

Here is one more constructor that takes no parameters. It has a special name and is known
as the zero-parameter constructor, the zero-argument constructor or the default
constructor. This time there are no parameters at all, so we need to pick default values for
all the instance variables:

Person() {
 this.firstName = "UNKNOWN";
 this.lastName = "UNKNOWN";
 this.gender = '?';
 this.retired = false;
 this.age = 0;
 this.address = null;
}

Remember, that we can make many constructors. We just write them all one after another in
our class definition and the user can decide which one to use at any time. Here is our resulting
Person class definition showing the three constructors that we just defined …

COMP1005/1405 – Variables and Objects Fall 2009

 - 65 -

class Person {
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;
 Address address;

 // This is the zero-parameter constructor

Person() {
 this.firstName = "UNKNOWN";
 this.lastName = "UNKNOWN";
 this.gender = '?';
 this.retired = false;
 this.age = 0;
 this.address = null;
 }

 // This is a 4-parameter constructor
 Person(String fn, String ln, char g, boolean r) {
 this.firstName = fn;
 this.lastName = ln;
 this.gender = g;
 this.retired = r;
 this.age = 0;
 this.address = null;
 }

 // This is a 6-parameter constructor
 Person(String fn, String ln, int a, char g, boolean r, Address adr) {
 this.firstName = fn;
 this.lastName = ln;
 this.age = a;
 this.gender = g;
 this.retired = r;
 this.address = adr;
 }
}

At any time we can use any of these constructors:

Person p1, p2, p3,

p1 = new Person();
p2 = new Person("Holly", "Day", 'F', true);
p3 = new Person("Hank", "Urchif", 19, 'M', false,
 new Address(1526, 'B', "Oak St.", "Ottawa",
 "Ontario", "K1S 5B6"));

COMP1005/1405 – Variables and Objects Fall 2009

 - 66 -

Note that it is always a good idea to ensure that you have a zero-parameter constructor. As it
turns out, if you do not write any constructors, JAVA provides a zero-parameter constructor for
free. That is, we can always say new Car(), new Person(), new Address(), new
BankAccount() without even writing those constructors. However, once you write a
constructor that has parameters, the free zero-parameter constructor is no longer available.
That is, for example, if you write constructors in your Person class that all take one or more
parameters, then you will no longer be able to use new Person(). JAVA will generate an
error saying:

cannot find symbol constructor Person()

In general, you should always make your own zero-parameter constructor along with any
others that you might like to use because others who use your class may expect there to be a
zero-parameter constructor available.

 2.4 Shared Data: Static/Class Variables

Recall that an instance variable stores an attribute of a particular object. You should now
know that an object can have many attributes, and thus many instance variables. The values
of the instance variables will vary from object to object. For example, all Car objects my have
a color attribute, but the color of different cars will likely be different:

In some situations, however, there may be an attribute for an object in which the value does
not differ between objects of that class. That is, each object that we make of that type would
have the same value for that particular attribute. For example, all Car objects may have 4
wheels. We could define an instance variable for that attribute (e.g., numWheels) and simply
set all the values to 4 in the constructor as follows …

 color

“Green

 color

“Red”

 color

“Blue”

myCar

yourCar

bobsCar

COMP1005/1405 – Variables and Objects Fall 2009

 - 67 -

class Car {

String color;
int numWheels;

Car() {
 this.color = "";
 this.numWheels = 4;
}

}

Thus, if we were to access this numWheels variable for any of our cars, we would get the
value 4:

Car myCar, yourCar, bobsCar;

myCar = new Car();
yourCar = new Car();
bobsCar = new Car();

System.out.println(myCar.numWheels); // displays 4
System.out.println(yourCar.numWheels); // displays 4
System.out.println(bobsCar.numWheels); // displays 4

This strategy works fine and correctly stores the proper number of wheels for each Car that we
make. However, think about the duplication involved.

Every Car object that we create will store the number 4 inside of it. This takes up
space in the computer’s memory. It is wasteful to have the same value stored over and over
again when we know already that the value is the same for all cars.

“Green “Red” “Blue”

color

myCar

yourCar bobsCar

numWheels 4
color

numWheels 4
color

numWheels 4

COMP1005/1405 – Variables and Objects Fall 2009

 - 68 -

For situations like this … in which all instances of a class (i.e., all objects created of one type)
will share the same attribute value, you should create what is called a class variable (also
known as a static variable). Class variables are "a little like" instance variables in that you
can access them as part of your object. However, they are actually stored in one location in
memory and all objects share that location.

In this example, we could create a class variable called NUM_WHEELS to store the value 4.
(Although it is not necessary, class variables names are often chosen as uppercase characters
with an underscore character _ separating the words). To create a class variable, we write it
at the top of our class definition (usually before the instance variables) and put the word static
in front of it as follows:

class Car {

static int NUM_WHEELS = 4; // a class variable (static)
String color; // an instance variable (not static)

Car() {
 this.color = "";
}

}

Normally, for static variables, we supply an initial value for it when we create it. In this case,
we assign it the value of 4 as needed. Here is a diagram showing how the storage has now
changed …

color

numWheels 4

color

numWheels 4

color

numWheels 4

Duplicated!
(wasted space)

the Car class

color

numWheels 4

color

numWheels 4

color

numWheels 4

COMP1005/1405 – Variables and Objects Fall 2009

 - 69 -

 NUM_WHEELS 4

the Car class

class variable
Better Now!
(no wasted space)

 color

 color

 color

 color

 color

 color

Notice that the number 4 is now stored in only one location … it is not duplicated every time
that a Car object is created.

We can also perhaps imagine creating classes to store other kinds of vehicles in which we
declare a similar NUM_WHEELS variable as follows:

class Motorcycle {

static int NUM_WHEELS = 2;
// ...

}

class Unicycle {

static int NUM_WHEELS = 1;
// ...

}

class Boat {

static int NUM_WHEELS = 0;
// ...

}

The NUM_WHEELS variable is a variable just like any other. We can access it at any time
and change its value. However, the way in which we access the value is different. You can
access static/class variables anywhere in your program by preceding them by the class name
that they are defined in, followed by the dot . operator. The following code would produce the
values 4, 2, 1, 0 and 6 …

COMP1005/1405 – Variables and Objects Fall 2009

 - 70 -

System.out.println("A car has " + Car.NUM_WHEELS + " wheels");
System.out.println("A motorcycle has " + Motorcycle.NUM_WHEELS + " wheels");
System.out.println("A unicycle has " + Unicycle.NUM_WHEELS + " wheels");
System.out.println("A boat has " + Boat.NUM_WHEELS + " wheels");

Car.NUM_WHEELS = 6;
System.out.println("A car now has " + Car.NUM_WHEELS + " wheels");

With regards to the NUM_WHEELS static/class variable that we defined above, it is likely that
we would never change the value from 4 to 6 in a real system. Likely, the NUM_WHEELS
variable should remain constant. In this case, we use the term static constant (or class
constant) instead of static variable … since its value will never vary but instead remain the
same over time. In JAVA, whenever we want to prevent a value from being changed (i.e., to
make it a constant), we use the final keyword when we declare the variable as follows:

class Car {

static final int NUM_WHEELS = 4; // a static(class) constant

...

}

After we do this, we are no longer allowed to change the value of this variable in our program:

Car.NUM_WHEELS = 6;

Static/class variables are sometimes used to store a commonly accessed value that is shared
between many objects, such as a global counter. For example, consider a BankAccount
object, where each account is assigned a unique accountNumber. When creating a new
BankAccount, it is unlikely in real life that we would be able to specify the accountNumber.
Usually, these are assigned automatically to the customer. What accountNumber should a
new BankAccount receive? It is up to us to decide (In real life however, the Bank who is
hiring you to write their program would specify their account numbering strategy).

Let us assume that the first created account is assigned the account number 100001, the
second gets 100002, the third 100003 and so on. In this scenario, we can simply keep a
counter that starts at 100001 and increases each time a new account is created.

To do this, we can create a class variable in the BankAccount class to represent this
counter. We can call it LAST_ACCOUNT_NUMBER which will store the account number that
was last given out. We can give this variable an initial value of 100000 as follows …

COMP1005/1405 – Variables and Objects Fall 2009

 - 71 -

class BankAccount {

static int LAST_ACCOUNT_NUMBER = 100000;

int accountNumber; // instance variable
String owner; // instance variable
float balance; // instance variable

// ...

}

Then, when a new BankAccount is created, we can give it an
accountNumber which is one more than the
LAST_ACCOUNT_NUMBER and then increment this counter to get
it ready for the next time. This counter of ours will work exactly like
one of those ticket dispensers when you wait in line at a store.

This can be done by adjusting all of the BankAccount constructors
so that they do not allow the user to "specify" the
accountNumber. But rather set it to the next available number and
then increment the counter. Here is the code that we would need to
write:

class BankAccount {

static int LAST_ACCOUNT_NUMBER = 100000;

int accountNumber;
String owner;
float balance;

// This is the 0-parameter constructor
BankAccount() {
 this.owner = "";
 LAST_ACCOUNT_NUMBER = LAST_ACCOUNT_NUMBER + 1;
 this.accountNumber = LAST_ACCOUNT_NUMBER;
 this.balance = 0;
}

// This is a 2-parameter constructor
BankAccount(String n, float b) {
 this.owner = n;
 LAST_ACCOUNT_NUMBER = LAST_ACCOUNT_NUMBER + 1;
 this.accountNumber = LAST_ACCOUNT_NUMBER;
 this.balance = b;
}

//...

}

COMP1005/1405 – Variables and Objects Fall 2009

 - 72 -

Here is some testing code:

class BankAccountTestProgram {
 public static void main(String args[]) {
 BankAccount b, m, j;

 b = new BankAccount("Bob", 250.00f);
 m = new BankAccount("Mary", 6387.27f);
 j = new BankAccount("Jay", 915.45f);

 System.out.println(b.accountNumber);
 System.out.println(m.accountNumber);
 System.out.println(j.accountNumber);
 }
}

The account numbers printed will be 100001, 100002 and 100003.

