

Chapter 3

Decision Making

What is in This Chapter ?
In this chapter we discuss how to write code that makes decisions using the if statement and
the switch statement.

COMP1005/1405 – Decision Making Fall 2009

 - 74 -

 3.1 Using the IF Statement

It is often necessary to be able to make a decision in a program and to act accordingly. For
example, assume that we would like to examine a student's final mark in this course and print
out an appropriate message. For example:

If the student’s grade is less than 50 then print out "Oh well, there's always next term”,
otherwise print out "Congratulations!".

You will notice that this sentence is logically made up of 3 parts: (1) the part that checks
whether or not the student passed (known as the “condition statement”) (2) the part that
specifies what to do if they do not pass (known as the “if body”), and (3) the part that specifies
what to do if the student does pass (known as the “else body”).

We can use the if statement in JAVA to make a similar decision like this:

if (grade < 50)
 System.out.println("Oh well, there's always next term.");
else
 System.out.println("Congratulations!");

Depending on the value of the grade variable, the code will print out only one of the two
statements, but not both. Do you know why the following code works the same way ?

if (grade >= 50)
 System.out.println("Congratulations!");
else
 System.out.println("Oh well, there's always next term.");

In some cases, when making a decision, we do not need to “do something” in both cases. For
example, what if we just wanted to print “Congratulations!” for students who passed, and do
nothing in the case that they failed ? In this case, we could leave off the else part:

if (grade >= 50)
 System.out.println("Congratulations!");

In the examples above, we had one line of code to evaluate for each branch of the “if”
condition. That is, we only had one statement to print each time. In general, when using an
“if”statement, you are allowed to have multiple lines of JAVA code evaluated for each case.
When you have more than one line, you need to insert some braces { } after the if and else as
follows …

COMP1005/1405 – Decision Making Fall 2009

 - 75 -

if (grade >= 50) {
 System.out.print("Congratulations! ");
 System.out.print(grade);
 System.out.println(" is a passing grade.");
}
else {
 System.out.print(grade);
 System.out.println(" is quite low. Oh well, there's always next term.");
}

It is often a good idea to use the braces anyway, even if you have only one line of code
because it may prevent you from making some mistakes. For example, the following code is
not the same as above:

if (grade >= 50)
 System.out.print("Congratulations! ");
 System.out.print(grade);
 System.out.println(" is a passing grade.");
else
 System.out.print(grade);
 System.out.println(" is quite low. Oh well, there's always next term.");

The code above will not compile. Since the brackets are missing, JAVA interprets the code as
if there is only one line in the “if” body as follows:

if (grade >= 50)
 System.out.print("Congratulations! ");
System.out.print(grade);
System.out.println(" is a passing grade.");
else
 System.out.print(grade);
System.out.println(" is quite low. Oh well, there's always next term.");

It then sees the else as being out of place … and will give a compile error saying:
‘else’ without ‘if’. An even worse scenario is when JAVA does not notice the error at all.
Consider the following:

if (grade >= 50)
 System.out.print("Congratulations! ");
 System.out.print(grade);
 System.out.println(" is a passing grade.");
System.out.println("All Done.");

COMP1005/1405 – Decision Making Fall 2009

 - 76 -

In the above code, a grade of 75 will output the following:

Congratulations! 75 is a passing grade.
All Done.

… and a grade of 25 will output this:

25 is a passing grade.
All Done.

Clearly this is wrong. Also, be careful not to place a semi-colon ; after the if statement
brackets:

if (grade >= 50);
 System.out.println("Congrats! " + grade + " is a passing grade.");

In the above code, a grade of 25 will output the following:

Congrats! 25 is a passing grade.

Why ? Because the semi-colon ; at the end of the first line tells JAVA that there is no body for
the if statement. Thus, the System.out.println(…) line is outside the if statement altogether
and is therefore always evaluated.

Notice that we used < and >= in our examples above. These are called logical operators
because they take two values, compare them, and then determine a logical boolean result of
true or false. They are often used to compare numbers. Here is the list of logical operators
that we can use:

• < less than
• <= less than or equal to
• == equal to
• != not equal to
• >= greater than or equal to
• > greater than

When writing an if statement, you must make sure that whatever is placed between the round
brackets () is a JAVA expression that results in a boolean (i.e., the answer is either true or
false).

COMP1005/1405 – Decision Making Fall 2009

 - 77 -

It is necessary to examine the == operator for a moment. When dealing with primitive types,
this operator basically tests whether or not the two primitives have the same value. So, x == 5
will return true if x is equal to 5 (i.e., x has the value of 5).

However, when dealing with objects, the == operator does not check to see if the objects are
equal, instead it checks to see if the objects are identical. Two objects are only considered
to be identical if they are the exact same object in the computer’s memory.

Recall this code:

Car myCar, yourCar, bobsCar;

myCar = new Car();
yourCar = new Car();
bobsCar = new Car();

In this case, each Car is its own unique object in memory. Hence the following code would
always produce false:

if (myCar == yourCar)
 System.out.println(true);
else
 System.out.println(false);

Consider, however, the following code:

Car myCar, yourCar;

myCar = new Car();
yourCar = myCar;
if (myCar == yourCar)
 System.out.println(true);
else
 System.out.println(false);

Now the code would always produce true because the object stored in the myCar variable is
the exact same object stored in the yourCar variable.

If we really wanted to check if two objects were equal (i.e., they have the same values inside
them), then we must use a special function called equals(). The equals() function is used as
follows …

COMP1005/1405 – Decision Making Fall 2009

 - 78 -

Car myCar, yourCar;

myCar = new Car();
yourCar = new Car();
if (myCar.equals(yourCar))
 System.out.println(true);
else
 System.out.println(false);

In this case, JAVA will check to determine whether or not the two Car objects have the same
internal attributes (e.g., make, model, color … whatever we defined as attributes).

Hence, the rule of thumb is that whenever you want to know if two primitives are equal, you
use the == operator and whenever you want to know if two objects are equal, you use the
equals() function.

But, there is a word of caution. Most of the existing pre-defined objects in JAVA
(e.g., String, Date, etc..) have an appropriate equals() function that properly checks
equality. However, when you create your own objects (e.g., Person, Car,
BankAccount), the equals() function will by default still only check whether the

objects are identical. Hence, you would need to write your own equals() method to make
sure that it properly checks for equality. We will discuss this in a later chapter.

Consider now an example in which we take the number grade of the student (i.e., from 0% to
100%) and output a letter grade (from F to A+). How would we do this ? Well … we would
need to understand which letter grade corresponds to which number grades:

A = 80% - 100%
B = 70% - 79%
C = 60% - 69%

D = 50% - 59%
F = 0% - 49%

So, given a grade, how can we output the appropriate letter ? We could use the if statement:

if (grade >= 80)
 System.out.println("A");
else {
 if (grade >=70)
 System.out.println("B");
 else {
 if (grade >= 60)
 System.out.println("C");
 else {
 if (grade >= 50)
 System.out.println("D");
 else
 System.out.println("F");
 }
 }
}

COMP1005/1405 – Decision Making Fall 2009

 - 79 -

You may notice now that we have an if statement inside of an else statement’s body. This is
known as nested if statements. Notice how the code is indented carefully so that when
reading the code we can see what is inside each if/else statement’s body.

In fact, an if/else statement is actually considered a single JAVA statement. So, we do not
need the braces here. In fact, we can even place the succeeding if statements up on the
same line as the else statements and align everything up on the left. The following is how we
usually write such code:

if (grade >= 80)
 System.out.println("A");
else if (grade >=70)
 System.out.println("B");
else if (grade >= 60)
 System.out.println("C");
else if (grade >= 50)
 System.out.println("D");
else
 System.out.println("F");

Consider another example in which we are given an integer representing a month and we
would like to store (in a variable called days) the number of days in that month (we will
assume that it is not a leap year). Here is the table of information that we need to know:

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Days 31 28 31 30 31 30 31 31 30 31 30 31

Here is how we can do this with if statements:

int month, days;

month = ... // assume that we got this from the user

if (month == 1)
 days = 31;
else if (month == 2)
 days = 28;
else if (month == 3)
 days = 31;
else if (month == 4)
 days = 30;
... etc ...

However, you can see that the if statement will be 24 lines long! Since there are only 3
values for the months (i.e., 31, 30 and 28), there should be a way to arrange it in a format like
this …

COMP1005/1405 – Decision Making Fall 2009

 - 80 -

int month, days;

month = ... // assume that we got this from the user
if (...) // Jan, Mar, May, Jul, Aug, Oct, Dec
 days = 31;
else if (...) // Apr, Jun, Sep, Nov
 days = 30;
else if (...) // Feb only
 days = 28;

To do this, we need to have some way of asking whether or not the month is Jan or Mar or
May or Jul etc… Well, it is a good thing then that JAVA supplies us with what is known as
Boolean operators. Here are three useful boolean operators:

• && conditional and
• || conditional or
• ! not (prefix)

The && and || operators are used in-between two JAVA expressions that evaluate to
booleans. Below is a table explaining the results of using these two boolean values b1and b2
in various expressions:

b1 b2 if (b1 && b2) if (b1 || b2) if (!b1) if (b1)
false false false false true false
false true false true true false
true false false true false true
true true true true false true

Notice that the && results in true only when both booleans are true, and false otherwise.
Conversely, the || results in false only when both booleans are false, and true otherwise.
Also note that the ! results in the opposite value of the boolean.

We can actually combine multiple booleans operators together in various ways:

if ((boolean1 && boolean2 && boolean3) || (boolean1 && !boolean2)) …

So how do we use this in our month/days example ? Well, each boolean expression can be in
a format something like this: (month == 2). Therefore, our solution may look like this:

if ((month == 1) || (month == 3) || (month == 5) || (month == 7) ||
 (month == 8) || (month == 10) || (month == 12))
 days = 31;
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))
 days = 30;
else if (month == 2)
 days = 28;

COMP1005/1405 – Decision Making Fall 2009

 - 81 -

So we just used a bunch of “or” operators. We can actually simplify the code by noticing
something interesting. Since the first two if statements checked 11 of the 12 months, then we
do not need to ask if (month == 2) in the last if statement because it is the only possible
month remaining (assuming that the month was in the valid range of 1 to 12). Also, it does not
matter which order we check the months in. So, the following code will also do the same
thing, but is much shorter:

if (month == 2)
 days = 28;
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))
 days = 30;
else
 days = 31;

As one more example, how would we use an if statement that prints out the message “valid”
when a given number is within a given range (e.g., from 1 to 10) and “invalid” otherwise ?
Here is a common mistake that many students make:

int number;

number = ... ; //code left out intentionally

if (1 <= number <= 10)
 System.out.println("Valid");
else
 System.out.println("Invalid");

JAVA does not allow us to check ranges in this manner. Instead, we have to check the two
sides of the range separately.

int number;

number = ... ; //code left out intentionally

if ((number >= 1) && (number <= 10))
 System.out.println("Valid");
else
 System.out.println("Invalid");

Consider this example that defines three Person objects and then tries to determine the oldest
person. The code is not complete … it uses pseudo-code. How would you complete it ? …

COMP1005/1405 – Decision Making Fall 2009

 - 82 -

Person p1, p2, p3;

p1 = new Person("Hank", "Urchif", 19, 'M', false);
p2 = new Person("Holly", "Day", 67, 'F', true);
p3 = new Person("Bobby", "Socks", 12, 'M', false);

// Write code to set the oldest variable to be the oldest person.
// Remember that we can say p.age to get the age of person p
//
// Person oldest;
// IF (the 1st person is older than the 2nd and 3rd person)
// then the oldest should be the 1st person;
// OTHERWISE IF (the 2nd person is older than the 1st and 3rd person)
// then the oldest should be the 2nd person;
// OTHERWISE
// the oldest should be the 3rd person;

Here is one solution. Do you see how it follows from the pseudo code ?

Person p1, p2, p3;

p1 = new Person("Hank", "Urchif", 19, 'M', false);
p2 = new Person("Holly", "Day", 67, 'F', true);
p3 = new Person("Bobby", "Socks", 12, 'M', false);

// Write code to set the oldest variable to be the oldest person.
Person oldest;

if ((p1.age > p2.age) && (p1.age > p3.age))
 oldest = p1;
else if ((p2.age > p1.age) && (p2.age > p3.age))
 oldest = p2;
 else
 oldest = p3; //Assumes that there are no equal ages

Now what code would you write if you wanted print out a message saying “All retired” if all
three people are retired. If none are retired then print out “None retired”. Here is the
“pseudo” code:

IF (the 1st, 2nd and 3rd person are all retired) then print “All Retired”;
IF (the 1st, 2nd and 3rd person are all not retired) then print “None Retired”;

Here is the solution in actual JAVA code …

COMP1005/1405 – Decision Making Fall 2009

 - 83 -

if (p1.retired && p2.retired && p3.retired)

System.out.println("All Retired");
if (!p1.retired && !p2.retired && !p3.retired)

System.out.println("None Retired");

Lastly, assume that we wanted to have a special “Grandma/Granddaughter Night” at the
theatre and wanted to give a discount of 50% to women that are retired or to girls who are 12
and under. The discount should otherwise be 0%. How would we use if statements to
examine a Person p and appropriately set the discount variable ?

Person p = new Person();

... // some code omitted to set the name, age, gender, etc...

// Write code to compute the appropriate discount
int discount;

IF (the person is female and if they are under 13 or retired)

then the discount is 50%
OTHERWISE

the discount is 0%

Here is the solution in actual JAVA code:

Person p = new Person();

... // some code omitted to set the name, age, gender, etc...

// Write code to compute the appropriate discount
int discount = 0;

if ((p.gender == 'F') && (p.age < 13 || p.retired))
 discount = 50;

As you can see, working with the IF statements in JAVA is quite easy as long as you know
what objects you have and what information is inside of them.

COMP1005/1405 – Decision Making Fall 2009

 - 84 -

Supplemental Information: The Selection Operator

In addition to the if statement, JAVA allows a Selection Operator to be used. Here is the
general format:

 <booleanCondition> ? <valueIfTrue> : <valueIfFalse>

The result of the expression is one of the two values supplied, depending on whether the
condition is true or false. For example,

String result;

result = grade > 50 ? "pass" : "fail";

does the same thing as:

String result;

if (grade > 50)
 result = "pass";
else
 result = "fail";

So this saves the amount of code to write, but it does sacrifice a little bit of readability of the
code.

 3.2 The Switch Statement

In addition to the if statement, there is another construct in JAVA called the switch statement
which is beneficial for simplifying code that contains nested if statements.

Consider a simplified letter grade that is given for a course project (i.e., A, B, C, D, F). (i.e., for
the purpose of brevity, we will assume that there is no A+, A-, B+, B- ... grades). Sometimes
when a student receives a letter grade he/she would like to know what percentage range
corresponds to that letter. For example, a B corresponds to a grade between 70% and 79%.

Consider code that uses if statements to compute the proper range as follows …

COMP1005/1405 – Decision Making Fall 2009

 - 85 -

char aLetter;

aLetter = ...; // the code for obtaining the grade has been omitted

if (aLetter == 'A')
 System.out.println("80% - 100%");
else if (aLetter == 'B')
 System.out.println("70% - 79%");
else if (aLetter == 'C')
 System.out.println("60% - 69%");
else if (aLetter == 'D')
 System.out.println("50% - 59%");
else if (aLetter == 'F')
 System.out.println("0% - 49%");
else
 System.out.println("not defined");

Looking at the code, we can see that there are 5 if statements and it looks very
messy. If we later decide to handle the A+, A-, B+, etc.. cases, then the code
will look much longer and cluttered. There is a better way to write this code.
We can use a switch statement. The switch statement is typically used in
situations where we have a sequence of nested if statements in which only one
of the if statements is to be executed.

The switch statement has the following format in JAVA:

switch (aPrimitiveExpression) {
case val1:

/*one or more lines of JAVA code*/;
break;

case val2:
/*one or more lines of JAVA code*/;
break;

...
case valN:

/*one or more lines of JAVA code*/;
break;

default:
/*one or more lines of JAVA code*/;
break;

}

In the above code, aPrimitiveExpression is either a primitive variable (e.g., a variable of type
int, char, float, etc…) or any JAVA code that results in a primitive value. The values of val1,
val2, …, valN must all be primitive constant values of the same type as
aPrimitiveExpression.

COMP1005/1405 – Decision Making Fall 2009

 - 86 -

The switch statement works as follows:

1. It evaluates aPrimitiveExpression to obtain a value (the expression MUST result in a
primitive data type, it cannot be an object).

2. It then checks the values val1, val2, …, valN in order from top to bottom until a value is

found equal to the value of aPrimitiveExpression. If none match, then the default
case is executed.

3. It then evaluates the statements corresponding to the case whose value matched.

4. If there is a break at the end of the lines of JAVA code for that case, then the switch

statement quits. Otherwise it continues to evaluate all the successive case statements
that follow ... until a break is found or until no more cases remain.

Here is how can we make use of the switch statement for solving the grade range problem ?

char aLetter;

aLetter = ...; // the code for obtaining the grade has been omitted

switch(aLetter) {
 case 'A': System.out.println("80% - 100%"); break;
 case 'B': System.out.println("70% - 79%"); break;
 case 'C': System.out.println("60% - 69%"); break;
 case 'D': System.out.println("50% - 59%"); break;
 case 'F': System.out.println("0% - 49%"); break;
 default: System.out.println("not defined");
}

We can clearly see that the code is simpler to read. However, this is not the only advantage of
a switch statement. Consider our previous example in which we were given an integer
representing a month and we would like to know the number of days in that month:

if (month == 2)
 days = 28;
else if ((month == 4) || (month == 6) || (month == 9) || (month == 11))
 days = 30;
else
 days = 31;

Here is how we can use a switch statement …

COMP1005/1405 – Decision Making Fall 2009

 - 87 -

switch(month) {
 case 2: days = 28; break;
 case 4:
 case 6:
 case 9:
 case 11: days = 30; break;
 default: days = 31;
}

Note that when the month is 4, 6, 9, or 11, then the days = 30; is evaluated. The code is not
necessarily much shorter, but it is simpler to read. This is the main advantage of a switch
statement.

One thing that needs mentioning is that the value of the cases must be primitive literals.
That is, they cannot be expressions, ranges (nor Strings, since Strings are objects). Nor can
we make use of the logical operators such as and'ing and or'ing.

So these two examples will not work:

switch (age) {
 case 1-12: price = 5.00; break; // Won’t compile
 case 13-17: price = 8.00; break; // Won’t compile
 case 18-54: price = 10.00; break; // Won’t compile
 default: price = 6.00;
}

switch (name) {
 case "Mark": bonus = 3; break; // Won’t compile
 case "Betty": bonus = 2; break; // Won’t compile
 case "Jane": bonus = 1; break; // Won’t compile
 default: bonus = 0;
}

 3.3 A Decision Making Example Program

Consider writing a program that will be placed at a kiosk in front of a bank to allow customers
to determine whether or not they qualify for the bank’s new “Entrepreneur Startup Loan”.
Assume that this kind of loan is only given out to someone who is currently employed and who
is a recent University graduate, or someone who is employed, over 30 and has at least 10
years of full-time work experience.

COMP1005/1405 – Decision Making Fall 2009

 - 88 -

The program should display information to the screen as well as ask the user various
questions … and then determine if the person qualifies. Using the Scanner object to get user
input, and various variables to store the input, lets try to write such a program.

Here is a start to the program that displays some opening instructions:

import java.util.Scanner;

class LoanQualificationProgram {
 public static void main(String args[]) {
 // Get a Scanner object for user input
 Scanner keyboard = new Scanner(System.in);

 // Display some opening instructions
 System.out.println("Bank of Java");
 System.out.println("============");
 System.out.println("Follow the instructions below to " +
 "determine whether or not you qualify " +
 "for a Entrepreneur Startup Loan...\n");
 }
}

Now we need to start asking the user some questions. We can first ask whether or not he/she
is employed. Likely we will ask for a character such as ‘y’, ‘Y’, ‘n’ or ‘N’. We can then check
the input and store the employment status as a boolean. Here is the new code to add:

char charInput;
boolean employed;

// Determine whether or not the user is employed
System.out.print("Are you currently employed (Y/N)? ");
charInput = keyboard.nextLine().charAt(0);
if ((charInput == 'y') || (charInput == 'Y'))
 employed = true;
else
 employed = false;

We can similarly ask whether or not they have a recent University degree:

boolean hasDegree;

// Determine if the user has a recent University degree
System.out.print("Did you graduate with a University degree " +
 "in the past 6 months (Y/N)? ");
charInput = keyboard.nextLine().charAt(0);
if ((charInput == 'y') || (charInput == 'Y'))
 hasDegree = true;
else
 hasDegree = false;

COMP1005/1405 – Decision Making Fall 2009

 - 89 -

In a similar manner, we can ask for the user’s age and the number of years that they have
worked at full time status:

int age, yearsWorked;

// Determine the user's age
System.out.print("How old are you ? ");
age = keyboard.nextInt();

// Determine the number of years worked at full time status
System.out.print("How many years have you been working " +
 "at full time status ? ");
yearsWorked = keyboard.nextInt();
System.out.println("\n");

Finally, we can determine whether or not they qualify:

char charInput;
boolean employed, hasDegree;
int age, yearsWorked;

...

// Now determine whether or not the person qualifies for the loan
if (employed) {
 if (hasDegree)
 System.out.println("Congratulations! You qualify " +
 "for the ESL loan.");
 else {
 if (age >= 30) {
 if (yearsWorked >= 10)
 System.out.println("Congratulations! You qualify " +
 "for the ESL loan.");
 else
 System.out.println("Sorry, you must have worked " +
 "at least 10 years at full " +
 "time status to qualify.");
 }
 else
 System.out.println("Sorry, you must be a recent " +
 "University graduate or be at " +
 "least 30 years of age.");
 }
}
else {
 System.out.println("Sorry, you must be currently " +
 "employed to qualify.");
}

COMP1005/1405 – Decision Making Fall 2009

 - 90 -

Here is the code altogether …

import java.util.Scanner;

class LoanQualificationProgram {
 public static void main(String args[]) {

 char charInput;
 boolean employed, hasDegree;
 int age, yearsWorked;

 // Get a Scanner object for user input
 Scanner keyboard = new Scanner(System.in);

 // Display some openning instructions
 System.out.println("Bank of Java");
 System.out.println("============");
 System.out.println("Follow the instructions below to " +
 "determine whether or not you qualify " +
 "for a Entrepreneur Startup Loan...\n");

 // Determine whether or not the user is employed
 System.out.print("Are you currently employed (Y/N)? ");
 charInput = keyboard.nextLine().charAt(0);
 if ((charInput == 'y') || (charInput == 'Y'))
 employed = true;
 else
 employed = false;

 // Determine if the user has a recent University degree
 System.out.print("Did you graduate with a University degree " +
 "in the past 6 months (Y/N)? ");
 charInput = keyboard.nextLine().charAt(0);
 if ((charInput == 'y') || (charInput == 'Y'))
 hasDegree = true;
 else
 hasDegree = false;

 // Determine the user's age
 System.out.print("How old are you ? ");
 age = keyboard.nextInt();

 // Determine the number of years worked at full time status
 System.out.print("How many years have you been working " +
 "at full time status ? ");
 yearsWorked = keyboard.nextInt();
 System.out.println("\n");

 // Now determine whether or not the person qualifies for the loan
 if (employed) {
 if (hasDegree)
 System.out.println("Congratulations! You qualify " +
 "for the ESL loan.");

COMP1005/1405 – Decision Making Fall 2009

 - 91 -

 else {
 if (age >= 30) {
 if (yearsWorked >= 10)
 System.out.println("Congratulations! You qualify " +
 "for the ESL loan.");
 else
 System.out.println("Sorry, you must have worked " +
 "at least 10 years at full " +
 "time status to qualify.");
 }
 else
 System.out.println("Sorry, you must be a recent " +
 "University graduate or be at " +
 "least 30 years of age.");
 }
 }
 else
 System.out.println("Sorry, you must be currently " +
 "employed to qualify.");
 }
}

Here is the output from three sample runs of the program:

Bank of Java
============
Follow the instructions below to determine whether or not you qualify for a
Entrepreneur Startup Loan...

Are you currently employed (Y/N)? Y
Did you graduate with a University degree in the past 6 months (Y/N)? N
How old are you ? 28
How many years have you been working at full time status ? 8

Sorry, you must be a recent University graduate or be at least 30 years of age.

Bank of Java
============
Follow the instructions below to determine whether or not you qualify for a
Entrepreneur Startup Loan...

Are you currently employed (Y/N)? Y
Did you graduate with a University degree in the past 6 months (Y/N)? Y
How old are you ? 22
How many years have you been working at full time status ? 1

Congratulations! You qualify for the ESL loan.

COMP1005/1405 – Decision Making Fall 2009

 - 92 -

Bank of Java
============
Follow the instructions below to determine whether or not you qualify for a
Entrepreneur Startup Loan...

Are you currently employed (Y/N)? N
Did you graduate with a University degree in the past 6 months (Y/N)? Y
How old are you ? 24
How many years have you been working at full time status ? 3

Sorry, you must be currently employed to qualify.

