

Chapter 4

Defining Your Own Functions/Methods

What is in This Chapter ?
Object-Oriented Programming (OOP) involves creating objects of our own. In this set of
notes, we will discuss how to write functions and procedures for our objects, which are also
called methods. Methods are the set of instructions that perform some operations with the
data or objects that you need to work with. You will spend 99% of your time writing methods
in JAVA, since all code must belong to some method. Finally, we will discus static methods,
which are more general methods that do not need an object in order to compute something.

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 94 -

 4.1 What are Methods ?

At this point in the course, we have already defined a few of our own objects (i.e., Car,
Person, Address, BankAccount, etc..). Do you remember why we defined them ? We did it
so that we could group information together in a meaningful way. For example, we associated
information such as firstName, lastName, age, gender and retired as all being part of a
Person object. This idea of grouping information/attributes together relates to real-life since
all real life objects (tangible or not) are defined by their attributes. Over time, these attributes
will change. Hence at any time in the object’s existence, the combined attributes represent the
object’s current state at that point in time.

There is also something else that real objects have in addition to their state … they have
behavior. That is, objects in general, can do things and when used, they respond in certain
ways. For example, you can ask a person “What is your name ?”, and they usually respond
by stating the value of their name attribute. Also, a person can be asked to “Stand up!”, and
we usually expect that the person would change their position from a lying/sitting position to a
standing position.

Objects also have the ability to change their own state as well as the state of other objects.
For example, if a Person spends money from their bank account, the account’s balance is
changed afterwards. Also, if a Person gives money to another Person, one person’s money
increases, while the other’s money decreases.

Object-Oriented programming languages such as JAVA, allow us to define both state and
behavior for our objects. In fact, objects will generally have a whole set of pre-defined
functions/behaviors that we can use to modify and manipulate the object in some way. It is
important that you understand that Objects are defined by two things: (1) their state, and (2)
their behaviors:

Object =

STATE

 +
BEHAVIOR

Since we have already discussed how to define state (or attributes, instance variables) for our
objects, it is now time to discuss how we can define the object’s behaviors. All object
behaviors are defined individually, one at a time. Each behavior is defined in something
called a method. In English, the word “method” is defined as “a way of doing something”.
So, we will actually be defining “how” the object will behave (i.e., what it needs to do) when it is
asked to exhibit one of its behaviors.

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 95 -

So, you can think of each object in JAVA as having a list of instance variables as well as a list
of method definitions:

There are basically two types of methods in JAVA:

• Functions – methods that do something and then return a value
• Procedures – methods that do something but do not return a value.

 4.2 Defining Methods - Functions

To help motivate our discussion, recall this code that we used to determine a discount for
“Grandma/Granddaughter Night” at the theatre. Recall that the discount should be 50% for
women that are retired or to girls who are 12 and under. For all other people, the discount
should otherwise be 0%:

Person p = new Person();

... // some code omitted to set the name, age, gender, etc...

// Write code to compute the appropriate discount
int discount = 0;

if ((p.gender == 'F') && (p.age < 13 || p.retired))
 discount = 50;

“Urchif”

“Hank”
lastName

firstName

Person object
String object

String object

instance variable

instance variable

age 19

gender 'M'

retired false

instance variable

instance variable

instance variable

methods

public int computeist() {
 // If you can read
 // this, you have
 // amazing eyesight
 // and too much time.
 if ((p.gender == 'F}
 return 50;
 else
 return 0;
}

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 96 -

Recall that the code p.age actually goes into the p Person object and retrieves its age
attribute’s value. Similarly, the p.gender code retrieves the gender value from Person p.
We can actually define a function in the Person class that computes the appropriate discount
for the person. Such a function should return an integer answer of either 0 or 50, representing
the percentage of discount that the Person is entitled to have.

To do this, we need to understand first how the function is to be used. In JAVA, all
functions/methods are invoked (i.e., called or used) by using the dot . operator on the object
whose method you want to use. We then need to have a meaningful name for the method.
In our example, perhaps we can call it computeDiscount since it aptly describes what we are
trying to do. Method calls all require round brackets () at the end. So to call the method, we
may write something like this:

p.computeDiscount()

Since this function will return the discount value, we can then make use of the value returned
from this method call and simplify our code as follows:

Person p = new Person();

... // some code omitted to set the name, age, gender, etc...

// Write code to compute the appropriate discount
int discount = p.computeDiscount();

Of course though, the code above does not compile, at least not until we define the method
called computeDiscount in the Person class. So now lets go do that.

Recall that the Person class
already has instance variables
defined in it as well as one or
more constructors. To define a
new behavior for the Person, we
simply add a new method …
usually at the bottom of the class
but still within the final closing
brace } for the class … as
shown here:

So how do we write the method ?
The steps are given on the next
page.

class Person {
 // These are the instance variables
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;

 // These are the constructors
 Person() {
 ...
 }
 Person(String fn, String ln, int a, char g, boolean r) {
 ...
 }
 // Start writing your methods here
 ...
}

Put your methods here

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 97 -

STEP 1 – METHOD SIGNATURE:

The 1st step is to write the method’s signature. The method signature is the first line of the
method where you specify its name, parameters and return type. It is called a signature
because it is what makes the method unique with respect to any other methods in this class.

Here is the basic format of our method:

int computeDiscount() {
}

Notice that the first word in the method’s signature is the return type of the method (i.e., the
type of thing (i.e., primitive or object) that will be returned by the method). In our example, we
are trying to compute a discount value which is an integer. Hence, we specify int to be the
type of thing returned. The next part of the signature is the method name. Just like variable
names, the method name should have no spaces or weird characters and should be lower
case with capitalized words (except the first). The method name should be immediately
followed by opening and closing round brackets (). Finally, we use the braces { } to
encapsulate the code that is to be evaluated when the method is called … the code within the
braces is called the method body … which is currently empty at the moment.

STEP 2 – RETURN VALUE:

The 2nd step when writing a method is to create a temporary variable of the same type as the
return type and to return it at the end of the method. (This step is not required, but it always
helps you “keep your head straight” when you are learning to write methods. After you
complete this step, your method should compile fine, although it is not complete). Here is how
we can do this for our example:

int computeDiscount() {
 int answer = 0;

 return answer;
}

Notice that the variable answer will contain the final answer for our method. We start off by
assuming a value of 0 but will modify this soon. The last line of the method returns the
variable’s value. In JAVA, the return statement is used to stop the method immediately and
return with the specified value.

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 98 -

STEP 3 –METHOD BODY:

The 3rd and last step is to write the remaining part of the method body. This is the interesting
part that requires you to think. In our example, we need to write code that will determine the
correct discount. How can we do this ? Well, we actually already did this previously so we
can start with our previous code. Here is how we can do this, although some changes are
needed:

int computeDiscount() {
 int answer = 0;

 int discount = 0;
 if ((p.gender == 'F') && (p.age < 13 || p.retired))
 discount = 50;

 return answer;
}

In the code above, you will notice some issues. To begin, we can replace the discount
variable with our new answer variable which will contain the proper discount at the end of the
method.

int computeDiscount() {
 int answer = 0;

 if ((p.gender == 'F') && (p.age < 13 || p.retired))
 answer = 50;

 return answer;
}

Next, you will notice that the variable p is not defined anywhere in this method. This variable
was the variable defined in our other program and it was used to represent the person for
whom we are to compute the discount. p.gender actually went into Person object p and
retrieved that person’s gender. Similarly p.age and p.retired retrieved those attributes of p.
But we are now writing code that is inside the Person class definition. The code we are
writing must work for all Person objects, not just p. Hence, the p must vary according to the
person that we are trying to compute the discount for.

We need to replace p by the word this, because this is the placeholder (i.e., nickname) of the
object for which we called this computeDiscount method. That is, whenever we are defining
an object’s behavior (i.e., writing a method), the word this represents the object that will be
exhibiting the behavior … the object whose data we need to access.

(For a review of the word this, perhaps go back and read the notes on constructors).

So, here is resulting code …

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 99 -

int computeDiscount() {
 int answer = 0;

 if ((this.gender == 'F') && (this.age < 13 || this.retired))
 answer = 50;

 return answer;
}

In fact, we can simplify this code even further by realizing that the method is simple enough to
not need the answer variable:

int computeDiscount() {
 if ((this.gender == 'F') && (this.age < 13 || this.retired))
 return 50;
 else
 return 0;
}

Here is a picture of what is happening inside the object when we test it using the code
p.computeDiscount();

“Urchif”

“Hank”

lastName

firstName

p variable
 Person object

String object

String object

instance variable

instance variable

age 19

gender 'M'

retired false

instance variable

instance variable

instance variable

methods

int computeDiscount() {

 if ((this.gender == 'F') && (this.age < 13 || this.retired))

 return 50;

 else

 return 0;
}

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 100 -

We have successfully defined our first method/behavior ! But … practice makes perfect … so
let us do another method. Recall the code we wrote that determined the oldest Person:

Person p1, p2, p3;

p1 = new Person("Hank", "Urchif", 19, 'M', false);
p2 = new Person("Holly", "Day", 67, 'F', true);
p3 = new Person("Bobby", "Socks", 12, 'M', false);

// Write code to set the oldest variable to be the oldest person.
Person oldest;

if ((p1.age > p2.age) && (p1.age > p3.age))
 oldest = p1;
else if ((p2.age > p1.age) && (p2.age > p3.age))
 oldest = p2;
 else
 oldest = p3;

Lets write a method called isOlderThan() which allows us to determine whether one Person is
older than another. The method should return a boolean (i.e., true or false):

boolean isOlderThan() {
 boolean answer = false;
 ...
 return answer;
}

To call this method, we may write something like this: p1.isOlderThan()

But wait! The something seems to be missing. We need to know the other person that we
want to compare p1’s age with. If we look at our original code, we are comparing p1 with p2,
p1 with p3, p2 with p1, and p2 with p3. So we need a way of “telling the method” which
person to compare p1 with. This is additional information that the method requires.

Recall from our discussion on constructors that we can pass-in additional information as
parameters between the round () brackets. So, we can pass in the person to compare with
as follows: p1.isOlderThan(p2)

We then need to go into our method definition and define the incoming parameter by
specifying its type as well as giving it a name:

boolean isOlderThan(Person x) {
 boolean answer = false;
 ...
 return answer;
}

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 101 -

Now the method has the two Person objects that are needed to make the comparison (i.e.,
this and x). So, how do we write the rest of the code ? We just need to compare this’s age
with x’s age as follows:

boolean isOlderThan(Person x) {
 boolean answer = false;

 if (this.age > x.age)
 answer = true;
 else
 answer = false;

 return answer;
}

And we are done! Remember though, that this can be simplified:

boolean isOlderThan(Person x) {
 if (this.age > x.age)
 return true;
 else
 return false;
}

and even more if we really want to be efficient…

boolean isOlderThan(Person x) {
 return (this.age > x.age);
}

Here is what the resulting test code looks like when we make use of this method now:

if (p1.isOlderThan(p2) && p1.isOlderThan(p3))
 oldest = p1;
else if (p2.isOlderThan(p1) && p2.isOlderThan(p3))
 oldest = p2;
 else
 oldest = p3;

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 102 -

Consider what happens inside p1 as we call p1.isOlderThan(p2):

For an interesting exercise, how would we write another method so that it takes two Person
objects as parameters and checks both of them ? We would use it as follows:

if (p1.isOlderThan(p2,p3))
 oldest = p1;
else if (p2.isOlderThan(p1,p3))
 oldest = p2;
 else
 oldest = p3;

Here is the new method (notice that it now takes 2 parameters):

boolean isOlderThan(Person x, Person y) {
 if ((this.age > x.age) && (this.age > y.age))
 return true;
 else
 return false;
}

“Urchif”

“Hank”
lastName

firstName

p1 variable
 Person object

String object

String object

instance variable

instance variable

age 19

gender 'M'

retired false

instance variable

instance variable

instance variable

methods

boolean isOlderThan(Person x) {

 if (this.age > x.age)

 return true;

 else

 return false;
}

“Day”

“Holly”
lastName

firstName

p2 variable

Person object
String object

String object

instance variable

instance variable

age 67

gender 'F'

retired true

instance variable

instance variable

instance variable

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 103 -

You may have noticed that we wrote two methods with the same name (i.e., isOlderThan).
How can JAVA allow this ? That is, when we call the method, how does JAVA know which
method to use ?

Recall that the first line of the method is the method’s signature. The signature is what
makes it unique. In our first isOlderThan() method, there was one parameter. In the second
isOlderThan() method there are two parameters. That is how JAVA distinguishes between
the two methods. When calling a method, JAVA always looks at the method’s name as well
as its list of parameter types to determine which one to call.

When we write two methods in the same class with the same name, this is called
overloading. Overloading is only allowed if the similar-named methods have a different set
of parameters. Normally, when we write programs we do not think about writing methods with
the same name … we just do it naturally. For example, imagine implementing a variety of
eat() methods for the Person class as follows:

void eat(Apple x) { … }
void eat(Orange x) { … }
void eat(Banana x, Banana y) { … }

Notice that all the methods are called eat(), but that there is a variety of parameters, allowing
the person to eat either an Apple, an Orange or two Banana objects. Imagine the code below
somewhere in your program that calls the eat() method, passing in anObject of some type:

Person p;

p = new Person();
p.eat(z);

How does JAVA know which of the 3 eat() methods to call ? Well, JAVA will look at what kind
of object z actually is. If it is an Apple object, then it will call the 1st eat() method. If it is an
Orange object, it will call the 2nd method. What if z is a Banana ? It will NOT call the 3rd
method … because the 3rd method requires 2 Bananas and we are only passing in one. A call
of p.eat(z, z) would call the 3rd method if z was a Banana. In all other cases, the JAVA
compiler will give you an error stating:

 cannot find symbol method eat(...)

where the ... above is a list of the types of parameters that you are trying to use.

JAVA will NOT allow you to have two methods with the same name and parameter types
because it cannot distinguish between the methods when you go to use them. So, the
following code will not compile:

double calculatePayment(BankAccount account){...}
double calculatePayment(BankAccount x){...}

You will get an error saying:

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 104 -

calculatePayment(BankAccount) is already defined in Person

Getting back to writing methods, how can we write a method called oldest() that returns the
oldest of the 3 Person objects ? If we had such a method, then we can simplify our earlier
test code to this one simple line:

oldest = p1.oldest(p2,p3);

Do you notice something different with the type of thing returned from the method ? This
method would now need to return a Person object (i.e., the oldest of the three) instead of a
boolean. Hence, the return type for the method must be different. Here is what we would
start with:

Person oldest(Person x, Person y) {
 Person answer;

 ...

 return answer;
}

Then, we simply check all of the ages as before:

Person oldest(Person x, Person y) {
 if ((this.age > x.age) && (this.age > y.age))
 return this;
 else if ((x.age > this.age) && (x.age > y.age))
 return x;
 else
 return y;
}

You should notice that this code looks VERY much like our original test code. Basically, all
we have done is moved the age-checking code into the method. So, a method is really just a
chunk of code that is defined for an object.

 4.3 Defining Methods - Procedures

Now lets write a couple of procedures (i.e., methods that do not return anything). Lets write a
method called retire() that changes a Person object’s retired state from false to true. You
should realize that there is no “answer” for such a method. We simply need to change the
value of the retired variable, but we don’t need to return any specific object or primitive from

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 105 -

the method. In this case, there is no return value. In JAVA, when we do not have a value to
return, we specify the return type for the method to be void as follows:

void retire() {
 ...
}

So what do we need to do in the method ? We just need to change the retired variable to
true:

void retire() {
 this.retired = true;
}

That’s it! Lets try one more. How would we write a method called swapNameWith() that
allows one person to change names with another Person ? Hopefully, you now understand
that the return type should be void, since it performs an operation on the Person but no
answer is required to be returned. Also, you should realize that the 2nd person should be
passed-in as a parameter. Here is the structure:

void swapNameWith(Person x) {
 ...
}

How do we swap the names ? Well, the first person’s firstName attribute should become the
second person’s firstName attribute and vice versa. We also need to do this for the
lastName attributes. Here is a first attempt:

void swapNameWith(Person x) {
 // Swap the first names
 this.firstName = x.firstName;
 x.firstName = this.firstName;

 // Swap the last names
 this.lastName = x.lastName;
 x.lastName = this.lastName;
}

But this code will not work. Why ? Well, the first line of code replaces this’s firstName with
x’s firstName. Hence, we are overwriting (i.e., erasing) this’s firstName value … and the
value will be gone forever. So on the second line of code, when we try to put this’s firstName
into x, we are actually putting in x’s firstName that we stored there from the first line. So both

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 106 -

persons will end up with the same firstName, which was x’s original firstName. The same
problem occurs for the lastName. The following shows what happens with the firstName …

To fix this, we need a temporary variable to hold on to this’s firstName/lastName so that we
don’t lose it:

void swapNameWith(Person x) {
 String tempName;

 // Swap the first names
 tempName = this.firstName;
 this.firstName = x.firstName;
 x.firstName = tempName;

 // Swap the last names
 tempName = this.lastName;
 this.lastName = x.lastName;
 x.lastName = tempName;
}

Here is the diagram showing how the swapping takes place …

“Hank” firstName

this Person object
String object

instance variable

“Holly” firstName

x Person object
String object

instance variable

“Hank” firstName

this Person object
String object

instance variable

“Holly” firstName

x Person object
String object

instance variable

… …

… …

before the method is called after this.firstName = x.firstName;

“Hank” firstName

this Person object
String object

instance variable

“Holly” firstName

x Person object
String object

instance variable

 firstName

this Person object

instance variable

“Holly” firstName

x Person object
String object

instance variable

… …

… …

after x.firstName = this.firstName;

after the method completes

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 107 -

You should realize that the tempName variable is indeed temporary. In fact, after the method
completes, the tempName variable no longer exists. Any variables defined within a method
are non-existent after the method completes … hence the term “temporary”.

At this point lets step back and see what we
have done. We have created 5 interesting
methods (i.e., behaviors) for our Person object
(i.e., computeDiscount(), isOlderThan(),
oldest(), retire() and swapNameWith()).
All of these methods were written one after
another within the class, usually after the
constructors. Here, to the right, is the
structure of the class now as it contains all the
methods that we wrote (the method code has
been left blank to save space).

“Hank” firstName

this Person object
String object

instance variable

“Holly” firstName

x Person object
String object

instance variable

…

…

after tempName = this.firstName;

tempName variable

“Hank” firstName

this Person object
String object

instance variable

“Holly” firstName

x Person object
String object

instance variable

…

…

after this.firstName = x.firstName;

tempName variable

“Hank” firstName

this Person object
String object

instance variable

“Holly” firstName

x Person object
String object

instance variable

…

…

after x.firstName = tempName;

tempName variable

“Hank” firstName

this Person object
String object

instance variable

“Holly” firstName

x Person object
String object

instance variable

…

…

after the method completes

class Person {
 // These are the instance variables
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;

 // These are the constructors
 Person() { ... }
 Person(String fn, String ln, ...) { ... }

 // These are our methods
 int computeDiscount() { ... }
 boolean isOlderThan(Person x) { ... }
 Person oldest(Person x, Person y) { ... }
 void retire() { ... }
 void swapNameWith(Person x) { ... }
}

Our methods

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 108 -

Now although these methods were defined in the class, they are not used within the class.
We wrote various pieces of test code that call the methods in order to test them. Here is a
more complete test program that tests all of our methods in one shot:

class FullPersonTestProgram {
 public static void main(String args[]) {
 Person p1, p2, p3;

 p1 = new Person("Hank", "Urchif", 19, 'M', false);
 p2 = new Person("Holly", "Day", 67, 'F', true);
 p3 = new Person("Bobby", "Socks", 12, 'F', false);

 System.out.println("The discount for Hank is " +
 p1.computeDiscount());
 System.out.println("The discount for Holly is " +
 p2.computeDiscount());
 System.out.println("The discount for Bobby is " +
 p3.computeDiscount());

 System.out.println("Is Hank older than Holly ? ..." +
 p1.isOlderThan(p2));
 System.out.println("The oldest person is " +
 p1.oldest(p2,p3).firstName);

 System.out.println("Hank is retired ? ... " + p1.retired);
 p1.retire();
 System.out.println("Hank is retired ? ... " + p1.retired);
 p2.swapNameWith(p3);
 System.out.println("Holly’s name is now: " +
 p2.firstName + " " + p2.lastName);
 System.out.println("Bobby’s name is now: " +
 p3.firstName + " " + p3.lastName);
 }
}

Here is the output:

The discount for Hank is 0
The discount for Holly is 50
The discount for Bobby is 50
Is Hank older than Holly ? ...false
The oldest person is Holly
Hank is retired ? ... false
Hank is retired ? ... true
Holly’s name is now: Bobby Socks
Bobby’s name is now: Holly Day

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 109 -

 4.4 Null Pointer Exceptions

In regards to calling methods, we must make sure that the object whose method we are trying
to call has been through the construction process. For example, consider the following code:

Person p;

System.out.println(p.computeDiscount());

This code will not compile. JAVA will give a compile error for the second line of code saying:

variable p might not have been initialized

JAVA is trying to tell you that you forgot to give a value to the variable p. In this case, we
forgot to create a Person object.

Lets assume then that we created the Person as follows and then tried to get the streetName:

Person p;

p = new Person("Hank", "Urchif", 19, 'M', false);
System.out.println(p.address.streetName);

This code will now compile. Assume that the Person class was defined as follows:

class Person {
 String firstName;
 String lastName;
 int age;
 char gender;
 boolean retired;
 Address address;

 Person(String fn, String ln, int a, char g, boolean r) {
 this.firstName = fn;
 this.lastName = ln;
 this.age = a;
 this.gender = g;
 this.retired = r;
 }
 ...
}

Here the address attribute stores an Address object which is assumed to have an instance
variable called streetName.

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 110 -

What will happen when we do this:

p.address.streetName

The code will generate a java.lang.NullPointerException. That means, JAVA is telling you
that you are trying to do something with an object that was not yet defined. Whenever you get
this kind of error, look at the line of code on which the error was generated. The error is
always due to something in front of a dot . character being null instead of being an actual
object. In our case, there are two dots in the code on that line. Therefore, either p is null or
p.address is null, that is the only two possibilities. Well, we are sure that we assigned a
value to p on the line above, so then p.address must be null. Indeed that is what has
happened, as you can tell from the constructor.

To fix this, we need to do one of three things:

1. Remove the line that attempts to access the streetName from the address, and access
it late in the program after we are sure there is an address there.

2. Check for a null before we try to print it and then don’t print if it is null … but this may
not be desirable.

3. Think about why the address is null. Perhaps we just forgot to set it to a proper value.
We can make sure that it is not null by giving it a proper value before we attempt to use
it.

NullPointerExceptions are one of the most common errors that you will get when
programming in JAVA. Most of the time, you get the error simply because you forgot to
initialize a variable somewhere (i.e., you forgot to create a new object and store it in the
variable).

 4.5 Displaying an Object Using toString()

Do you recall what happens when we display one of our objects to the System console ?

class MyObjectTestProgram {
 public static void main(String args[]) {
 System.out.println(new Car()); // car object
 System.out.println(new Person()); // person object
 }
}

The result on the screen was as follows:

Car@19821f
Person@42e816

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 111 -

Remember that JAVA displays all of the objects that you make in this manner. What JAVA
happens to be doing is converting an object to a String object first and then displaying the
resulting characters to the screen. In fact, every object in JAVA has, by default, a method
called toString() which will convert the object to a String. Hence, the following code will take
a Car and a Person object, convert them to String objects and then display the resulting
String objects:

Car c;
Person p;
String s1, s2;

c = new Car();
p = new Person();
s1 = c.toString(); // s1 will be "Car@19821f"
s2 = p.toString(); // s2 will be "Person@42e816"

System.out.println("The Car as a String is " + s1);
System.out.println("The Person as a String is " + s2);

Notice that the output will be:

The Car as a String is Car@19821f
The Person as a String is Person@42e816

The String objects have the exact same characters that are displayed when we just display
the objects directly using System.out.println(). That is because when JAVA attempts to
display anything to the console, it automatically calls the toString() method for the object to
convert it to characters before displaying. So, the following two lines of code do exactly the
same thing:

System.out.println(p);
System.out.println(p.toString());

Why do we care ? Well, we can actually replace the default toString() behavior by writing our
own toString() method for all of our own objects that defines exactly how to convert our object
to a String. That is, we can control the way our object “looks” when we print it on the screen.

Suppose that we wanted our Person object to display something like this:

Person named Hank

You should notice that the first two words of this result are fixed and it is only the last part (i.e.,
the first name of the Person) that varies from person to person. We can make this to be the
standard output format for all Person objects simply by writing the following method in the
Person class:

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 112 -

public String toString() {
 return ("Person named " + this.firstName);
}

Notice that the method has the word public at the front. This means that the method you are
writing is publicly accessible (i.e., it can be used from anywhere in your program). This is
necessary for the toString() method, but we will defer our discussion of public method access
until a later time in the course.

Notice that the method is called toString() with no parameters and that it has a return type of
String. This is important in order for the method to be used properly by JAVA. Even the
spelling and upper/lower case letters must match exactly. Then, you may notice that the
method returns an actual String object that is made up of the letters "Person named " and
then followed by the value of this Person object’s firstName attribute.

What would therefore be the output of the following code:

Person p1, p2, p3;

p1 = new Person(); // assume first name is set to "" within constructor
p2 = new Person("Holly", "Day", 67, 'F', true);
p3 = new Person("Hank", "Urchif", 19, 'M', false);

System.out.println(p1);
System.out.println(p2);
System.out.println(p3);

Here is the output … were you correct ?

Person named
Person named Holly
Person named Hank

Now what if we wanted the output to be in this format instead:

19 year old Person named Hank Urchif

To write an appropriate toString() method, we need to understand what is fixed in this output
and what will vary. The number 19 should vary for each person as well as the first and last
names. Here is how we could write the code (replacing our previous toString() method):

public String toString() {
 return (this.age + " year old Person named " +
 this.firstName + " " + this.lastName);
}

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 113 -

Notice that the basic idea behind creating a toString() method is to simply keep joining
together String pieces to form the resulting String.

Now here is a harder one. Lets see if we can make it into this format:

19 year old non-retired person named Hank Urchif

Here we have the age and names being variable again but now we also have the added
variance of their retirement status and gender. Here is one attempt:

public String toString() {
 return (this.age + " year old " + this.retired + " person named "
 + this.firstName + " " + this.lastName);
}

However, this is not quite correct. This would be the format we would end up with:

19 year old false person named Hank Urchif

Notice that we cannot simply display the value of the retired attribute but instead need to write
“retired” or “non-retired” for the retired status.

To do this then, we will need to use an IF statement. However, in JAVA, we cannot write an IF
statement in the middle of a return statement. So we will need to do this using more than one
line of code. Lets make an answer variable to hold the result and then break down our
method into logical pieces that append to this answer:

public String toString() {
 String answer;

 answer = this.age + " year old ";
 answer = answer + this.retired;
 answer = answer + " person named " +
 this.firstName + " " + this.lastName);

 return answer;
}

Now we can insert the appropriate if statements as follows:

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 114 -

public String toString() {
 String answer;

 answer = this.age + " year old ";

 if (this.retired)
 answer = answer + "retired";
 else
 answer = answer + "non-retired";
 answer = answer + " person named " + this.firstName + " " +
 this.lastName;

 return answer;
}

The result is what we wanted. Note however, that we can simplify this code a little further:

public String toString() {
 String answer = this.age + " year old ";

 if (!this.retired)

 answer = answer + "non-";

 return (answer + "retired person named " +
 this.firstName + " " + this.lastName);
}

So, you can see that the toString() method may be more than one line of code but again …
the main idea is to simply keep appending to the String as you go … building it up.

 4.6 Static/Class Methods

Recall that we discussed static/class variables in a previous chapter. Class variables were
used as a means of specifying attributes that were shared among all members of the class.
We looked, for example, at how all Car objects shared the same NUM_WHEELS value of 4
and how all BankAccount objects used the same LAST_ACCOUNT_NUMBER counter to
obtain their accountNumber upon creation.

In JAVA, we can also create class methods (also known as static methods). Since methods
are behaviors for the object (i.e., not attributes), the saving of memory space is not an issue.
Therefore, the motivation for using a class/static method is different than that of using a
class/static variable. Since every method must either be an instance method or a class
method, we need to understand the difference.

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 115 -

Instance methods represent behaviors (functions and procedures) that are to be performed
on the particular object that we called the method for (i.e., the receiver of the
method/message). That is, such methods typically access the inner parts of the receiver
object (i.e., its attributes) and perform some calculation or change the object’s attributes in
some way.

Class methods, on the other hand, are actually used (i.e., called) in a different manner,
without a particular receiver object in mind. Therefore, they do not represent a behavior to be
performed on a particular receiver object. Instead, a class method represents a general
function/procedure that simply happens to be located within a particular class, but does not
necessarily have anything to do with instances of that class.

Recall the computeDiscount() method that we created for the Person class earlier in this
chapter:

int computeDiscount() {
 if ((this.gender == 'F') && (this.age < 13 || this.retired))
 return 50;
 else
 return 0;
}

This is an instance method in the Person class which computed the discount based on the
internal attributes (i.e., gender, age and retired) of the particular person that received the
method call. So, in the code below, the receiver of the 1st call to computeDiscount() is p1
and the receiver of the 2nd call to it is p2. It was necessary to specify the appropriate instance
(i.e., Person object) before calling the method in order for the instance method to know which
object to access when computing the discount.

Person p1, p2;

p1 = new Person("Hank", "Urchif", 19, 'M', false);
p2 = new Person("Holly", "Day", 67, 'F', true);

System.out.println("Discount for Hank is: " + p1.computeDiscount());
System.out.println("Discount for Holly is: " + p2.computeDiscount());

However, we could have supplied the appropriate Person object as a parameter to the method
as follows:

...
System.out.println("Discount for Hank is: " + computeDiscount(p1));
System.out.println("Discount for Holly is: " + computeDiscount(p2));

To make this work, we would need to re-write the method as follows …

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 116 -

int computeDiscount(Person p) {
 if ((p.gender == 'F') && (p.age < 13 || p.retired))
 return 50;
 else
 return 0;
}

Notice how the method now accesses the person p that is passed in as the parameter, instead
of the receiver this. If we do this, the code result is now fully-dependent on the attributes of
the incoming parameter p, and hence independent of the receiver altogether. Therefore, it is
no longer acting as an instance method, but is actually a general method that can be written
and used anywhere. This is the essence of a class/static method … the idea that the method
does not necessarily need to be called by using an instance of the class.

Although we can leave the method as it is written, it would be proper coding style to indicate to
everyone that the method no longer accessed the internal attributes of the receiver object. To
do this, we simply add the word static in the method’s signature as follows:

static int computeDiscount(Person p) {
 if ((p.gender == 'F') && (p.age < 13 || p.retired))
 return 50;
 else
 return 0;
}

Just as we specify the class name when we access class/static variables (e.g.,
Car.NUM_WHEEELS and BankAccount.LAST_ACCOUNT_NUMBER), we also use the
class name to call class/static methods. So we would change our test code as follows:

...
System.out.println("Discount for Hank is: " + Person.computeDiscount(p1));
System.out.println("Discount for Holly is: " + Person.computeDiscount(p2));

In fact, the computeDiscount() method does not even need to be written within the Person
class. We can, for example, make a completely different class and place such tool-like
methods in there. Here, for example, is a collection of static/class methods defined in a class
called UsefulPeopleTools that perform functions on Person objects that are passed in as
parameters (these methods are similar to the methods that we wrote earlier in this chapter) …

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 117 -

class UsefulPeopleTools {

static int computeDiscount(Person p) {
 if ((p.gender == 'F') && (p.age < 13 || p.retired)) return 50;
 return 0;

}
static boolean isOlderThan(Person x, Person y) {

 return (x.age > y.age);
}
static Person oldest(Person x, Person y) {

 if (x.age > y.age) return x;
 return y;

}
static void swapNames(Person x, Person y) {

 String tempName;

 tempName = x.firstName;
 x.firstName = y.firstName;
 y.firstName = tempName;
 tempName = x.lastName;
 x.lastName = y.lastName;
 y.lastName = tempName;

}
}

We can then use these methods by writing test code as follows:

class UsefulPeopleToolsTestProgram {
 public static void main(String args[]) {
 Person p1 = new Person("Hank", "Urchif", 19, 'M', false);
 Person p2 = new Person("Holly", "Day", 67, 'F', true);

 System.out.println("Discount for Hank is: " +
 UsefulPeopleTools.computeDiscount(p1));
 System.out.println("Discount for Holly is: " +
 UsefulPeopleTools.computeDiscount(p2));
 System.out.println("Hank is older than Holly ?: " +
 UsefulPeopleTools.isOlderThan(p1, p2));
 System.out.println("Holly is older than Hank ?: " +
 UsefulPeopleTools.isOlderThan(p2, p1));
 System.out.println("The oldest of Hank and Holly is: " +
 UsefulPeopleTools.oldest(p1, p2));

 UsefulPeopleTools.swapNames(p1, p2);
 System.out.println("Hank’s name is now: " + p1.firstName +
 " " + p1.lastName);
 System.out.println("Holly’s name is now: " + p2.firstName +
 " " + p2.lastName);
 }
}

COMP1005/1405 – Defining Your Own Functions / Methods Fall 2009

 - 118 -

Hopefully, you will have noticed that the main difference between an instance method and a
class/static method is simply in the way in which it is called. To repeat … instance methods
are called by supplying a specific instance of the object in front of the method call (i.e., a
variable of the same type as the class in which the method is defined in), while class methods
supply a class name in front of the method call:

// calling an instance method...
variableOfTypeX.instanceMethodWrittenInClassX(…);

// calling a class method...
ClassNameY.staticMethodWrittenInClassY(…);

Often, we use class methods to write functions that may have nothing to do with objects at all.
For example, consider methods that convert a temperature value from Centigrade to
Fahrenheit and vice-versa:

static double centigradeToFahrenheit(double temp) {
 return temp * (9.0 /5.0) + 32.0;
}
static double fahrenheitToCentigrade(double temp) {
 return 5.0 * (temp - 32.0) / 9.0;
}

Where do we write such methods since they only deal with primitives, not objects ? The
answer is … we can write them anywhere. We can place them at the top of the class that we
would like to use them in. Or … if these functions are to be used from multiple classes in our
application, we could make another tool-like class and put them in there:

class ConversionTools {
 ...
}

Then we could use it as follows:

double f = ConversionTools.centigradeToFahrenheit(18.762);

