

Chapter 5

Calculations, Formatting and Conversions

What is in This Chapter ?
In this chapter we discuss how to do basic math calculations as well as use some readily
available Math functions in JAVA. We then look at the String.format() function as a means of
formatting the output of our programs. Lastly, we look at some of the ways in which we can
use typecasting to convert between various primitive data types as well as to/from Strings.

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 120 -

 5.1 Calculations and Formulas

Obviously, a computer can compute solutions to mathematical expressions. We can actually
perform simple math expressions such as:

30 + 5 * 2 - 18 / 2 – 2

In such a math expression, we need to understand the order that these calculations are done
in. You may recall from high school the BEDMAS memory aid which tells you to perform
Brackets first, then Exponents, then Division & Multiplication, followed by Addition and
Subtraction.

So, for example, in the above JAVA expression, the multiplication * operator has preference
over the addition + operator. In fact, the * and / operators are evaluated first from left to right
and then the + and -. Thus, the step-by-step evaluation of the expression is:

30 + 5 * 2 - 18 / 2 - 2
30 + 10 - 18 / 2 - 2
30 + 10 - 9 - 2
40 - 9 - 2
31 - 2
29

We can always add round brackets (called parentheses) to the expression to force a different
order of evaluation. Expressions in round brackets are evaluated first (left to right):

(30 + 5) * (2 - (18 / 2 - 2))
35 * (2 - (18 / 2 - 2))
35 * (2 - (9 - 2))
35 * (2 - 7)
35 * -5
-175

In JAVA, it is good to add round brackets around code when it helps the person reading the
program to understand what calculations/operations are done first.

Another operator that is often useful is the modulus operator which returns the remainder after
dividing by a certain value. In JAVA we use the % sign as the modulus operator:

10 % 2 // results in the remainder after dividing 10 by 2 which is 0
10 % 3 // results in the remainder after dividing 10 by 3 which is 1
10 % 4 // results in the remainder after dividing 10 by 4 which is 2
39 % 20 // results in the remainder after dividing 39 by 20 which is 19

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 121 -

Note that using a modulus of 2 will allow you to determine if a number is an odd number or an
even number … which may be useful in some applications.

In addition to the standard math operations (i.e., +,-,*,/ and %), there are some math
operators that can reduce the amount of code that you need to write. For example, the
following code outputs the values 8 and 9 to the console window:

int n = 8;

System.out.println(n);

n = n + 1;

System.out.println(n);

There is an increment operator called ++ which is a quick way to add 1 to a variable.
The following code does the same thing:

int n = 8;

System.out.println(n);

n++; // same as n = n + 1

System.out.println(n);

In fact, this short form of incrementing a variable by 1 is often used within other JAVA
expressions. For example, the following produces the same result:

int n = 8;

System.out.println(n++);
System.out.println(n);

Here, the ++ is considered a post-operator in that it increments n after it is used in the
expression (i.e., after it is printed). The ++ can also be used as a pre-operator by placing
it in front of the variable so that the value of the variable is incremented before it is used in
the expression. Hence, the following code produces the same result of 8 and 9:

int n = 8;

System.out.println(n);
System.out.println(++n);

Similarly, there is a -- post-operator/pre-operator that can be used to decrement a variable.

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 122 -

In addition to these operators, there are some binary assignment operators that perform an
operation on some numbers and also assign the new value to the variable. For example,
consider the following code which outputs 8 and 80 to the console:

int n = 8;

System.out.println(n);

n = n * 10;

System.out.println(n);

We can replace n = n * 10 with a shorter form which does the same thing as follows:

int n = 8;

System.out.println(n);

n *= 10; // same as n = n * 10

System.out.println(n);

This code multiples n by 10 and then puts the result back into n again. There are similar
binary operators for the other standard operations: +=, -=, /= and %=.

If you want to do something beyond these simple operations, you may want to look at the Math
library in JAVA. The following is a list of some of the more useful functions in the Math library
that can be used on numbers:

Trigonometric:

• Math.sin(0) // returns 0.0 which is a double
• Math.cos(0) // returns 1.0
• Math.tan(0.5) // returns 0.5463024898437905
• Math.PI // returns 3.141592653589793

(note that Math.PI has no brackets … because it is a fixed constant value, not a function)

Conversion and Rounding:

• Math.round(6.6) // returns 7
• Math.round(6.3) // returns 6
• Math.ceil(9.2) // returns 10
• Math.ceil(-9.8) // returns -9
• Math.floor(9.2) // returns 9
• Math.floor(-9.8) // returns -10
• Math.abs(-7.8) // returns 7.8
• Math.abs(7.8) // returns 7.8

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 123 -

Powers and Exponents:

• Math.sqrt(144) // returns 12.0
• Math.pow(5,2) // returns 25.0
• Math.exp(2) // returns 7.38905609893065
• Math.log(7.38905609893065) // returns 2.0

Comparison:

• Math.max(560, 289) // returns 560
• Math.min(560, 289) // returns 289

Generation of a Random Number:

• Math.random() // returns a double >=0.0 and <1.0

These functions are used just as shown above. Notice that we need to write Math. in front of
all of these functions in order to use them. This is the way we tell JAVA that we want to use
the functions in the Math library. In fact, Math is just one of the many useful pre-defined
classes in JAVA. We do not need to import the Math class because it is in the java.lang
package and is thus automatically imported.

As an example, consider how to write a program that computes the
volume of a ball (e.g., how much space a ball takes up).

How would we write a JAVA code that computes and displays the
volume of such a ball with radius of 25cm ?

We need to understand the operations. We need to do a division,
some multiplications, raise the radius to the power of 3 and we need
to know the value of π (i.e., pi).

Here is the simplest, most straight forward solution:

int r = 25;
System.out.println((4 * Math.PI * Math.pow(r, 3) / 3));

This would also have worked, but requires the radius r to be duplicated:

System.out.println((4 * Math.PI * (r*r*r) / 3));

We could even substitute our own value for π :

System.out.println((4 * 3.141592653589793 * (r*r*r) / 3));

Alternatively, we could have evaluated the 4/3 first:

System.out.println((4/3 * Math.PI * Math.pow(r, 3)));

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 124 -

Or even pre-compute 4 π /3 (which is roughly 4.188790204786) :

System.out.println((4.188790204786 * Math.pow(r, 3)));

The point is that there are often many ways to write out an expression. You will find in this
course that there are many solutions to a problem and that everyone in the class will have their
own unique solution to a problem (although much of the code will be similar because we will all
usually follow the same guidelines when writing our programs).

What if the ball’s radius was stored as an instance variable in a Ball class as follows:

class Ball {
 int radius;

 Ball(int r) {
 this.radius = r;
 }
}

Then we could make some Ball objects and use their radius in the equations:

Ball b1, b2, b3;

b1 = new Ball(25);
b2 = new Ball(10);
b3 = new Ball(46);

System.out.println((4/3 * Math.PI * Math.pow(b1.radius, 3)));
System.out.println((4/3 * Math.PI * Math.pow(b2.radius, 3)));
System.out.println((4/3 * Math.PI * Math.pow(b3.radius, 3)));

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 125 -

 Supplemental Information (Mathematical Operators)
JAVA also provides bitwise operators for integers and booleans:

~ bitwise complement (prefix unary operator)
& bitwise and
| bitwise or
^ bitwise exclusive-or
<< shift bits left, filling in with zeros
>> shift bits right, filling in with sign bit
>>> shift bits right, filling in with zeros

To understand how these work, you must understand how the numbers are stored as bits in
the computer. We will not discuss bit manipulation in this course.

Here is a table showing the operators in JAVA (some which we have not yet discussed) and
their precedence (i.e., the order that they get evaluated in). The topmost elements of the
table have higher precedence and are therefore evaluated first (in a left to right fashion). In
the table, <exp> represents any JAVA expression. If however, you are writing code that
depends highly on this table, then it is likely that your code is too complex.

postfix operators [] . () ++ --
prefix operators ++ -- - ~ !
creation/cast new (<typecast>)
multiplication/division/modulus * / %
addition/subtraction + -
shift << >> >>>
comparison < <= > >= instanceof
equality = = ! =
bitwise-and &
bitwise-xor ^
bitwise-or |
logical and &&
logical or ||
conditional <bool_exp>? <true_val>: <false_val>
assignment =
operation assignment += -= *= /= %=
bitwise assignment >>= <<= >>>=
boolean assignment &= ^= |=

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 126 -

 5.2 Formatting Your Output

Consider the following program which asks the user for the price of a product, then displays
the cost with taxes included, then asks for the payment amount and finally prints out the
change that would be returned:

import java.util.Scanner;

class ChangeCalculatorProgram {
 public static void main(String args[]) {
 // Declare the variables that we will be using
 double price, total, payment, change;

 // Get the price from the user
 System.out.println("Enter product price:");
 price = new Scanner(System.in).nextFloat();

 // Compute and display the total with 13% tax
 total = price * 1.13;
 System.out.println("Total cost:$" + total);

 // Ask for the payment amount
 System.out.println("Enter payment amount:");
 payment = new Scanner(System.in).nextFloat();

 // Compute and display the resulting change
 change = payment - total;
 System.out.println("Change:$" + change);
 }
}

Here is the output from running this program with a price of 35.99 and payment of 50:

Enter product price:
35.99
Total cost:$40.66870172505378
Enter payment amount:
50
Change:$9.33129827494622

Notice all of the decimal places. This is not pretty. Even worse …if you were to run the
program and enter a price of 8.85 and payment of 10, the output would be as follows:

Enter product price:
8.85
Total cost:$10.0005003888607
Enter payment amount:
10
Change:$-5.003888607006957E-4

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 127 -

The E-4 indicates that the decimal place should be moved 4 units to the left…so the resulting
change is actually -$0.0005003888607006957. While the above answers are correct, it would
be nice to display the numbers properly as numbers with 2 decimal places.

JAVA’s String class has a nice function called format() which will allow us to format a String in
almost any way that we want to. Consider (from our code above) replacing the change output
line to:

System.out.println("Change:$" + String.format("%,1.2f", change));

The String.format() always returns a String object with a format that we get to specify. In our
example, this String will represent the formatted change which is then printed out. Notice
that the function allows us to pass-in two parameters (i.e., two pieces of information separated
by a comma , character). Recall that we discussed parameters when we created constructors
and methods for our own objects.

The first parameter is itself a String object that specifies how we want to format the resulting
String. The second parameter is the value that we want to format (usually a variable name).
Pay careful attention to the brackets. Clearly, change is the variable we want to format.
Notice the format string "%,1.2f". These characters have special meaning to JAVA. The %
character indicates that there will be a parameter after the format String (i.e., the change
variable). The 1.2f indicates to JAVA that we want it to display the change as a floating point
number with at least 1 digit before the decimal and exactly 2 digits after the decimal. The ,
character indicates that we would like it to automatically display commas in the money amount
when necessary (e.g., $1,500,320.28). Apply this formatting to the total amount as well:

import java.util.Scanner;

class ChangeCalculatorProgram2 {
 public static void main(String args[]) {
 // Declare the variables that we will be using
 double price, total, payment, change;

 // Get the price from the user
 System.out.println("Enter product price:");
 price = new Scanner(System.in).nextFloat();

 // Compute and display the total with 13% tax
 total = price * 1.13;
 System.out.println("Total cost:$"+ String.format("%,1.2f", total));

 // Ask for the payment amount
 System.out.println("Enter payment amount:");
 payment = new Scanner(System.in).nextFloat();

 // Compute and display the resulting change
 change = payment - total;
 System.out.println("Change:$" + String.format("%,1.2f", change));
 }
}

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 128 -

Here is the resulting output for both test cases:

Enter product price:
35.99
Total cost:$40.67
Enter payment amount:
50
Change:$9.33

Enter product price:
8.85
Total cost:$10.00
Enter payment amount:
10
Change:$-0.00

It is a bit weird to see a value of -0.00, but that is a result of the calculation. Can you think of a
way to adjust the change calculation of payment - total so that it eliminates the - sign ? Try it.

The String.format() can also be used to align text as well. For example, suppose that we
wanted our program to display a receipt instead of just the change. How could we display a
receipt in this format:

 Product Price 35.99
 Tax 4.68

 Subtotal 40.67
Amount Tendered 50.00
=========================
 Change Due 9.33

If you notice, the largest line of text is the “Amount Tendered” line which requires 15
characters. After that, the remaining spaces and money value take up 10 characters. We
can therefore see that each line of the receipt takes up 25 characters. We can then use the
following format string to print out a line of text:

System.out.println(String.format("%15s%10.2f", aString, aFloat));

Here, the %15s indicates that we want to display a string which we want to take up exactly 15
characters. The %10.2f then indicates that we want to display a float value with 2 decimal
places that takes up exactly 10 characters in total (including the decimal character). Notice
that we then pass in two parameters: which must be a String and a float value in that order
(these would likely be some variables from our program). We can then adjust our program to
use this new String format as follows …

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 129 -

import java.util.Scanner;

class ChangeCalculatorProgram3 {
 public static void main(String args[]) {
 // Declare the variables that we will be using
 double price, tax, total, payment, change;

 // Get the price from the user
 System.out.println("Enter product price:");
 price = new Scanner(System.in).nextFloat();

 // Ask for the payment amount
 System.out.println("Enter payment amount:");
 payment = new Scanner(System.in).nextFloat();

 // Compute the total with 13% tax as well as the change due
 tax = price * 0.13;
 total = price + tax;

 change = payment - total;

 // Display the whole receipt
 System.out.println(String.format("%15s%10.2f","Product Price", price));
 System.out.println(String.format("%15s%10.2f","Tax", tax));
 System.out.println("-------------------------");
 System.out.println(String.format("%15s%10.2f","Subtotal", total));
 System.out.println(String.format("%15s%10.2f","Amount Tendered", payment));
 System.out.println("=========================");
 System.out.println(String.format("%15s%10.2f","Change Due", change));
 }
}

The result is the correct formatting that we wanted. Realize though that in the above code, we
could have also left out the formatting for the 15 character strings by manually entering the
necessary spaces:

System.out.println(String.format(" Product Price%10.2f",price));
System.out.println(String.format(" Tax%10.2f", tax));
System.out.println("-------------------------");
System.out.println(String.format(" Subtotal%10.2f", total));
System.out.println(String.format("Amount Tendered%10.2f", payment));
System.out.println("=========================");
System.out.println(String.format(" Change Due%10.2f", change));

However, the String.format function provides much more flexibility. For example, if we used
%-15S instead of %15s, we would get a left justified result (due to the -) and capitalized letters
(due to the capital S) as follows:

PRODUCT PRICE 34.99
TAX 4.55

SUBTOTAL 39.54
AMOUNT TENDERED 50.00
=========================
CHANGE DUE 10.46

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 130 -

There are many more format options that you can experiment with. Just make sure that you
supply the required number of parameters. That is, you need as many parameters as you
have % signs in your format string.

For example, the following code will produce a MissingFormatArgumentException since one of the
arguments (i.e., values) is missing (i.e., 4 % signs in the format string, but only 3 supplied
values:

System.out.println(String.format("$%.2f + $%.2f + $%.2f = $%.2f", x, y, z));

Also, you should be careful not to miss-match types, otherwise an error may occur (i.e.,
IllegalFormatConversionException).

Supplemental Information (Other String.format Flags)

There are a few other format types that may be used in the format string:

Type Description of What it Displays Example Output
%d a general integer 4096

%x an integer in lowercase hexadecimal ff

%X an integer in uppercase hexadecimal FF

%o an integer in octal 377

%f a floating point number with a fixed number of spaces 83.43

%e an exponential floating point number 7.869877e-03

%g a general floating point number with a fixed number of significant digits 0.008

%s a string as given "Hello"

%S a string in uppercase "HELLO"

%n a platform-independent line end <CR><LF>

%b a boolean in lowercase true

%B a boolean in uppercase FALSE

There are also various format flags that can be added after the % sign:

Format Flag Description of What It Does Example Output
- numbers are to be left justified 2378.348 followed by

any necessary spaces
0 leading zeros should be shown 000244.87
+ plus sign should be shown if positive number +67.34
(enclose number in round brackets if negative (439.67)
, show decimal group separators 2,347,892.99

There are many options for specifying various formats including the formatting of Dates and Times, but
they will not be discussed any further here. Please look at the java documentation.

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 131 -

 5.3 Type Conversion

When programming, we often find ourselves working with different kinds of data. For
example, even when performing simple calculations, we may end up using a variety of
primitive data types.

float price;
int payment;
double taxes, change;

price = 34.56f;
taxes = price * 0.13;
payment = 50;

change = payment - price - taxes;

Notice that the above code performs calculations using ints, floats and doubles. When
performing such calculations, JAVA performs some automatic type-conversion. That is, it
converts one type of data into another when performing the calculation.

During computations, JAVA will always produce its calculated result as being the same type as
the more precise data type that was used in the calculation. In the above example, doubles
are more precise than floats and ints. Therefore, when we do price * 0.13, JAVA notices
that this is a calculation using a float (less precise) and a double (more precise). Therefore
the float is converted to a double during the computation and the resulting answer is returned
as a double, and stored in the taxes variable.

Consider the difference in output of the following code:

float price1 = 34.56f;
double price2 = 34.56;
System.out.println(price1 * 0.13f); // displays 4.4928
System.out.println(price2 * 0.13f); // displays 4.492799835205078

Notice that the same calculation is performed in both cases but that one uses a float price
amount while the other uses a double price amount. The 1st calculation uses two floats, and
so the result is a less precise float value. The 2nd calculation uses a double, so the entire
calculation is performed using doubles, generating a more precise result.

What if we changed the code to store the results as follows:

float price1 = 34.56f;
double price2 = 34.56;
float result;

result = price1 * 0.13f;
result = price2 * 0.13f; // gives “possible loss of precision” error

The above code will not compile. JAVA notices that in the last line, it is performing a
calculation that will result in a double. However, result is of type float. Since floats are less

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 132 -

precise that doubles, the JAVA compiler informs us that there would be a loss of precision if
we tried to take the double answer and “squeeze” it into a smaller float variable.

When assigning calculation results to a variable, JAVA always checks to make sure that the
resulting type of the calculation will “fit” into the variable. We CANNOT store a …

• double result in a variable of type float, int, long, byte, short
• float result in a variable of type int, long, byte, short
• long result in a variable of type int, byte, short
• int result in a variable of type byte, short
• short result in a variable of type byte

If we attempt to assign a result into a variable of a less precise type (as above), then we will
ALWAYS get a compiler error stating “possible loss of precision”.

However, we CAN store a:

• double result in a variable of type double
• float result in a variable of type float, double
• long result in a variable of type long, float, double
• int result in a variable of type int, long, float, double
• short result in a variable of type short, int, long, float, double
• byte result in a variable of type byte, short, int, long, float, double

Sometimes, however, we may want to take a more precise calculated value and store it into a
less precise variable, perhaps for later use. For example, we may want to perform a money-
based calculation precisely but then we may only be interested in the whole number portion, or
maybe only 2 decimal places. This example calculates the change owed to a person, extracts
and stores the whole portion (as whole monetary bills to be returned to the customer … ignore
the fact that toonies and loonies are not bills) and the remaining change as a separate value:

 float price, changeDue;
 int payment, billsDue;
 double taxes, change;

 price = 34.56f;
 taxes = price * 0.13;
 payment = 50;

 change = payment - price - taxes;
 billsDue = (int)change;
 changeDue = (float)change - billsDue;
 System.out.println(change); // displays 10.947198448181151
 System.out.println(billsDue); // displays 10
 System.out.println(changeDue); // displays 0.94719887

Notice that we used (int) and (float). These are called explicit type-casts. In English, the
term typecasting means to identify as belonging to a certain type. What we are doing is
telling the JAVA compiler that we would like to “convert” a particular value into the type that we
specified between parentheses ().

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 133 -

We can typecast any numeric type (i.e., double, float, int, long, byte, short, char) to any
other numeric type at any time. We just need to remember what happens each time as
follows:

• if x is a double or float then (long)x, (int)x, (short)x, (byte)x and (char)x will discard
the decimal places … it will NOT round off, just truncate.

• if x is a long, int, short, byte or char, then (double)x and (float)x will set the decimal

places to be .0.

• if a more precise value (e.g., long or double) is type-casted to a less precise value

(e.g., int or double) then some data WILL be lost.

Here are some examples in which the conversion results in data loss:

(float)34.56767867 ==> 34.56768 // rounded off
(int)2.4 ==> 2 // decimal places lost
(int)2.9 ==> 2 // does not round off

Here are some examples in which the conversion results in data loss:

(char)947384 ==> '?'
(int)123456789012345678L ==> -1506741426

Conversions may be intermediate and unintentional:

int sum = 30;
double avg = sum / 4; // result is 7.0, not 7.5 !!!

Perhaps a more common type of conversion is that of converting numbers to Strings and vice-
versa. In JAVA, there are some pre-defined functions to do this for us.

In order to convert a given String to a particular numeric data type, there are various
class/static functions available:

String s = ...;

Integer.parseInt(s); // returns int value of s
Double.parseDouble(s) // returns double value of s
Float.parseFloat(s) // returns float value of s

Here are some examples:

Integer.parseInt("7438"); // returns int value 7438
Double.parseDouble("234.65") // returns double value 234.65
Float.parseFloat("234.65") // returns float value 234.65f

We sometimes need to use these functions if we are given a String from the user and would
like to convert the input string to a numeric value for calculation purposes. For example, the

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 134 -

following code asks the user for his/her age and then uses the input to determine the number
of years until their retirement:

String input;
Int age;

input = JOptionPane.showInputDialog("What is your age ?");
age = Integer.parseInt(input);

JOptionPane.showMessageDialog(null, "You have " + (65 - age) +
 " years until retirement");

Unfortunately, the technique for converting a String into a boolean or char is different.

String input;
boolean retired;

input = JOptionPane.showInputDialog("You are retired ... true or false ?");
retired = Boolean.valueOf(input).booleanValue();

if (retired)

JOptionPane.showMessageDialog(null, "You get a discount");
else

JOptionPane.showMessageDialog(null, "You pay full price");

Here is an example of getting a single character from the user:

String input;
char registered;

input = JOptionPane.showInputDialog("Are you a registered user ?");
registered = input.charAt(0); // gets the 1st character

if ((registered == 'y') || (registered == 'Y'))

JOptionPane.showMessageDialog(null, "OK. Sign in please");
else

JOptionPane.showMessageDialog(null, "Sorry, you must register first");

The advantage of the above code is that the user may type in any of the following strings
which will acknowledge that he/she is a registered user: “y”, “Y”, “Yes”, “YES”, “yes”, etc..
Unfortunately, it will allow them to use “Yellow”, “yarn” and “you confuse me” as “yes”
answers too ;).

Finally, we would also like to be able to convert in the other direction. That is, perhaps we
would like to convert a number to a String. This is often necessary in order to place numeric
information into a text field on a window.

COMP1005/1405 – Calculations, Formatting and Conversions Fall 2009

 - 135 -

The simplest way to do this is to take the int/float/double/long value and simply add it to an
empty String. JAVA will then convert it:

int age;
String s;

age = 21;
s = age; // compile error: incompatible types
s = "" + age; // this will work

Another option is to use any of the following functions:

Integer.toString(225) ==> "225"
Double.toString(225.56) ==> "225.56"
Float.toString(225.56f) ==> "225.56"

Integer.toBinaryString(225) ==> "11100001"
Integer.toHexString(34728) ==> "87a8"
Integer.toOctalString(34728) ==> "103650"

Notice that the last 3 are quite useful because they actually change the appearance of the
integer value within the string according to the desired number system.

